生物技术通报 ›› 2021, Vol. 37 ›› Issue (3): 144-152.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0856
收稿日期:
2020-07-12
出版日期:
2021-03-26
发布日期:
2021-04-02
作者简介:
王露露,女,硕士研究生,研究方向:园林植物与观赏园艺;E-mail:基金资助:
WANG Lu-lu(), GENG Xing-min(), XU Shi-da
Received:
2020-07-12
Published:
2021-03-26
Online:
2021-04-02
摘要:
乙烯受体是乙烯信号转导网络的第一个转导元件,通过调控受体基因的表达,可以调节植物对乙烯的敏感性,以调控果实的成熟及花衰老进程的响应。随着人们对乙烯受体研究的深入,乙烯受体突变体及受体抑制剂在采后果实和切花保鲜上的应用已受到广泛关注。就近年来关于乙烯受体的相关研究进展进行综述,重点介绍了乙烯受体的分子调控机制及乙烯受体在果实成熟和花衰老中的应用,并对今后乙烯受体的研究方向作了展望,以期为进一步研究提供参考。
王露露, 耿兴敏, 许世达. 乙烯受体在果实成熟及花衰老中的研究进展[J]. 生物技术通报, 2021, 37(3): 144-152.
WANG Lu-lu, GENG Xing-min, XU Shi-da. Ethylene Receptor in Fruit Ripening and Flower Senescence[J]. Biotechnology Bulletin, 2021, 37(3): 144-152.
[1] | Ma N, Tan H, Liu X, et al. Transcriptional regulation of ethylene receptor and CTR genes involved in ethylene-induced flower opening in cut rose(Rosa hybrida)cv. Samantha[J]. Journal of Experimental Botany, 2006,57(11):2763-2773. |
[2] | Ha ST, Lim J, In B, et al. Differential expression of ethylene signaling and biosynjournal genes in floral organs between ethylene-sensitive and -insensitive rose cultivars[J]. Korean Journal of Horticultural Science & Technology, 2019,37(2):227-237. |
[3] | 殷学仁. 猕猴桃果实后熟进程中乙烯信号转导元件功能及其对非生物胁迫的应答[D]. 杭州:浙江大学, 2010. |
Yin XR. Involvement of ethylene signal transduction components in kiwifruit ripening and postharvest abiotic stress response[D]. Hangzhou:Zhejiang University, 2010. | |
[4] | Bisson MMA, Groth G. New insight in ethylene signaling:autokinase activity of ETR1 modulates the interaction of receptors and EIN2[J]. Molecular Plant, 2010,3(5):882-889. |
[5] | Zhong S, Chang C. Ethylene signalling:The CTR1 protein kinase[M]// Annual Plant Reviews Volume 44:The Plant Hormone Ethylene. Wiley-Blackwell, 2012: 147-168. |
[6] | Wen X, Zhang C, Ji Y, et al. Activation of ethylene signaling is mediated by nuclear translocation of the cleaved EIN2 carboxyl terminus[J]. Cell Research, 2012,22(11):1613-1616. |
[7] |
Hackett RM, Ho CW, Lin Z, et al. Antisense inhibition of the Nr gene restores normal ripening to the tomato Never-ripe mutant, consistent with the ethylene receptor-inhibition model[J]. Plant Physiology, 2000,124(3):1079-1085.
