生物技术通报 ›› 2021, Vol. 37 ›› Issue (1): 255-261.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0653
徐雪亮1(), 王奋山1, 刘子荣1, 范琳娟1, 季香云2, 蒋杰贤2, 姚英娟1()
收稿日期:
2020-05-27
出版日期:
2021-01-26
发布日期:
2021-01-15
作者简介:
徐雪亮,男,硕士,助理研究员,研究方向:有害生物综合防治;E-mail: 基金资助:
XU Xue-liang1(), WANG Fen-shan1, LIU Zi-rong1, FAN Lin-juan1, JI Xiang-yun2, JIANG Jie-xian2, YAO Ying-juan1()
Received:
2020-05-27
Published:
2021-01-26
Online:
2021-01-15
摘要:
RNA干扰(RNAi)是生物体内源基因发生转录后特异性降解的一种生理现象,广泛存在于生物体内。RNAi主要由小干扰RNA诱发阻碍目的基因的翻译或转录,造成目标信使RNA沉默。RNAi具有高效、特异性强等优点,被广泛应用于昆虫基因功能研究,并显示出了开发新型病虫害管理策略的巨大潜力。主要阐述了RNAi的沉默机制,双链RNA转入昆虫体内的几种方式,以及RNAi技术在不同目昆虫中研究的最新进展。最后,对RNAi技术存在的不足之处进行了简单总结,还对RNAi技术在害虫防治中的应用进行了展望,以期为该技术广泛应用于农业害虫防治提供理论支持。
徐雪亮, 王奋山, 刘子荣, 范琳娟, 季香云, 蒋杰贤, 姚英娟. RNA干扰技术在昆虫学领域研究进展[J]. 生物技术通报, 2021, 37(1): 255-261.
XU Xue-liang, WANG Fen-shan, LIU Zi-rong, FAN Lin-juan, JI Xiang-yun, JIANG Jie-xian, YAO Ying-juan. Research Progress of RNA Interference Technology in the Field of Entomology[J]. Biotechnology Bulletin, 2021, 37(1): 255-261.
[1] | 马中正, 闫硕, 沈杰. 基于工程菌高效合成靶向昆虫基因的dsRNA的方法[J]. 应用昆虫学报, 2019,56(2):342-347. |
Ma ZZ, Yan S, Shen J. An efficient dsRNA production method based on engineering bacteria for targeted insect genes[J]. Chinese Journal of Applied Entomology, 2019,56(2):342-347. | |
[2] |
Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans[J]. Nature, 1998,391(6669):806-811.
doi: 10.1038/35888 URL pmid: 9486653 |
[3] | Zhang HC, Li HC, Miao XX. Feasibility, limitation and possible solutions of RNAi-based technology for insect pest control[J]. Insect Science, 2013,20(1):15-30. |
[4] | Zhu KY, Palli SR. Mechanisms, applications, and challenges of insect RNA interference[J]. Annual Review of Entomology, 2020,65:293-311. |
[5] |
Bernstein E, Caudy AA, Hammond SM, et al. Role for a bidentate ribonuclease in the initiation step of RNA interference[J]. Nature, 2001,409(6818):363-366.
URL pmid: 11201747 |
[6] | 闫硕, 沈杰. 纳米技术在害虫绿色防控领域的应用与展望[J]. 应用昆虫学报, 2019,56(4):617-624. |
Yan S, Shen J. Prospects for the application of nanotechnology in green pest control[J]. Chinese Journal of Applied Entomology, 2019,56(4):617-624. | |
[7] |
Ober KA, Jockusch EL. The roles of wingless and decapentaplegic in axis and appendage development in the red flour beetle, Tribolium castaneum[J]. Developmental Biology, 2006,294(2):391-405.
URL pmid: 16616738 |
[8] | Arakane Y, Hogenkamp DG, ZHU YC, et al. Characterization of two chitin synthase genes of the red flour beetle, Tribolium castaneum, and alternate exon usage in one of the genes during development[J]. Insect Biochemistry and Molecular Biology, 2004,34(3):291-304. |
[9] |
Suzuki Y, Truman JW, Riddiford LM. The role of broad in the development of Tribolium castaneum:implications for the evolution of the holometabolous insect pupa[J]. Development, 2008,135(3):569-577.
doi: 10.1242/dev.015263 URL pmid: 18171684 |
[10] |
Kennerdell JR, Carthew RW. Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway[J]. Cell, 1998,95(7):1017-1026.
