生物技术通报 ›› 2020, Vol. 36 ›› Issue (8): 173-184.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0181
徐子涵, 胡凤荣
收稿日期:
2020-02-23
出版日期:
2020-08-26
发布日期:
2020-08-27
作者简介:
徐子涵,女,硕士研究生,研究方向:植物遗传育种;E-mail:406922521@qq.com
基金资助:
XU Zi-han, HU Feng-rong
Received:
2020-02-23
Published:
2020-08-26
Online:
2020-08-27
摘要: microRNAs(miRNAs)是一类长度为19-25 nt的非编码小分子RNA,在转录后水平调控植物的生长发育、信号传导及逆境响应等多个过程,现已成为生物学研究的热点。miR172是植物中一个保守的miRNA家族,通过调控APETALA2类基因,在植物的开花诱导、花器官形态建成、果实成熟、叶片和根的生长等各器官的发育过程中起到重要作用。鉴于此,综述了近20年miR172在植物营养器官、生殖器官及其他器官的发育,以及在发育阶段过渡中的功能,讨论了其他因素对miR172的影响,以期为深入解析miR172及其靶基因的作用机理和分子调控网络提供参考。
徐子涵, 胡凤荣. miR172参与植物发育调控的研究进展[J]. 生物技术通报, 2020, 36(8): 173-184.
XU Zi-han, HU Feng-rong. Research Progress of miR172 in Plant Development and Regulation[J]. Biotechnology Bulletin, 2020, 36(8): 173-184.
[1] Rogers K, Chen X.Biogenesis, turnover, and mode of action of plant microRNAs[J]. The Plant Cell, 2013, 25(7):2383-2399. [2] Jones-Rhoades MW, Bartel DP, Bartel B.MicroRNAs and their regulatory roles in plants[J]. Annual Review of Plant Biology, 2006, 57(1):19-53. [3] Kurihara Y, Watanabe Y.Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions[J]. PNAS, 2004, 101(34):12753-12758. [4] Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, et al.Widespread translational inhibition by plant miRNAs and siRNAs[J]. Science, 2008, 320(5880):1185-1190. [5] 吕帝瑾, 赵佳媛, 陈婧, 等. 植物microRNA的研究进展[J]. 植物生理学报, 2013, 49(9):847-854. Lv DJ, Zhao JY, Chen J, et al.Advances in the research of plant microRNA[J]. Plant Physiology Journal, 2013, 49(9):847-854. [6] Park W, Li J, Song R, et al.CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana[J]. Current Biology, 2002, 12(17):1484-1495. [7] Chen X.A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development[J]. Science, 2004, 303(5666):2022-2025. [8] Wu G, Park MY, Conway SR, et al.The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis[J]. Cell, 2009, 138(4):750-759. [9] Kim BH, Kwon Y, Lee B, et al.Overexpression of miR172 suppresses the brassinosteroid signaling defects of bak1 in Arabidopsis[J]. Biochemical and Biophysical Research Communications, 2014, 447(3):479-484. [10] 张舒婷, 朱晨, 王培育, 等. 龙眼miR172家族成员进化特性及其时空表达分析[J]. 果树学报, 2017, 34(11):1385-1393. Zhang ST, Zhu C, Wang PY, et al.Analaysis of evolutionary characteristics of miR172 gene family and their spatial and temporal expression in Dimocarpus longan Lour.[J]. Journal of Fruit Science, 2017, 34(11):1385-1393. [11] 王培育, 林争春, 王丛巧, 等. 文心兰15个miRNAs及其候选靶标的表达特性[J]. 应用与环境生物学报, 2019, 25(1):108-106. Wang PY, Lin ZC, Wang CQ, et al.Expression characteristics of 15 miRNAs and their candidate target genes in Oncidium hybridum[J]. Chinese Journal Applied Environmental Biology, 2019, 25(1):108-116. [12] Shivaraj SM, Dhakate P, Mayee P, et al.Natural genetic variation in MIR172 isolated from Brassica species[J]. Biologia Plantarum, 2014, 58(4):627-640. [13] Zhang L, Wu B, Zhao D, et al.Genome-wide analysis and molecular dissection of the SPL gene family in Salvia miltiorrhiza[J]. Journal of Integrative Plant Biology, 2014, 56(1):38-50. [14] 刘薇, 赵振芳, 冯永军, 等. 植物激素在豆科植物根瘤形成和发育过程中的调控作用[J]. 