URL pmid: 11080285 |
[8] | 张红娜, 刘胜辉, 孙伟生, 等. 菠萝对乙烯利诱花的敏感性差异研究[J]. 热带作物学报, 2018,39(6):1087-1094. |
Zhang HN, Liu SH, Sun WS, et al. Ethylene induced sensitivity of difference pineapple varieties[J]. Chinese Journal of Tropical Crops, 2018,39(6):1087-1094. | |
[9] | Hua J, Sakai H, Nourizadeh S, et al. EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis[J]. The Plant Cell, 1998,10(8):1321-1332. |
[10] | Xie C, Zhang ZG, Zhang JS, et al. Spatial expression and characterization of a putative ethylene receptor protein NTHK1 in tobacco[J]. Plant and Cell Physiology, 2002,43(7):810-815. |
[11] | 童爱均, 李凌, 钟千贵, 等. 秀珍菇乙烯受体基因克隆及其在1-MCP保鲜处理下的表达[J]. 基因组学与应用生物学, 2019,39(5):2127-2133. |
Tong AJ, Li l, Zhong QG, et al. Cloning of ethylene receptor gene from Pleurotus pulmonarius and its expression in preservation of 1-MCP[J]. Genomics and Applied Biology, 2019,39(5):2127-2133. | |
[12] | Wu F, Zhang C, Wang X, et al. Ethylene-influenced development of tree peony cut flowers and characterization of genes involved in ethylene biosynjournal and perception[J]. Postharvest Biology and Technology, 2017,125:150-160. |
[13] | Rodrıguez FI, Esch JJ, Hall AE, et al. A copper cofactor for the ethylene receptor ETR1 from Arabidopsis[J]. Science, 1999,283(5404):996-998. |
[14] | Schottverdugo S, Muller L, Classen E, et al. Structural model of the ETR1 ethylene receptor transmembrane sensor domain[J]. Scientific Reports, 2019,9(1):8869. |
[15] | Gao Z, Wen CK, Binder BM, et al. Heteromeric interactions among ethylene receptors mediate signaling in Arabidopsis[J]. Journal of Biological Chemistry, 2008,283(35):23801-23810. |
[16] | Mubarok S, Hoshikawa K, Okabe Y, et al. Evidence of the functional role of the ethylene receptor genes SlETR4 and SlETR5 in ethylene signal transduction in tomato.[J]. Molecular Genetics and Genomics, 2019,294(2):301-313. |
[17] | Binder BM, Chang C, Schaller GE. Perception of ethylene by plants-ethylene receptors[M]// Annual Plant Reviews Volume 44:The Plant Hormone Ethylene. Wiley-lackwell, 2012: 117-145. |
[18] | Xie F, Liu Q, Wen CK. Receptor signal output mediated by the ETR1 N terminus is primarily subfamily I receptor dependent[J]. Plant Physiology, 2006,142(2):492-508. |
[19] | Liu Q, Wen CK. Arabidopsis ETR1 and ERS1 differentially repress the ethylene response in combination with other ethylene receptor genes[J]. Plant Physiology, 2012,158(3):1193-1207. |
[20] | Binder BM, O’Malley RC, Wang W, et al. Arabidopsis seedling growth response and recovery to ethylene. A kinetic analysis[J]. Plant Physiology, 2004,136(2):2913-2920. |
[21] | Qu X, Schaller GE. Requirement of the histidine kinase domain for signal transduction by the ethylene receptor ETR1[J]. Plant Physiology, 2004,136(2):2961-2970. |
[22] | Bleecker AB, Esch JJ, Hall AE, et al. The ethylene-receptor family from Arabidopsis:structure and function[J]. Philosophical Transactions of the Royal Society of London. Series B:Biological Sciences, 1998,353(1374):1405-1412. |
[23] | Hua J, Meyerowitz EM. Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana[J]. Cell, 1998,94(2):261-271. |
[24] | 张策, 谢远红, 朱本忠. LeETR4沉默对番茄果实成熟的影响[J]. 食品科技, 2018,43(11):25-28. |
Zhang C, Xie YH, Zhu BZ. The relationship between the VIGS of LeETR4 and tomato ripening[J]. Food Science and Technology, 2018,43(11):25-28. | |
[25] | Dong CH, Rivarola M, Resnick JS, et al. Subcellular co-localization of Arabidopsis RTE1 and ETR1 supports a regulatory role for RTE1 in ETR1 ethylene signaling[J]. The Plant Journal, 2008,53(2):275-286. |
[26] | Wang F, Wang L, Qiao L, et al. Arabidopsis CPR5 regulates ethylene signaling via molecular association with the ETR1 receptor[J]. Journal of Integrative Plant Biology, 2017,59(11):810-824. |