URL pmid: 9875855 |
[11] |
Tian HG, Peng H, Yao Q, et al. Developmental control of a lepidopteran pest Spodoptera exigua by ingestion of bacteria expressing dsRNA of a non-midgut gene[J]. PLoS One, 2009,4(7):e6225.
doi: 10.1371/journal.pone.0006225 URL pmid: 19593438 |
[12] |
Murphy KA, Tabuloc CA, Cervantes KR, et al. Ingestion of genetically modified yeast symbiont reduces fitness of an insect pest via RNA interference[J]. Scientific Reports, 2016,6:22587.
URL pmid: 26931800 |
[13] |
Tabara H, Grishok A, Mello CC. RNAi in C. elegans:soaking in the genome sequence[J]. Science, 1998,282(5388):430-431.
doi: 10.1126/science.282.5388.430 URL pmid: 9841401 |
[14] | Zhou R, Mohr S, Hannon GJ, et al. Inducing RNAi in Drosophila cells by soaking with dsRNA[J]. Cold Spring Harbor Protocols, 2014,5:498-501. |
[15] |
Wu HC, March JC, Bentley WE. Gene silencing in insect cells using RNAi[J]. Methods in Molecular Biology, 2016,1350:469-476.
doi: 10.1007/978-1-4939-3043-2_24 URL pmid: 26820874 |
[16] |
Whyard S, Singh AD, Wong S. Ingested double-stranded RNAs can act as species-specific insecticides[J]. Insect Biochemistry and Molecular Biology, 2009,39(11):824-832.
doi: 10.1016/j.ibmb.2009.09.007 URL pmid: 19815067 |
[17] | 范继巧, 韩鹏飞, 高越, 等. 苹果黄蚜细胞色素P450基因AcCYP6CY14的表达及其在抵抗吡虫啉中的作用[J]. 应用昆虫学报, 2019,56(2):298-306. |
Fan JQ, Han PF, Gao Y, et al. Expression of the cytochrome P450 gene AcCYP6CY14 and its role in imidacloprid resistance in Aphis citricola[J]. Chinese Journal of Applied Entomology, 2019,56(2):298-306. | |
[18] | AI Baki MA, Vatanparast M, Kim Y. Male-biased adult production of the striped fruit fly, Zeugodacus scutellata, by feeding dsRNA specific to Transformer-2[J]. Insects, 2020,11(4):E211. |
[19] |
Zeng F, Xu P, Leal WS. Odorant receptors from Culex quinquefasciatus and Aedes aegypti sensitive to floral compounds[J]. Insect Biochemistry and Molecular Biology, 2019,113:103213.
URL pmid: 31442487 |
[20] | Tang B, Dai W, Qi L, et al. Identification and functional analysis of a delta class glutathione S-transferase gene associated with insecticide detoxification in Bradysia odoriphaga[J]. Journal of Agricultural and Food Chemistry, 2019,67(36):9979-9988. |
[21] |
Dittmer J, Alafndi A, Gabrieli P. Fat body-specific vitellogenin expression regulates host-seeking behaviour in the mosquito Aedes albopictus[J]. PLoS Biology, 2019,17(5):e3000238.
URL pmid: 31071075 |
[22] | Favell G, McNeil JN, Donly G. The ABCB multidrug resistance proteins do not contribute to ivermectin detoxification in the colorado potato beetle, Leptinotarsa decemlineata(Say)[J]. Insects, 2020,11(2):E135. |
[23] | Lü J, Liu Z, Guo W, et al. Feeding delivery of dsHvSnf7 is a promising method for management of the pest Henosepilachna vigintioctopunctata(Coleoptera:Coccinellidae)[J]. Insects, 2019,11(1):E34. |
[24] |
Okada Y, Katsuki M, Okamoto N, et al. A specific type of insulin-like peptide regulates the conditional growth of a beetle weapon[J]. PLoS Biology, 2019,17(11):e3000541.