大豆科学, 2013, 32(2):262-266. Liu W, Zhao ZF, Feng YJ, et al.Regulation of plant hormones on the formation and development of legumes root nodules[J]. Soybean Science, 2013, 32(2):262-266. [15] Yan Z, Hossain MS, Wang J, et al.miR172 regulates soybean nodulation[J]. Molecular Plant-Microbe Interactions, 2013, 26(12):1371-1377. [16] Nova-Franco B, Íñiguez LP, Valdés-López O, et al.The micro-RNA172c-APETALA2-1 node as a key regulator of the common bean-Rhizobium etli nitrogen fixation symbiosis[J]. Plant Physiology, 2015, 168(1):273-291. [17] Martin A, Adam H, Díaz-Mendoza M, et al.Graft-transmissible induction of potato tuberization by the microRNA miR172[J]. Development, 2009, 136(17):2873-2881. [18] Zhao X, Cao D, Huang Z, et al.Dual functions of GmTOE4a in the regulation of photoperiod-mediated flowering and plant morphology in soybean[J]. Plant Molecular Biology, 2015, 88(4/5):343-355. [19] Aukerman MJ, Sakai H.Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes[J]. The Plant Cell, 2003, 15(11):2730-2741. [20] Schmid M, Uhlenhaut NH, Godard F, et al.Dissection of floral induction pathways using global expression analysis[J]. Development, 2003, 130(24):6001-6012. [21] Jung JH, Seo YH, Seo PJ, et al.The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis[J]. The Plant Cell, 2007, 19(9):2736-2748. [22] Lee YS, Lee DY, Cho LH, et al.Rice miR172 induces flowering by suppres-sing OsIDS1 and SNB, two AP2 genes that negatively regulate expression of Ehd1 and florigens[J]. Rice, 2014, 7(1):1-13. [23] Glazińska P, Zienkiewicz A, Wojciechowski W, et al.The putative miR172 target gene InAPETALA2-like is involved in the photoperiodic flower induction of Ipomoea nil[J]. Journal of Plant Physiology, 2009, 166(16):1801-1813. [24] Zhao Q, Sun C, Liu DD, et al.Ectopic expression of the apple Md-miR172e gene alters flowering time and floral organ identity in Arabidopsis[J]. Plant Cell, Tissue and Organ Culture, 2015, 123(3):535-546. [25] Tang M, Bai X, Niu LJ, et al.miR172 regulates both vegetative and reproductive development in the perennial woody plant Jatropha curcas[J]. Plant and Cell Physiology, 2018, 59(12):2549-2563. [26] Li X, Guo F, Ma S, et al.Regulation of flowering time via miR172-mediated APETALA2-like expression in ornamental gloxinia(Sinningia speciosa)[J]. Journal of Zhejiang University Science B, 2019, 20(4):322-331. [27] Wang T, Ping X, Cao Y, et al.Genome-wide exploration and characterization of miR172/euAP2 genes in Brassica napus L. for likely role in flower organ development[J]. BMC Plant Biology, 2019, 19(1):336. [28] Bowman JL, Smyth DR, Meyerowitz EM.Genetic interactions among floral homeotic genes of Arabidopsis[J]. Development, 1991, 112(1):1-20. [29] Coen ES, Meyerowitz EM.The war of the whorls:genetic interactions controlling flower development[J]. Nature, 1991, 353(6339):31-37. [30] Krizek BA, Fletcher JC.Molecular mechanisms of flower development:an armchair guide[J]. Nature Reviews Genetics, 2005, 6(9):688-698. [31] Mlotshwa S, Yang Z, Kim YJ, et al.Floral patterning defects induced by Arabidopsis APETALA2 and microRNA172 expression in Nicotiana benthamiana[J]. Plant Molecular Biology, 2006, 61(4/5):781-793. [32] Jung JH, Lee S, Yun J, et al.The miR172 target TOE3 represses AGAMOUS expression during Arabidopsis floral patterning[J]. Plant Science, 2014, 215:29-38. [33] Yadav RK, Perales M, Gruel J, et al.Plant stem cell maintenance involves direct transcriptional repression of differentiation program[J]. Molecular Systems Biology, 2013, 9(1):654. [34] Chen X, Zhao L, Kim YJ. miR172 modulates the output of the AGAMOUS/APETALA2 antagonistic pair in floral patterning[J]. Developmental