[27] | Lin Z, Arciga-Reyes L, Zhong S, et al. SlTPR1, a tomato tetratricopeptide repeat protein, interacts with the ethylene receptors NR and LeETR1, modulating ethylene and auxin responses and development[J]. Journal of Experimental Botany, 2008,59(15):4271-4287. |
[28] | Tan Y, Liu J, Huang F, et al. PhGRL2 protein, interacting with PhACO1, is involved in flower senescence in the petunia[J]. Molecular Plant, 2014,7(8):1384-1387. |
[29] | Dong CH, Jang M, Scharein B, et al. Molecular association of the Arabidopsis ETR1 ethylene receptor and a regulator of ethylene signaling, RTE1[J]. Journal of Biological Chemistry, 2010,285(52):40706-40713. |
[30] | Barry CS, Giovannoni JJ. Ripening in the tomato Green-ripe mutant is inhibited by ectopic expression of a protein that disrupts ethylene signaling[J]. Proceedings of the National Academy of Sciences, 2006,103(20):7923-7928. |
[31] | Shi J, Habben JE, Archibald RL, et al. Overexpression of ARGOS genes modifies plant sensitivity to ethylene, leading to improved drought tolerance in both Arabidopsis and maize[J]. Plant Physiology, 2015,169(1):266-282. |
[32] |
Shi J, Drummond BJ, Wang H, et al. Maize and Arabidopsis ARGOS proteins interact with ethylene receptor signaling complex, supporting a regulatory role for ARGOS in ethylene signal transduction[J]. Plant Physiology, 2016,171(4):2783-2797.
URL pmid: 27268962 |
[33] |
Yu Y, Wang J, Wang H, et al. Relationship between Rh-RTH1 and ethylene receptor gene expression in response to ethylene in cut rose[J]. Plant Cell Reports, 2010,29(8):895-904.
URL pmid: 20524120 |
[34] | Chang J, Clay JM, Chang C. Association of cytochrome b5 with ETR1 ethylene receptor signaling through RTE1 in Arabidopsis.[J]. Plant Journal, 2014,77(4):558-567. |
[35] | Wang H, Sun Y, Chang J, et al. Regulatory function of Arabidopsis lipid transfer protein 1(LTP1)in ethylene response and signaling[J]. Plant Molecular Biology, 2016,91(4-5):471-484. |
[36] | Chen J, Yu Y, Sui X, et al. Arabidopsis CPR5 regulates ethylene signaling via interacting with ETR1 N-terminus and controlling mRNAs nucleocytoplasmic transport[J]. bioRxiv, 2019: 862. |
[37] | Lin Z, Ho C, Grierson D, et al. AtTRP1 encodes a novel TPR protein that interacts with the ethylene receptor ERS1 and modulates development in Arabidopsis[J]. Journal of Experimental Botany, 2009,60(13):3697-3714. |
[38] | 唐红姝, 刘道凤, 薛璟祺, 等. 月季乙烯受体基因的全长克隆及原核表达分析[J]. 园艺学报, 2012(12):87-96. |
Tang HS, Liu DF, Xue JQ, et al. The full-length cloning of ethylene receptor genes and prokaryotic expression of RhETR3 in roses[J]. Acta Horticulturae Sinica, 2012(12):87-96. | |
[39] | Al-Salem M, Serek M. Expression analysis by RT-PCR of genes involved in ethylene synjournal and signal transduction in miniature roses[J]. Scientia Horticulturae, 2017,216:22-28. |
[40] | Chen Y, Grimplet J, David K, et al. Ethylene receptors and related proteins in climacteric and non-climacteric fruits[J]. Plant Science, 2018,276:63-72. |
[41] |
Zhou D, Kalaitzis P, Mattoo AK, et al. The mRNA for an ETR1 homologue in tomato is constitutively expressed in vegetative and reproductive tissues[J]. Plant Molecular Biology, 1996,30(6):1331-1338.
doi: 10.1007/BF00019564 URL pmid: 8704141 |
[42] | 陈宇杰, 陈明, 乌兰巴特尔, 等. 甜瓜乙烯受体基因Cm-ETR1 cDNA的克隆及表达特性分析[J]. 生物技术通报, 2013(7):54-59. |
Chen YJ, Chen M, Wulan B, et al. Cloning and expression characterization of ethylene receptor gene Cm-ETR1 from melon(Cucu-mis melo L.)[J]. Biotechnology Bulletin, 2013(7):54-59. | |
[43] |
Wuriyanghan H, Zhang B, Cao W, et al. The ethylene receptor ETR2 delays floral transition and affects starch accumulation in rice[J]. The Plant Cell, 2009,21(5):1473-1494.
