生物技术通报 ›› 2021, Vol. 37 ›› Issue (3): 136-143.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0736
收稿日期:
2020-06-13
出版日期:
2021-03-26
发布日期:
2021-04-02
作者简介:
邵文靖,女,硕士研究生,研究方向:植物抗逆的分子生物学;E-mail:基金资助:
SHAO Wen-jing1,2(), SHI Jie3, ZHANG Pu2, LANG Ming-lin1,2()
Received:
2020-06-13
Published:
2021-03-26
Online:
2021-04-02
摘要:
ERF家族是植物所特有的APETALA2 / 乙烯响应因子(APETALA2 / ethylene-responsive factor,AP2 / ERF)转录因子家族的一个主要亚家族,其成员结构特点是仅含有 1个58-60 个氨基酸组成的AP2 / ERF结构域。有关该家族成员的大多数研究集中在与寒、旱等非生物胁迫方面,最近越来越多的研究表明ERF在植物抵御病虫侵害等生物胁迫方面也发挥着重要作用。ERF亚家族成员通过结合下游互作基因启动子区域的GCC box元件,从而激活或抑制这些病程相关基因的表达。同时ERFs参与水杨酸(salicylic acid,SA)、茉莉酸(jasmonic acid,JA)、乙烯(ethylene,ET)及过氧化氢(H2O2)等多种激素的信号途径,通过相互促进/拮抗高效协调体内不同激素抵御病原菌的入侵,提高植物的抗病、抗虫性。本文综述了ERF 转录因子的结构功能特点、在不同植物抗生物胁迫中的调控方式,以及其通过协调不同激素信号途径相互作用来提高植物抗病虫的最新研究进展,并对其应用前景进行了展望。
邵文靖, 石洁, 张普, 郎明林. ERF转录因子调控生物胁迫反应的研究进展[J]. 生物技术通报, 2021, 37(3): 136-143.
SHAO Wen-jing, SHI Jie, ZHANG Pu, LANG Ming-lin. Research Progress of ERF Transcription Factors in Regulating Biological Stress Responses[J]. Biotechnology Bulletin, 2021, 37(3): 136-143.
ERF基因 | 基因来源 | 转基因植物 | 调控模式 | 基因功能 | 参考文献 |
---|---|---|---|---|---|
ERF1 | 拟南芥 | 拟南芥 | 正调控 | 增强灰霉菌的抗性 | [ |
ORA59 | 拟南芥 | 拟南芥 | 正调控 | 增强油菜链格孢菌和灰霉菌的抗性 | [ |
OsERF83 | 水稻 | 水稻 | 正调控 | 增强稻瘟病的抗性 | [ |
OsERF96 | 水稻 | 水稻 | 正调控 | 增强白叶枯病或稻瘟病的抗性 | [ |
OsERF922 | 水稻 | 水稻 | 负调控 | 沉默基因增强稻瘟病抗性 | [ |
OsERF7 | 水稻 | 水稻 | 负调控 | 沉默基因增强褐飞虱和白背飞虱抗性 | [ |
SlERF.D.3 | 番茄 | 番茄 | 正调控 | 增强灰霉菌抗性 | [ |
SlERF.A1、SlERF.A3、SlERF.B4、SlERF.C3 | 番茄 | 番茄 | 正调控 | 增强灰霉菌和丁香假单胞菌细菌的抗性 | [ |
