[1] |
梅洪, 张成武, 殷大聪, 等. 利用微藻生产可再生能源研究概况[J]. 武汉植物学研究, 2008,26(6):650-660.
|
|
Mei H, Zhang CW, Yin DC, et al. Survey of studies on renewable energy production by microalgae[J]. Journal of Wuhan Botanical Research, 2008,26(6):650-660.
|
[2] |
Lam MK, Lee KT. Microalgae biofuels:a critical review of tissues, problems and the way forward[J]. Biotechnol Adv, 2012,30(3):673-690.
|
[3] |
Uduman N, Qi Y, Danquah MK, et al. Dewatering of microalgal cultures:a major bottleneck to algae-based fuels[J]. J Renew Sustain Energy, 2010,2(1):0127011-0127015.
|
[4] |
Kim DY, Vijayan D, Praveenkumar R, et al. Cell-wall disruption and lipid/astaxanthin extraction from microalgae:Chlorella and Haematococcus[J]. Bioresour Technol, 2016,199:300-310.
|
[5] |
Wang HMD, Chen CC, Huynh P, et al. Exploring the potential of using algae in cosmetics[J]. Bioresour Technol, 2015,184:355-362.
doi: 10.1016/j.biortech.2014.12.001
URL
pmid: 25537136
|
[6] |
庞通, 刘建国, 林伟, 等. 藻类生物燃料乙醇制备的研究进展[J]. 渔业现代化, 2012,39(5):63-71.
|
|
Pang T, Liu JG, Lin W, et al. Advances on the algae to bioethanol technologies[J]. Fishery Modernization, 2012,39(5):63-71.
|
[7] |
Rojo-Cebreros AH, Ibarra-Castro L, Martínez-Brown JM, et al. Potential of Nannochloropsis in beta glucan production[M]. Nannochloropsis:Biology, Biotechnological. New York:Nova Sciences Publishers Inc. , 2017: 181-225.
|
[8] |
Zeković DB, Kwiatkowski S, Vrvić MM, et al. Natural and modified(1-3)-β-D-glucans in health promotion and disease alleviation[J]. Crit Rev Biotechnol, 2005,25(4):205-230.
|
[9] |
汲晨锋, 郭守东, 申奥. β-葡聚糖研究进展[J]. 哈尔滨商业大学学报:自然科学版, 2013,29(5):8-12.
|
|
Ji CF, Guo SD, Shen A. Review on β-glucan[J]. Journal of Harbin University of Commerce:Natural Sciences Edition, 2013,29(5):8-12.
|
[10] |
蔡成岗, 蒋新龙, 蒋昌海. β-葡聚糖结构功能与开发研究进展[J]. 农产品加工·学刊, 2012(9):114-117.
|
|
Cai CG, Jiang XL, Jiang CH. Research progress on structure and function and production of β-glucan[J]. Academic Periodical of Farm Products Processing, 2012(9):114-117.
|
[11] |
郑梅霞, 朱育菁, 刘波, 等. β-葡聚糖及其在食品工业中的研究进展[J]. 食品安全质量检测学报, 2018,9(16):155-164.
|
|
Zheng MX, Zhu YJ, Liu B, et al. Research progress on β-glucan and its application on food industry[J]. Journal of Food Safety and Quality, 2018,9(16):155-164.
|
[12] |
Schulze C, Wetzel M, Reinhardt J, et al. Screening of microalgae for primary metabolites including β-glucans and the influence of nitrate starvation and irradiance on β-glucan production[J]. J Appl Phycol, 2016,28(5):2719-2725.
|
[13] |
De Castro Araújo S, Garcia VMT. Growth and biochemical composition of the diatom Chaetoceros cf. wighamii brightwell under different temperature, salinity and carbon dioxide levels. I. Protein, carbohydrates and lipids[J]. Aquaculture, 2005,246(1-4):405-412.
|
[14] |
Duarte JH, Cardoso LG, Souza COD, et al. Brackish groundwater from Brazilian backlands in Spirulina cultures:Potential of carbohydrate and polyunsaturated fatty acid production[J]. Appl Biochem Biotechnol, 2020,190(3):907-917.
doi: 10.1007/s12010-019-03126-7
URL
pmid: 31520323
|
[15] |
Dubois M, Gilles KA, Hamilton JK, et al. Colorimetric method for determination of sugars and related substances[J]. Anal Chem, 1956,28(3):350-356.