URL pmid: 19417056 |
[44] | 周敏, 程华, 张子昕, 等. 菊花CmETR2基因的克隆及功能分析[J]. 南京农业大学学报, 2020,43(3):431-437. |
Zhou M, Chen H, Zhang ZX, et al. Cloning and functional analysis of CmETR2 gene in chrysanthemum[J]. Journal of Nanjing Agricultural University, 2020,43(3):431-437. | |
[45] | Winterhagen P, Hagemann MH, Wünsche JN. Different regulatory modules of two mango ERS1 promoters modulate specific gene expression in response to phytohormones in transgenic model plants[J]. Plant Science, 2019,289:110-269. |
[46] |
Winter DR, Vinegar B, Nahal H, et al. An “Electronic fluorescent pictograph” browser for exploring and analyzing large-scale biological data sets[J]. PLoS One, 2007,2(8):e718.
URL pmid: 17684564 |
[47] | Trivellini A, Ferrante A, Vernieri P, et al. Effects of promoters and inhibitors of ethylene and ABA on flower senescence of Hibiscus rosa-sinensis L.[J]. Journal of Plant Growth Regulation, 2011,30(2):175-184. |
[48] | Bakshi A, Piya S, Fernandez JC, et al. Ethylene receptors signal via a noncanonical pathway to regulate abscisic acid responses[J]. Plant Physiology, 2018,176(1):910-929. |
[49] | 苏丽艳. 番茄SlETR6基因的克隆及非生物胁迫下的表达分析[J]. 华北农学报, 2019,34(1):23-29. |
Su LY. Cloning and expression analysis of ethylene receptor gene SIETR6 in Solanum lycopersicum under abiotic stress[J]. Acta Agriculturae Boreali-Sinica, 2019,34(1):23-29. | |
[50] | 黄静丽. 甘蔗乙烯受体基因SoERS1表达、转化及启动子序列的研究[D]. 南宁:广西大学, 2013. |
Huang JL. Study on sugarcane ethylene receptor gene SoERS1 expression, genetic transformation and promoter sequences[D]. Nanning:Guangxi University, 2013. | |
[51] | 谢芳. 拟南芥乙烯受体信号作用机理的研究[D]. 上海:中国科学院大学, 2007. |
Xie F. Study on the mechanism of ethylene receptor signaling in Arabidopsis thaliana[D]. Shanghai:University of Chinese Academy of Sciences, 2007. | |
[52] | Wilkinson JQ, Lanahan MB, Clark DG, et al. A dominant mutant receptor from Arabidopsis confers ethylene insensitivity in heterologous plants[J]. Nature Biotechnology, 1997,15(5):444. |
[53] | Sriskandarajah S, Mibus H, Serek M. Transgenic Campanula carpatica plants with reduced ethylene sensitivity[J]. Plant Cell Reports, 2007,26(6):805-813. |
[54] | Khatami F, Najafi F, Yari F, et al. Expression of etr1-1 gene in transgenic Rosa hybrida L. increased postharvest longevity through reduced ethylene biosynjournal and perception[J]. Scientia Horticulturae, 2020,263:109103. |
[55] |
Wang H, Stier G, Lin J, et al. Transcriptome changes associated with delayed flower senescence on transgenic petunia by inducing expression of etr1-1, a mutant ethylene receptor[J]. PLoS One, 2013,8(7):e65800.
