[1] |
郑金来, 李君文, 晁福寰. 生物降解常见染料的研究进展[J]. 环境污染治理技术与设备, 2000, 1(3):39-43.
|
|
Zheng JL, Li JW, Chao FH, Advance in study of common dyes degradation of microorganism[J]. Techniques and Equipments for Environmental Pollution Control, 2000, 1(3):39-43.
|
[2] |
Chengalroyen MD, Dabbs ER. The microbial degradation of azo dyes:minireview[J]. World Journal of Microbiology and Biotechnology, 2013, 29:389-399.
doi: 10.1007/s11274-012-1198-8
pmid: 23108664
|
[3] |
秦彬, 谷晋川, 殷萍, 等. 染料废水处理技术研究进展[J]. 化工环保. 2021, 41(1):9-18.
|
|
Qin B, Gu JC, Yin P, et al. Research progresses on dye wastewater treatment technology[EB/OL]. Environmental Protection of Chemical Industry.
|
[4] |
周觅. 偶氮还原酶的醒还原活性及其介导脱色应用[D]. 大连:大连理工大学, 2008.
|
|
Zhou M. Quinone-reducing activity of azoreductases and their application in mediated decolorization[D]. Dalian:Dalian University of Technology, 2008.
|
[5] |
周觅, 刘广飞, 周集体, 等. 醌还原酶-醌类化合物对偶氮染料脱色的作用[J]. 环境科学, 2009, 30(6):1810-1817.
|
|
Zhou M, Liu GF, Zhou JT et al. Decolorization of azo dyes using quinone reductase and quinoid compounds[J]. Environmental Science, 2009, 30(6):1810-1817.
|
[6] |
Chen H, Hopper SL, Cerniglia CE. Biochemical and molecular characterization of an azoreductase from Staphylococcus aureus, a tetrameric NADPH-dependent flavoprotein[J]. Microbiology, 2005, 151:1433-1441.
doi: 10.1099/mic.0.27805-0
URL
|
[7] |
焦亮. 强化生物降解偶氮染料脱色作用研究[D]. 杭州:浙江工商大学, 2018.
|
|
Jiao L. Study on the mechanism of the decolorization of biological degradation azo dyes[D]. Hangzhou:Zhejiang Gongshang University, 2018.
|
[8] |
许玫英, 郭俊, 岑英华, 等. 染料的生物降解研究[J]. 微生物学通报, 2006, 33(1):138-143.
|
|
Xu MY, Guo J, Cen YH, et al. Review of studies on the dye biodegradation[J]. Microbiology China, 2006, 33(1):138-143.
|
[9] |
Albena T, Dinkova-Kostova AT, Talalay P. NAD(P)H:quinone acceptor oxidoreductase 1(NQO1), a multifunctional antioxidant enzyme and exceptionally versatile cytoprotector[J]. Archives of Biochemistry and Biophysics, 2010, 501:116-123.
doi: 10.1016/j.abb.2010.03.019
pmid: 20361926
|
[10] |
Lienhart WD, Gudipati V, Uhl MK, et al. Collapse of the native structure caused by a single amino acid exchange in human NAD(P)H:quinone oxidoreductase[J]. The FEBS Journal, 2014, 281(20):4691-4704.
doi: 10.1111/febs.2014.281.issue-20
URL
|
[11] |
Pey AL, Megarity CF, Timson DJ. FAD binding overcomes defects in activity and stability displayed by cancer-associated variants of human NQO1[J]. Biochimica et Biophysica Acta, 2014, 1842:2163-2173.
|
[12] |
Bianchet MA, Erdemli SB, Amzel LM. Structure, function, and mechanism of cytosolic quinone reductases[J]. Vitamins and Hormones, 2008, 78:63-84.
doi: 10.1016/S0083-6729(07)00004-0
pmid: 18374190
|
[13] |
Siegel D, Gustafson DL, Dehn DL, et al. NAD(P)H:Quinone oxidoreductase 1:Role as a superoxide scavenger[J]. Molecular pharmacology, 2004, 65:1238-1247.
pmid: 15102952
|
[14] |
Lienhart WD, Strandback E, Gudipati V, et al. Catalytic competence, structure and stability of the cancer-associated R139W variant of the human NAD(P)H:quinone oxidoreductase 1(NQO1)[J]. The FEBS Journal, 2017, 284:1233-1245.
doi: 10.1111/febs.2017.284.issue-8
URL
|
[15] |
Asher G, Dym O, Tsvetkov P, et al. The crystal structure of NAD(P)H quinone oxidoreductase 1 in complex with its potent inhibitor dicoumarol[J]. Biochemistry, 2006, 45(20):6372-6378.
pmid: 16700548
|
[16] |
Gong X, Kole L, Iskander K, et al. NRH:quinone oxidoreductase 2 and NAD(P)H:quinone oxidoreductase 1 protect tumor suppressor p53 against 20s proteasomal degradation leading to stabilization and activation of p53[J]. Cancer Research, 2007, 67(11):5380-5388.
doi: 10.1158/0008-5472.CAN-07-0323
URL
|
[17] |
Siegel D, Yan C, Ross D, et al. NAD(P)H:quinone oxidoreductase 1(NQO1)In the sensitivity and resistance to antitumor quinones[J]. Biochemical Pharmacology, 2012, 83:1033-1040.
doi: 10.1016/j.bcp.2011.12.017
pmid: 22209713
|
[18] |
Liu G, Zhou J, Wang J, et al. Acceleration of azo dye decolorization by using quinone reductase activity of azoreductase and quinone redox mediator[J]. Bioresource Technology, 2009, 100:2791-2795.
doi: 10.1016/j.biortech.2008.12.040
URL
|
[19] |
Liu G, Zhou J, Fu QS, et al. The Escherichia coli azoreductase AzoR is involved in resistance to thiol-specific stress caused by electrophilic quinones[J]. Journal of Bacteriology, 2009, 191(20):6394-6400.
doi: 10.1128/JB.00552-09
URL
|
[21] |
Hong YG, Jun G, Zhi CX, et al. Humic substances act as electron acceptor and redox mediator for microbial dissimilatory azoreduction by Shewanella decolorationis S12[J]. Journal of Microbiology and Biotechnology, 2007, 17(3):428-437.
|
[22] |
Rahman MNA, Radzi FM, et al. Bacterial decolourization and degradation of azo dye[J]. Journal of Applied Environmental and Biological Sciences, 2017, 7(5):14-20.
|
[23] |
Wang ZW, Liang JS, Liang Y. Decolorization of reactive black 5 by a newly isolated bacterium Bacillus sp. YZU1[J]. International Biodeterioration & Biodegradation, 2013, 76:41-48.
|
[24] |
Russ R, Rau J, Stolz A. The function of cytoplasmic flavin reductases in the reduction of azo dyes by bacteria[J]. Applied Environmental Microbiology, 2000, 66(4):1429-1434.
doi: 10.1128/AEM.66.4.1429-1434.2000
URL
|