URL pmid: 31774806 |
[25] | Pinheiro DH, Taylor CE, Wu K, et al. Delivery of gene-specific dsRNA by microinjection and feeding induces RNAi response in Sri Lanka weevil, Myllocerus undecimpustulatus undatus Marshall[J]. Pest Management Science, 2020,76(3):936-943. |
[26] | Leonard SP, Powell JE, Perutka J, et al. Engineered symbionts activate honey bee immunity and limit pathogens[J]. Science, 2020,367(6477):573-576. |
[27] | Meng J, Lei J, Davitt A, et al. Suppressing tawny crazy ant(Nylanderia fulva)by RNAi technology[J]. Insect Science, 2020,27(1):113-121. |
[28] |
Wang B, Yang Y, Liu M, et al. A digestive tract expressing α-amylase influences the adult lifespan of Pteromalus puparum revealed through RNAi and rescue analyses[J]. Pest Management Science, 2019,75(12):3346-3355.
URL pmid: 31054206 |
[29] |
Guo X, Wang Y, Sinakevitch I, et al. Comparison of RNAi knockdown effect of tyramine receptor 1 induced by dsRNA and siRNA in brains of the honey bee, Apis mellifera[J]. Journal of Insect Physiology, 2018,111:47-52.
doi: 10.1016/j.jinsphys.2018.10.005 URL pmid: 30393170 |
[30] |
Mine S, Sumitani M, Aoki F, et al. Identification and functional characterization of the sex-determining gene doublesex in the sawfly, Athalia rosae(Hymenoptera:Tenthredinidae)[J]. Applied Entomology and Zoology, 2017,52(3):497-509.
URL pmid: 28798494 |
[31] | Cagliari D, Dias NP, Dos Santos EÁ, et al. First transcriptome of the Neotropical pest Euschistus heros(Hemiptera:Pentatomidae)with dissection of its siRNA machinery[J]. Scientific Reports, 2020,10(1):4856. |
[32] | Omar MAA, Li M, Liu F, et al. The roles of DNA methyltransferases 1(DNMT1)in regulating sexual dimorphism in the cotton mealybug, Phenacoccus solenopsis[J]. Insects, 2020,11(2):E121. |
[33] | Chen W, Chen L, Li D, et al. Two alternative splicing variants of a sugar gustatory receptor modulate fecundity through different signalling pathways in the brown planthopper, Nilaparvata lugens[J]. Journal of Insect Physiology, 2019,119:103966. |
[34] | Shang F, Ding BY, Ye C, et al. Evaluation of a cuticle protein gene as a potential RNAi target in aphids[J]. Pest Management Science, 2020,76(1):134-140. |
[35] | Hou L, Wang XS, Yang PC, et al. DNA methyltransferase 3 participates in behavioral phase change in the migratory locust[J]. Insect Biochemistry and Molecular Biology, 2020,121:103374. |
[36] | Tong XW, Wang YD, Yang PC, et al. Tryptamine accumulation caused by deletion of MrMao-1 in Metarhizium genome significantly enhances insecticidal virulence[J]. PLoS Genetics, 2020,16(4):e1008675. |
[37] |
Hao K, Ullah H, Jarwar AR, et al. Functional identification of an FMRFamide-related peptide gene on diapause induction of the migratory locust, Locusta migratoria L.[J]. Genomics, 2020,112(2):1821-1828.
doi: 10.1016/j.ygeno.2019.10.015 URL pmid: 31669703 |
[38] |
Gurusamy D, Mogilicherla K, Shukla JN, et al. Lipids help double-stranded RNA in endosomal escape and improve RNA interference in the fall armyworm, Spodoptera frugiperda[J]. Archives of Insect Biochemistry and Physiology, 2020,104(4):e21678.
URL pmid: 32297364 |
[39] |
Ding N, Wang Z, Geng N, et al. Silencing Br-C impairs larval development and chitin synjournal in Lymantria dispar larvae[J]. Journal of Insect Physiology, 2020,122:104041.
doi: 10.1016/j.jinsphys.2020.104041 URL pmid: 32126216 |
[40] | Gong L, Kang S, Zhou J, et al. Reduced expression of a novel midgut trypsin gene involved in protoxin activation correlates with Cry1Ac resistance in a laboratory-selected strain of Plutella xylostella(L.)[J]. Toxins, 2020,12(2):E76. |
[41] |
Hou S, Sun Y, Wu Y, et al. Bmsage is involved in the determination of cell number in the silk gland of Bombyx mori[J]. Insect Biochemistry and Molecular Biology, 2019,113:103205.