URL pmid: 23874385 |
[56] | Shibuya K, Barry KG, Ciardi JA, et al. The central role of PhEIN2 in ethylene responses throughout plant development in petunia[J]. Plant Physiology, 2004,136(2):2900-2912. |
[57] | Knoester M, Van Loon LC, Van Den Heuvel J, et al. Ethylene-insensitive tobacco lacks nonhost resistance against soil-borne fungi[J]. Proceedings of the National Academy of Sciences, 1998,95(4):1933-1937. |
[58] | Bovy AG, Angenent GC, Dons HJM, et al. Heterologous expression of the Arabidopsis etr1-1 allele inhibits the senescence of carnation flowers[J]. Molecular Breeding, 1999,5(4):301-308. |
[59] | Winkelmann T, Warwas M, Raffeiner B, et al. Improved postharvest quality of inflorescences of fbp1::etr1-1 transgenic Burrageara ‘Stefan Isler Lava Flow’[J]. Journal of Plant Growth Regulation, 2016,35(2):390-400. |
[60] | Gehl C, Wamhoff D, Schaarschmidt F, et al. Improved leaf and flower longevity by expressing the etr1-1 allele in Pelargonium zonale under control of FBP1 and SAG12 promoters[J]. Plant Growth Regulation, 2018,86(3):351-363. |
[61] | Wang H, Woodson WR. Reversible inhibition of ethylene action and interruption of petal senescence in carnation flowers by norbornadiene[J]. Plant Physiology, 1989,89(2):434-438. |
[62] | Sisler EC, Blankenship SM. Diazocyclopentadiene(DACP), a light sensitive reagent for the ethylene receptor in plants[J]. Plant Growth Regulation, 1993,12(1-2):125-132. |
[63] | 陈金印, 刘康. 1-甲基环丙烯(1-MCP)在果蔬贮藏保鲜上的应用研究进展[J]. 江西农业大学学报, 2008,30(2):215-219. |
Chen JY, Liu K. Research advances in research on application of 1-MCP in storage and freshkeeping of fruit and vegetable[J]. Acta Agriculturae Universitatis Jiangxiensis, 2008,30(2):215-219. | |
[64] | Williamson VG, Rezvani F, Li G, et al. An investigation of ethylene sensitivity in three Australian native cut flower genera, Calothamnus, Grevillea and Philotheca[J]. Scientia Horticulturae, 2018,230:149-154. |
[65] | 周彩莲. 1-甲基环丙烯(1-MCP)等处理对切花与盆花产后品质及有关机理的影响[D]. 南京:南京农业大学, 2007. |
Zhou CL. Effects of 1-methylcyclopropene and multiple preservative on ornamental characters and fractional mechanisms in cut & potted flowers[D]. Nanjing:Nanjing Agricultural University, 2007. | |
[66] | Sisler EC, Serek M. Compounds controlling the ethylene receptor[J]. Botanical Bulletin of Academia Sinica Taipei, 1999,40(1):1-7. |
[67] | Uthaichay N, Ketsa S, van Doorn WG. 1-MCP pretreatment prevents bud and flower abscission in Dendrobium orchids[J]. Postharvest Biology and Technology, 2007,43(3):374-380. |
[68] |
Li L, Shuai L, Sun J, et al. The role of 1-Methylcyclopropene in the regulation of ethylene biosynjournal and ethylene receptor gene expression in Mangifera indica L. (mango fruit)[J]. Food Science and Nutrition, 2020,8(2):1284-1294.
URL pmid: 32148834 |
[69] | 薛璟祺, 杨丰, 左志锐, 等. 乙烯和1-MCP的竞争性作用对月季花器官乙烯生成量及相关基因表达的影响[J]. 园艺学报, 2011,38(2):311-316. |
Xue JQ, Yang F, Zuo ZR, et al. Effect of ethylene and 1-MCP on ethylene production and related gene expression in floral tissues of roses[J]. Acta Horticulturae Sinica, 2011,38(2):311-316. | |
[70] | In BC, Binder BM, Falbel TG, et al. Recovery of ethylene sensitivity and responses in carnation petals post-treatment with 1-methylcyclopropene[J]. Postharvest Biology and Technology, 2016,121:78-86. |
[71] | Ha STT, Lim JH, In BC . Simultaneous inhibition of ethylene biosynjournal and binding using AVG and 1-MCP in two rose cultivars with different sensitivities to ethylene[J]. Journal of Plant Growth Regulation, 2020,39:553-563. |
[72] |
Xu F, Liu S, Xiao Z, et al. Effect of ultrasonic treatment combined with 1-methylcyclopropene(1-MCP)on storage quality and ethylene receptors gene expression in harvested apple fruit[J]. Journal of Food Biochemistry, 2019,43(8):e12967.