ERF-E2 | 番茄 | 番茄 | 正调控 | 增强烟草根节线虫和马铃薯白线虫的抗性 | [ |
ERF19 | 番茄 | 番茄 | 负调控 | 增强灰霉菌和丁香假单胞菌细菌的抗性 | [ |
GhERFB101 | 棉花 | 棉花 | 正调控 | 增强棉花抗枯萎病的抗性 | [ |
Pdt-ERF3、Pnd-ERF3 | 杨树 | 杂交杨 | 正调控 | 增强落叶松-杨栅锈菌抗性 | [ |
MdERF113 | 苹果 | 苹果* | 正调控 | 增强轮纹病菌 | [ |
VaERF20 | 葡萄 | 拟南芥 | 正调控 | 增强灰霉菌和丁香假单胞菌细菌的抗性 | [ |
VqERF112、VqERF114、VqERF072 | 葡萄 | 拟南芥 | 正调控 | 增强灰霉菌和丁香假单胞菌细菌的抗性 | [ |
Sm ORA1 | 丹参 | 丹参 | 正调控 | 增强抗立枯丝核菌 | [ |
StERF94 | 马铃薯 | 马铃薯 | 正调控 | 增强茄枯萎病的抗性 | [ |
表1 已知在生物胁迫中起作用的ERF转录因子基因
ERF基因 | 基因来源 | 转基因植物 | 调控模式 | 基因功能 | 参考文献 |
---|---|---|---|---|---|
ERF1 | 拟南芥 | 拟南芥 | 正调控 | 增强灰霉菌的抗性 | [ |
ORA59 | 拟南芥 | 拟南芥 | 正调控 | 增强油菜链格孢菌和灰霉菌的抗性 | [ |
OsERF83 | 水稻 | 水稻 | 正调控 | 增强稻瘟病的抗性 | [ |
OsERF96 | 水稻 | 水稻 | 正调控 | 增强白叶枯病或稻瘟病的抗性 | [ |
OsERF922 | 水稻 | 水稻 | 负调控 | 沉默基因增强稻瘟病抗性 | [ |
OsERF7 | 水稻 | 水稻 | 负调控 | 沉默基因增强褐飞虱和白背飞虱抗性 | [ |
SlERF.D.3 | 番茄 | 番茄 | 正调控 | 增强灰霉菌抗性 | [ |
SlERF.A1、SlERF.A3、SlERF.B4、SlERF.C3 | 番茄 | 番茄 | 正调控 | 增强灰霉菌和丁香假单胞菌细菌的抗性 | [ |
ERF-E2 | 番茄 | 番茄 | 正调控 | 增强烟草根节线虫和马铃薯白线虫的抗性 | [ |
ERF19 | 番茄 | 番茄 | 负调控 | 增强灰霉菌和丁香假单胞菌细菌的抗性 | [ |
GhERFB101 | 棉花 | 棉花 | 正调控 | 增强棉花抗枯萎病的抗性 | [ |
Pdt-ERF3、Pnd-ERF3 | 杨树 | 杂交杨 | 正调控 | 增强落叶松-杨栅锈菌抗性 | [ |
MdERF113 | 苹果 | 苹果* | 正调控 | 增强轮纹病菌 | [ |
VaERF20 | 葡萄 | 拟南芥 | 正调控 | 增强灰霉菌和丁香假单胞菌细菌的抗性 | [ |
VqERF112、VqERF114、VqERF072 | 葡萄 | 拟南芥 | 正调控 | 增强灰霉菌和丁香假单胞菌细菌的抗性 | [ |
Sm ORA1 | 丹参 | 丹参 | 正调控 | 增强抗立枯丝核菌 | [ |
StERF94 | 马铃薯 | 马铃薯 | 正调控 | 增强茄枯萎病的抗性 | [ |
[1] |
Miedes E, Vanholme R, Boerjan W, et al. The role of the secondary cell wall in plant resistance to pathogens[J]. Frontiers in Plant Science, 2014,5:358.