Biology, 2006, 1(295):324. [35] Wollmann H, Mica E, Todesco M, et al.On reconciling the interactions between APETALA2, miR172 and AGAMOUS with the ABC model of flower development[J]. Development, 2010, 137(21):3633-3642. [36] Yumul RE, Kim YJ, Liu X, et al.POWERDRESS and diversified expression of the MIR172 gene family bolster the floral stem cell network[J]. PLoS Genetics, 2013, 9(1):e1003218. [37] Tsaftaris AS, Pasentsis K, Madesis P, et al.Sequence characteriza-tion and expression analysis of three APETALA2-like genes from saffron crocus[J]. Plant Molecular Biology Reporter, 2012, 30(2):443-452. [38] Li J, Luan Y, Zhai J, et al.Bioinformatic analysis of functional characteristics of miR172 family in tomato[J]. Journal of Northeast Agricultural University, 2013, 20(4):19-27. [39] 王涛, 李永光, 李文滨. 大豆miR172家族成员序列及表达模式初步分析[J]. 基因组学与应用生物学, 2015, 34(6):1277-1282. Wang T, Li YG, Li WB.Sequence and expression pattern analysis of miR172 family in soybean[J]. Genomics and Applied Biology, 2015, 34(6):1277-1282. [40] 李文静, 王杏茹, 刘涛, 等. 芥蓝miR172家族成员进化特性比较及时空表达分析[J]. 西北植物学报, 2018, 38(8):75-82. Li WJ, Wang XR, Liu T, et al.Evolutionary characteristics and analysis of miR172 family members in Chinese kale[J]. Acta Botanica Boreali-Occidentalia Sinica, 2018, 38(8):75-82. [41] Shivaraj SM, Singh A.Sequence variation in BrassicaAP2 and analysis of interaction of AP2-miR172 regulatory module[J]. Plant Cell, Tissue and Organ Culture, 2016, 125(2):191-206. [42] Shivaraj SM, Jain A, Singh A.Highly preserved roles of Brassica MIR172 in polyploid Brassicas:ectopic expression of variants of Brassica MIR172 accelerates floral transition[J]. Molecular Genetics and Genomics, 2018, 293(5):1121-1138. [43] Chuck G, Meeley R, Irish E, et al.The maize tasselseed4 microRNA controls sex determination and meristem cell fate by targeting Tasselseed6/indeterminate spikelet1[J]. Nature Genetics, 2007, 39(12):1517. [44] Lauter N, Kampani A, Carlson S, et al.microRNA172 down-regulates glossy15 to promote vegetative phase change in maize[J]. PNAS, 2005, 102(26):9412-9417. [45] Chuck G, Meeley R, Hake S.Floral meristem initiation and meristem cell fate are regulated by the maize AP2 genes ids1 and sid1[J]. Development, 2008, 135(18):3013-3019. [46] 赵晓锋, 吕盼晴, 张珂, 等. 降解组测序技术在玉米雌穗发育相关miRNA靶基因中的应用[J]. 河南农业大学学报, 2015, 49(2):145-152. Zhao XF, Lv PQ, Zhang K, et al.Research for using degradome sequencing method to find involved miRNA target genes in the developing maize ear[J]. Journal of Henan Agricultural University, 2015, 49(2):145-152. [47] Zhu QH, Upadhyaya NM, Gubler F, et al.Over-expression of miR172 causes loss of spikelet determinacy and floral organ abnormalities in rice(Oryza sativa)[J]. BMC Plant Biology, 2009, 9(1):149. [48] Brown RH, Bregitzer P.A Ds insertional mutant of a barley miR172 gene results in indeterminate spikelet development[J]. Crop Science, 2011, 51(4):1664-1672. [49] Liu P, Liu J, Dong H, et al.Functional regulation of Q by microRNA172 and transcriptional co-repressor TOPLESS in controlling bread wheat spikelet density[J]. Plant Biotechnology Journal, 2018, 16(2):495-506. [50] Anwar N, Ohta M, Yazawa T, et al.miR172 downregulates the translation of cleistogamy 1 in barley[J]. Annals of Botany, 2018, 122(2):251-265. [51] 孟雨婷, 黄晓晨, 侯元同, 等. 花的形态与花发育的ABCDE模型[J]. 