URL pmid: 31368577 |
[73] | Milić D, Dick M, Mulnaes D, et al. Recognition motif and mechanism of ripening inhibitory peptides in plant hormone receptor ETR1[J]. Scientific Reports, 2018,8(1):3890. |
[74] | Bisson MMA, Groth G. Targeting plant ethylene responses by controlling essential protein-protein interactions in the ethylene pathway[J]. Molecular Plant, 2015,8(8):1165-1174. |
[75] |
Klein S, Fiebig A, Neuwald DA, et al. Influence of the ethylene-related signal-inhibiting octapeptide NOP-1 on postharvest ripening and quality of ‘Golden Delicious’ apples[J]. Journal of the Science of Food and Agriculture, 2019,99(8):3903-3909.
URL pmid: 30693519 |
[76] | Hoppen C, Müller L, Albrecht AC, et al. The NOP-1 peptide derived from the central regulator of ethylene signaling EIN2 delays floral senescence in cut flowers[J]. Scientific Reports, 2019,9(1):1287. |
[1] | 张圆圆, 邵冬南, 崔百明. 基于CRISPR/Cas9加工番茄α-Man突变体的构建[J]. 生物技术通报, 2019, 35(6): 9-16. |
[2] | 刘畅宇, 陈勋, 龙雨青, 陈娅, 刘湘丹, 周日宝. 乙烯生物合成及信号转导途径中介导花衰老相关基因的研究进展[J]. 生物技术通报, 2019, 35(3): 171-182. |
[3] | 莫显兰, 史列琴, 陆秋利, 王小敏, 任振新. Sl-miR482在番茄果实中的表达分析及STTM沉默载体的构建[J]. 生物技术通报, 2019, 35(12): 50-56. |
[4] | 赵赫, 陈受宜, 张劲松. 乙烯信号转导与植物非生物胁迫反应调控研究进展[J]. 生物技术通报, 2016, 32(10): 1-10. |
[5] | 张弢, 董春海. 乙烯信号转导及其在植物逆境响应中的作用[J]. 生物技术通报, 2016, 32(10): 11-17. |
[6] | 陈宇杰,陈明,乌兰巴特尔,郝金凤,高峰,哈斯阿古拉. 甜瓜乙烯受体基因Cm-ETR1 cDNA的克隆及表达特性分析[J]. 生物技术通报, 2013, 0(7): 54-59. |
[7] | 姚远;高峰;郝金凤;哈斯阿古拉;. 甜瓜乙烯信号转导途径关键因子基因CTR1的克隆及表达特性分析[J]. , 2011, 0(11): 83-87. |
[8] | 朱红霞;胡利宗;邓小莉;. 大白菜乙烯受体基因家族分子特征、微同线性与进化分析[J]. , 2011, 0(07): 88-94. |
[9] | 张丽霞;李卓夫;杨德鑫;王瑞刚;李国婧;黄荣峰;. 拟南芥低盐敏感突变体的筛选[J]. , 2011, 0(01): 90-94. |
[10] | 张丽霞;李国婧;王瑞刚;黄荣峰;. 乙烯调控植物耐盐性的研究进展[J]. , 2010, 0(09): 1-7. |
[11] | . 文摘[J]. , 2004, 0(01): 57-57. |
[12] | 王新力;索桂英;彭学贤. 植物果实成熟相关基因的转录调控[J]. , 2001, 0(04): 33-37. |
[13] | 宋俊岐;赵春晖;贺焰;田波;. 控制果实成熟的植物基因工程研究进展[J]. , 1997, 0(05): 8-13. |
[14] | . 转基因植物[J]. , 1997, 0(05): 57-59. |
[15] | 孙雷心. 乙烯引发真菌侵袭[J]. , 1995, 0(04): 17-18. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||