|
[16] |
Markou G, Angelidaki I, Georgakakis D. Microalgal carbohydrates:an overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels[J]. Appl Microbiol Biotechnol, 2012,96(3):631-645.
|
[17] |
Li T, Xu J, Wu H, et al. Growth and biochemical composition of Porphyridium purpureum SCS-02 under different nitrogen concentrations[J]. Mar Drugs, 2019,17(2):124.
|
[18] |
韦芳三, 李纯厚, 戴明, 等. 盐度变化对盐藻生物量和总脂含量的影响[J]. 湖南农业科学, 2011(1):134-136, 139.
|
|
Wei FS, Li CH, Dai M, et al. Effects of salinity change on the biomass and lipid content of Dunaliella salina[J]. Hunan Agricultural Sciences, 2011(1):134-136, 139.
|
[19] |
赵萍, 邹宁, 孙东红, 等. 盐度对三角褐指藻生长及有机质积累的影响[J]. 中国油料作物学报, 2013,35(2):217-220.
|
|
Zhao P, Zou N, Sun DH, et al. Effect of salinity on Phaeodactylum tricornutum growth and organics accumulation[J]. Chinese Journal of Oil Crop Sciences, 2013,35(2):217-220.
|
[20] |
贾顺义. 不同盐度及氮磷浓度对紫球藻生长代谢的影响[D]. 大连:大连理工大学, 2006.
|
|
Jia SY. The effect of different concentration of salinity, nitrogen and phosphorous on the growth and metabolism of Porphyridium cruentum[D]. Dalian:Dalian University of Technology, 2006.
|
[21] |
Pugkaew W, Metha M, Yokthongwattana K, et al. Effects of salinity changes on growth, photosynthetic activity, biochemical composition, and lipid productivity of marine microalga Tetraselmis suecica[J]. J Appl Phycol, 2019,31:969-979.
|
[22] |
Dave N, Selvaraj R, Varadavenkatesan T, et al. A critical review on production of bioethanol from macroalgal biomass[J]. Algal Res, 2019,42:101606.
|
[23] |
Jambo S, Abdulla R, Marbawi H, et al. Response surface optimization of bioethanol production from third generation feedstock-Eucheuma cottonii[J]. Renew Energy, 2019,132:1-10.
|
[24] |
Ho SH, Huang SW, Chen CY, et al. Bioethanol production using carbohydrate-rich microalgae biomass as feedstock[J]. Bioresour Technol, 2013,135:191-198.
doi: 10.1016/j.biortech.2012.10.015
URL
pmid: 23116819
|
[25] |
Chen CY, Zhao XQ, Yen HW, et al. Microalgae-based carbohydrates for biofuel production[J]. Biochem Eng J, 2013,78:1-10.
|
[26] |
Skjermo J, Størseth TR, Hansen K, et al. Evaluation of β-(1→3, 1→6)-glucans and High-Malginate used as immunostimulatory dietary supplement during first feeding and weaning of Atlantic cod(Gadus morhua L.)[J]. Aquaculture, 2006,261(3):1088-1101.
|
[27] |
田甜, 周成旭, 刘宝宁, 等. 6种海洋微藻β-葡聚糖的累积特征及其免疫活性分析[J]. 食品科学, 2013,34(3):188-192.
|
|
Tian T, Zhou CX, Liu BN, et al. Accumulation features and immuno-stimulative effects of β-glucans from six species of marine microalgae[J]. Food Science, 2013,34(3):188-192.
|
[28] |
Størseth TR, Hansen K, Reitan KI, et al. Structural characterization of β-D-(1→3)-glucans from different growth phases of the marine diatoms Chaetoceros mülleri and Thalassiosira weissflogii[J]. Carbohyd Res, 2005,340(6):1159-164.
|
[29] |
Jia J, Han D, Gerken HG, et al. Molecular mechanisms for photosynthetic carbon partitioning into storage neutral lipids in Nan-nochloropsis oceanica under nitrogen-depletion conditions[J]. Algal Res, 2015,7:66-77.
|
[30] |
Onay M. Bioethanol production via different saccharification strategies from H. tetrachotoma ME03 grown at various concentrations of municipal wastewater in a flat-photobioreactor[J]. Fuel, 2019,239:1315-1323.
|