[1] |
Terpe K. Overview of bacterial expression systems for heterologous protein production:from molecular and biochemical fundamentals to commercial systems[J]. Appl Microbiol Biotechnol, 2006, 72(2):211-222.
pmid: 16791589
|
[2] |
Esposito D, Chatterjee DK. Enhancement of soluble protein expression through the use of fusion tags[J]. Curr Opin Biotechnol, 2006, 17(4):353-358.
doi: 10.1016/j.copbio.2006.06.003
URL
|
[3] |
Butt TR, Edavettal SC, Hall JP, et al. SUMO fusion technology for difficult-to-express proteins[J]. Protein Expr Purif, 2005, 43(1):1-9.
doi: 10.1016/j.pep.2005.03.016
URL
|
[4] |
Zhang M, Gong M, Yang Y, et al. Improvement on the thermal stability and activity of plant cytosolic ascorbate peroxidase 1 by tailing hyper-acidic fusion partners[J]. Biotechnol Lett, 2015, 37(4):891-898.
doi: 10.1007/s10529-014-1754-4
URL
|
[5] |
Yu H, Huang H. Engineering proteins for thermostability through rigidifying flexible sites[J]. Biotechnol Adv, 2014, 32(2):308-315.
doi: 10.1016/j.biotechadv.2013.10.012
URL
|
[6] |
Gur E, Biran D, Gazit E, et al. In vivo aggregation of a single enzyme limits growth of Escherichia coli at elevated temperatures[J]. Mol Microbiol, 2002, 46(5):1391-1397.
doi: 10.1046/j.1365-2958.2002.03257.x
URL
|
[7] |
Panchuk II, Volkov RA, Schöffl F. Heat stress-and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis[J]. Plant Physiol, 2002, 129(2):838-853.
pmid: 12068123
|
[8] |
Salvucci ME, Osteryoung KW, Crafts-Brandner SJ, et al. Exceptional sensitivity of Rubisco activase to thermal denaturation in vitro and in vivo[J]. Plant Physiol, 2001, 127(3):1053-1064.
pmid: 11706186
|
[9] |
刘延娟, 李旭娟, 袁航, 等. 融合酰基载体蛋白可增强大肠杆菌重组蛋白的可溶性和热稳定性[J]. 中国生物工程杂志, 2017, 37(7):115-123.
|
|
Liu YJ, Li XJ, Yuan H, et al. Fusing the acyl carrier protein enhances the solubility and thermostability of the recombinant proteins in Escherichia coli[J]. China Biotechnol, 2017, 37(7):115-123.
|
[10] |
Park SM, Jung HY, Chung KC, et al. Stress-induced aggregation profiles of GST-α-synuclein fusion proteins:role of the C-terminal acidic tail of α-synuclein in protein thermosolubility and stability[J]. Biochemistry, 2002, 41(12):4137-4146.
doi: 10.1021/bi015961k
URL
|
[11] |
Zhang M, Li X, Yang Y, et al. An acidified thermostabilizing mini-peptide derived from the carboxyl extension of the larger isoform of the plant Rubisco activase[J]. J Biotechnol, 2015, 212:116-124.
doi: 10.1016/j.jbiotec.2015.08.021
URL
|
[12] |
Shah V, Pierre B, Kirtadze T, et al. Stabilization of Bacillus circulans xylanase by combinatorial insertional fusion to a thermophilic host protein[J]. Protein Eng Des Sel, 2017, 30(4):281-290.
|
[13] |
Walper SA, Battle SR, Lee P, et al. Thermostable single domain antibody-maltose binding protein fusion for Bacillus anthracis spore protein BclA detection[J]. Anal Biochem, 2014, 447:64-73.
doi: 10.1016/j.ab.2013.10.031
pmid: 24184358
|
[14] |
Luke JM, Carnes AE, Sun P, et al. Thermostable tag(TST)protein expression system:engineering thermotolerant recombinant proteins and vaccines[J]. J Biotechnol, 2011, 151(3):242-250.
doi: 10.1016/j.jbiotec.2010.12.011
URL
|
[15] |
Śpibida M, Krawczyk B, Zalewska-Piątek B, et al. Fusion of DNA-binding domain of Pyrococcus furiosus ligase with TaqStoffel DNA polymerase as a useful tool in PCR with difficult targets[J]. Appl Microbiol Biotechnol, 2018, 102(2):713-721.
doi: 10.1007/s00253-017-8560-6
pmid: 29103168
|
[16] |
Wang QL, Xue YM, Wu XX. Characterization of a novel thermostable chitin-binding domain and its application in immobilization of a multifunctional hemicellulase[J]. J Agric Food Chem, 2013, 61(12):3074-3081.
doi: 10.1021/jf3041275
URL
|
[17] |
Chandrayan SK, Prakash S, Ahmed S, et al. Hyperthermophile protein behavior:partially-structured conformations of Pyrococcus furiosus rubredoxin monomers generated through forced cold-denaturation and refolding[J]. PLoS One, 2014, 9(3):e80014.
doi: 10.1371/journal.pone.0080014
URL
|
[18] |
Bougault CM, Eidsness MK, Prestegard JH. Hydrogen bonds in rubredoxins from mesophilic and hyperthermophilic organisms[J]. Biochemistry, 2003, 42(15):4357-4372.
doi: 10.1021/bi027264d
URL
|
[19] |
Richie KA, Teng Q, Elkin CJ, et al. 2D1 H and 3D1 H-15 N NMR of zinc-rubredoxins:Contributions of the β-sheet to thermostability[J]. Protein Sci, 1996, 5(5):883-894.
pmid: 8732760
|
[20] |
袁航, 罗著, 杨玉梅, 等. 土壤假单胞菌亚磷酸盐脱氢酶的基因克隆和原核表达及其酶活分析[J]. 生物技术通报, 2018, 34(8):130-137.
|
|
Yuan H, Luo Z, Yang YM, et al. Gene cloning, prokaryotic expression and enzymatic analysis of the phosphite dehydrogenase from soil Pseudomonas species[J]. Biotechnol Bull, 2018, 34(8):130-137.
|
[21] |
Li Y, Liu PP, Takano T, et al. A chloroplast-localized rubredoxin family protein gene from Puccinellia tenuiflora(PutRUB)increases NaCl and NaHCO3 tolerance by decreasing H2O2 accumulation[J]. Int J Mol Sci, 2016, 17(6):804.
doi: 10.3390/ijms17060804
URL
|