URL pmid: 31421207 |
[42] |
Dillen S, Chen Z, Vanden Broeck J. Nutrient-dependent control of short neuropeptide F transcript levels via components of the insulin /IGF signaling pathway in the desert locust, Schistocerca gregaria[J]. Insect Biochemistry and Molecular Biology, 2016,68:64-70.
URL pmid: 26631598 |
[43] | Palli SR. RNA interference in Colorado potato beetle:steps toward development of dsRNA as a commercial insecticide[J]. Current Opinion Insect Science, 2014,6:1-8. |
[44] | Christiaens O, Swevers L, Smagghe G. DsRNA degradation in the pea aphid(Acyrthosiphon pisum)associated with lack of response in RNAi feeding and injection assay[J]. Peptides, 2014,53:307-314. |
[45] | 史学凯, 张艺伟, 朱坤炎, 等. 不同RNAi方法对飞蝗触角高表达基因沉默效率的比较[J]. 应用昆虫学报, 2017,54(5):780-790. |
Shi XK, Zhang YW, Zhu KY, et al. Comparison of the efficacy of different dsRNA delivery methods to silence antenna-rich genes in Locusta migratoria[J]. Chinese Journal of Applied Entomology, 2017,54(5):780-790. |
[1] | 王争艳, 胡海生, 雍晗紫, 鲁玉杰. 共生菌与昆虫的营养互作[J]. 生物技术通报, 2022, 38(7): 99-108. |
[2] | 刘晓玫, 王东鑫, 张春, 魏双施. AAV介导的RNAi对SARS-CoV-2 S基因表达的抑制作用[J]. 生物技术通报, 2022, 38(3): 188-193. |
[3] | 朴君, 张璐婕, 朴敬爱, 周益军, 李硕. 利用小RNA深度测序技术检测灰飞虱病毒种类[J]. 生物技术通报, 2022, 38(2): 281-288. |
[4] | 郭宇飞, 闫荣媚, 张小茹, 曹威, 刘浩. 代谢工程改造黑曲霉生产葡萄糖二酸[J]. 生物技术通报, 2022, 38(11): 227-237. |
[5] | 潘银来, 邱春辉, 王艺磊, 张子平. RNA药物的发展及其在水产上的应用[J]. 生物技术通报, 2021, 37(2): 203-215. |
[6] | 邓普荣, 刘勇波. RNAi与转Bt基因技术协同抗虫研究进展[J]. 生物技术通报, 2021, 37(10): 216-224. |
[7] | 胡紫媛, 夏嫱. 昆虫肠道菌群组学研究及功能和应用进展[J]. 生物技术通报, 2021, 37(1): 102-112. |
[8] | 杨文文, 倪嘉瑶, 胡蕊洁, 王华忠. 一个RNAi载体上反向重复片段的测序策略[J]. 生物技术通报, 2020, 36(5): 205-210. |
[9] | 宋华丽, 孙效迎, 孔祥会, 李莉, 裴超. RNA干扰技术在水产动物抗病毒和抗寄生虫研究中的应用研究进展[J]. 生物技术通报, 2020, 36(2): 193-205. |
[10] | 许祥, 董维鹏, 张少华, 冯晨毅, 刘田福, 燕炯. Fsp27基因沉默载体的构建及其对细胞脂解的影响研究[J]. 生物技术通报, 2020, 36(1): 88-94. |
[11] | 段入心, 孟雷, 王宁新. 昆虫共生菌介导的抗药性研究进展[J]. 生物技术通报, 2019, 35(9): 29-30. |
[12] | 韩翠翠, 刘立琨, 王玉春, 杨莹, 刘吉成, 周忠光. TOX3基因RNAi慢病毒载体的构建及对乳腺癌ZR-75-1细胞增殖的影响[J]. 生物技术通报, 2019, 35(7): 141-147. |
[13] | 王佳悦, 刘香男, 彭康莉, 赵博. RNA干扰USE1基因慢病毒载体的构建及鉴定[J]. 生物技术通报, 2019, 35(3): 117-122. |
[14] | 王端, 姚香梅, 叶健. 根际微生物-植物-病毒-介体昆虫多元互作研究进展[J]. 生物技术通报, 2018, 34(2): 54-65. |
[15] | 陈静, 张道伟, 钱正敏. 白背飞虱几丁质合成酶1基因的结构及特性研究[J]. 生物技术通报, 2018, 34(1): 195-201. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||