生物学杂志, 2017, 34(6):105-107, 115. Meng YT, Huang XC, Hou YT, et al.The floral morphology and the ABCDE model of floral organ development[J]. Journal of Biology, 2017, 34(6):105-107, 115. [52] Debernardi JM, Greenwood JR, Jean Finnegan E, et al.APETALA 2-like genes AP2L2 and Q specify lemma identity and axillary floral meristem development in wheat[J]. The Plant Journal, 2020, 101(1):171-187. [53] François L, Verdenaud M, Fu X, et al.A miR172 target-deficient AP2-like gene correlates with the double flower phenotype in roses[J]. Scientific Reports, 2018, 8(1):1-11. [54] Wang QJ, Zhang XN, Lin SN, et al.Mapping a double flower phenotype-associated gene DcAP2L in Dianthus chinensis[J]. Journal of Experimental Botany, 2020, 71(6):1915-1927. [55] 眭梦洁, 晏慧君, 王珍珍, 等 . 月季‘绿萼’花器官发育相关microRNA的鉴定及分析[J]. 植物科学学报, 2019, 37(1):37-46. Sui MJ, Yan HJ, Wang ZZ, et al.Identification of microRNA associated with flower organ development in Rosa chinensis‘Viri-diflora’[J]. Plant Science Journal, 2019, 37(1):37-46. [56] Gattolin S, Cirilli M, Pacheco I, et al.Deletion of the miR172 target site in a TOE-type gene is a strong candidate variant for dominant double-flower trait in Rosaceae[J]. The Plant Journal, 2018, 96(2):358-371. [57] 王晨, 张演义, 房经贵, 等. 葡萄microRNA156b和micro-RNA172c及其靶基因在冬芽二次成花过程中的表达特性研究[J]. 南京农业大学学报, 2012, 35(4):59-64. Wang C, Zhang YY, Fang JG, et al.Spatiotemporal expression of microRNA156b and microRNA172c and their target genes during flower development of winter buds growing on cut-back treated shoots of grapevine[J]. Journal of Nanjing Agricultural University, 2012, 35(4):59-64. [58] 马鑫瑞, 李亮, 刘瑾航, 等. 梨花芽休眠相关miRNA的鉴定和差异表达分析[J]. 园艺学报, 2018, 45(11):22-38. Ma XR, Li L, Liu JH, et al.Identification and differentially expressed analysis of microRNA associated with dormancy of pear flower buds[J]. Acta Horticulturae Sinica, 2018, 45(11):22-38. [59] Nair SK, Wang N, Turuspekou Y, et al.Cleistogamous flowering in barley arises from the suppression of microRNA-guided HvAP2 mRNA cleavage[J]. PNAS, 2010, 107(1):490-495. [60] Ripoll JJ, Bailey LJ, Mai QA, et al.microRNA regulation of fruit growth[J]. Nature Plants, 2015, 1(4):15036. [61] Yant L, Mathieu J, Dinh TT, et al.Orchestration of the floral transition and floral development in Arabidopsis by the bifunctional transcription factor APETALA2[J]. The Plant Cell, 2010, 22(7):2156-2170. [62] Weigel D, Meyerowitz EM.The ABCs of floral homeotic genes[J]. Cell, 1994, 78(2):203-209. [63] Yao JL, Dong YH, Morris BAM.Parthenocarpic apple fruit production conferred by transposon insertion mutations in a MADS-box transcription factor[J]. PNAS, 2001, 98(3):1306-1311. [64] Yao JL, Xu J, Cornille A, et al.A micro RNA allele that emerged prior to apple domestication may underlie fruit size evolution[J]. The Plant Journal, 2015, 84(2):417-427. [65] Yao JL, Tomes S, Xu J, et al.How microRNA172 affects fruit growth in different species is dependent on fruit type[J]. Plant Signaling & Behavior, 2016, 11(4):e1156833. [66] Karlova R, Rosin FM, Busscher-Lange, et al.Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato fruit ripening[J]. The Plant Cell, 2011, 23(3):923-941. [67] Poethig RS.Small RNAs and developmental timing in plants[J]. Current Opinion in Genetics & Development, 2009, 19(4):374-378. [68] Zotz G, Wilhelm K, Becker A.Heteroblasty-a review[J]. The Botanical Review, 2011, 77(2):109-151. [69] Silva PO, Batista DS, Cavalcanti JHF, et al.Leaf heteroblasty in Passiflora edulis as revealed by metabolic profiling and expression analyses of the microRNAs miR156 and miR172[J]. Annals of Botany, 2019, 123(7):1191-1203. [70] Zhang S, Zhou J, Han S, et al.Four abiotic stress-induced miRNA families differentially regulated in the embryogenic and non-embryogenic callus tissues of Larix leptolepis[J]. Biochem Biophys Res Commu, 2010, 398(3):355-360. [71] Ahsan MU, Hayward A, Alam M, et al.Scion control of miRNA abundance and tree maturity in grafted avocado[J]. BMC Plant Biology, 2019, 19(1):1-11. [72] Levy A, Szwerdszarf D, Abu-Abied M, et al.Profiling microRNAs in Eucalyptus grandis reveals no mutual relationship between alterations in miR156 and miR172 expression and adventitious root induction during development[J]. BMC Genomics, 2014, 15(1):524. [73] Silva PO, Batista DS, Cavalcanti JHF, et al.Leaf heteroblasty in Passiflora edulis as revealed by metabolic profiling and expression analyses of the microRNAs miR156 and miR172[J]. Annals of Botany, 2019, 123(7):1191-1203. [74] Sánchez-Gutiérrez A, Ovando-Medina I, Adriano-Anaya L, et al.Dynamics of miR156 and miR172 involved in the flowering of Jatropha curcas L.[J]. Acta Botanica Brasilica, 2018, 32(1):99-106. [75] 丛汉卿, 龙娅丽, 王荣香, 等. 木薯sRNA测序分析及其开花相关microRNA的挖掘[J]. 热带作物学报, 2018, 39(12):103-111. Cong HQ, Long YL, Wang RX, et al.Analysis of sRNA sequencing and mining of flowering-related microRNA in Manihot esculenta Crantz[J]. Chinese Journal of Tropical Crops, 2018, 39(12):103-111. [76] Tripathi RK, Bregitzer P, Singh J.Genome-wide analysis of the SPL/miR156 module and its interaction with the AP2/miR172 unit in barley[J]. Scientific Reports, 2018, 8(1):1-13. [77] Jung JH, Seo PJ, Kang SK, et al.miR172 signals are incorporated into the miR156 signaling pathway at the SPL3/4/5 genes in Arabidopsis developmental transitions[J]. Plant Molecular Biology, 2011, 76(1/2):35-45. [78] Kasschau KD, Xie Z, Allen E, et al.P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA function[J]. Develop Cell, 2003, 4(2):205-217. [79] Aguilar-Jaramillo AE, Marín-González E, Matías-Hernández L, et al.TEMPRANILLO is a direct repressor of the micro RNA miR172[J]. The Plant Journal, 2019, 100(3):522-535. [80] Cho HJ, Kim JJ, Lee JH, et al.SHORT VEGETATIVE PHASE(SVP)protein negatively regulates miR172 transcription via direct binding to the pri-miR172a promoter in Arabidopsis[J]. FEBS Letters, 2012, 586(16):2332-2337. |
[1] | 王杰, 解莉楠. 植物去甲基化酶ROS1的研究进展[J]. 生物技术通报, 2020, 36(7): 148-157. |
[2] | 张麒, 陈静, 李俐, 赵明珠, 张美萍, 王义. 植物AP2/ERF转录因子家族的研究进展[J]. 生物技术通报, 2018, 34(8): 1-7. |
[3] | 王福双,董世瑞,王素英. 螺旋藻形态建成研究进展[J]. 生物技术通报, 2016, 32(8): 28-33. |
[4] | 刘震西;蓝兴国;康瑞霞;李玉花;. 内源小RNAs的生物合成及其在植物发育中的作用[J]. , 2012, 0(04): 7-13. |
[5] | 任怡怡;戴绍军;刘炜;. 生长素的运输及其在信号转导及植物发育中的作用[J]. , 2012, 0(03): 9-16. |
[6] | 鲁晓燕;岳英;樊新民;马兵钢;赵宝龙;张虎平;. 植物microRNAs在植物发育和非生物胁迫响应中的作用[J]. , 2011, 0(04): 21-25. |
[7] | 汪开治. 美证实花青苷蛋白可协助植物完成受精作用[J]. , 2005, 0(05): 6-6. |
[8] | 华明;杨先慈. 受体蛋白激酶和植物发育[J]. , 2000, 0(02): 23-27. |
[9] | 王伟. 植物发育研究进展及前景[J]. , 1996, 0(06): 5-7. |
[10] | 朱遐. 病毒的致癌机制[J]. , 1996, 0(06): 23-23. |
[11] | 孙国凤. 开始试养3倍体牡蛎[J]. , 1995, 0(03): 33-33. |
[12] | 邵宏波;初立业. 组织培养和用于研究植物发育的转基因植物[J]. , 1992, 0(12): 1-4. |
[13] | 李思经;. 遗传工程提高了植物再生潜力[J]. , 1989, 0(07): 12-13. |
[14] | 李思经;. 植物组织培养物的改良的贮存方法[J]. , 1989, 0(07): 16-16. |
[15] | 王璋瑜;. “自杀基因”能在植物中倒戈[J]. , 1989, 0(03): 23-23. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||