doi: 10.3389/fpls.2014.00358 pmid: 25161657 |
[2] | Meraj TA, Fu J, Raza MA, et al. Transcriptional factors regulate plant stress responses through mediating secondary metabolism[J]. Genes, 2020,11(4):346. |
[3] | 赵方东, 曾会明. 机械损伤日本结缕草转录组中相关转录因子的初步分析[J]. 生物技术通报, 2019,35(4):7-12. |
Zhao FD, Zeng HM. The related transcriptional factors in the transcriptome of mechanically-damaged Zoysia japonica[J]. Biotechnology Bulletin, 2019,35(4):7-12. | |
[4] | Hao D, Ohme-Takagi M, Sarai A. Unique mode of GCC box recognition by the DNA-binding domain of ethylene-responsive Element-binding Factor(ERF Domain)in plant[J]. Journal of Biological Chemistry, 1998,273(41):26857-26861. |
[5] |
Lv K, Li J, Zhao K, et al. Overexpression of an AP2/ERF family gene, BpERF13, in birch enhances cold tolerance through upregulating CBF genes and mitigating reactive oxygen species[J]. Plant Science, 2020,292. DOI: 10.1016/j.plantsci.2019.110375
URL pmid: 32005384 |
[6] | Illgen S, Zintl S, Zuther E, et al. Characterisation of the ERF102 to ERF105 genes of Arabidopsis thaliana and their role in the response to cold stress[J]. Plant Molecular Biolog, 2020. DOI: 10.1101/848705 |
[7] | 林珊珊. ERF转录因子在农作物中的研究进展[J]. 江西农业, 2019(16):87-88. |
Lin SS. Research progress of ERF transcription factors in crops[J]. Jiangxi Agriculture, 2019(16):87-88. | |
[8] | Ouyang ZG, Liu SX, Huang LH, et al. Tomato SlERF. A1, SlERF. B4, SlERF. C3 and SlERF. A3, members of B3 group of ERF family, are required for resistance to Botrytis cinerea[J]. Frontiers in Plant Science, 2016,7:1964. |
[9] |
Ohme-Takagi M, Shinshi H. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element[J]. Plant Cell, 1995,7(2):173-182.
doi: 10.1105/tpc.7.2.173 URL pmid: 7756828 |
[10] | Allen MD, Yamasaki K, Ohme-Takagi M, et al. A novel mode of DNA recognition by a b-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA[J]. EMBO Journal, 1998,17(18):5484-5496. |
[11] |
Sakuma Y, Liu Q, Dubouzet JG, et al. DNA-binding specificity of the ERF /AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold-inducible gene expression[J]. Biochemical and Biophysical Research Communications, 2002,290:998-1009.
URL pmid: 11798174 |
[12] | Abiri R, Shaharuddin NA, Maziah M, et al. Role of ethylene and the APETALA2/Ethylene response factor superfamily in rice under various abiotic and biotic stress conditions[J]. Environmental & Experimental Botany, 2016,134:33-44. |
[13] | 赵艳红, 郎明林, 王小龙, 等. 纤毛鹅观草DREB类基因RcDREB1的克隆及其蛋白结合干旱应答元件DRE的功能验证[J]. 植物遗传资源学报, 2013,14(5):857-863. |
Zhao YH, Lang ML, Wang XL, et al. Cloning of a DREB-like gene RcDREB1 in Roegneria ciliar and function identification of its protein binding specificity to the dehydration-responsive element DRE[J]. Journal of Genetic Resources, 2013,14(5):857-863. | |
[14] | Niu X, Luo TL, Zhao HY, et al. Identification of wheat DREB genes and functional characterization of TaDREB3 in response to abiotic stresses[J]. Gene, 2020,740:144514. |
[15] | Moon SJ, Min MK, Kim J, et al. Ectopic expression of OsDREB1G, a member of the OsDREB1 subfamily, confers cold stress tolerance in rice[J]. Frontiers in Plant Science, 2019,10:297. |
[16] |
Elliott RC, Betzner AS, Huttner E, et al. AINTEGUMENTA, an APETALA2-like gene of Arabidopsis with pleiotropic roles in ovule development and floral organ growth[J]. Plant Cell, 1996,8(2):155-168.
URL pmid: 8742707 |
[17] | Licausi F, Giorgi FM, Zenoni S, et al. Genomic and transcriptomic analysis of the AP2/ERF superfamily in Vitis vinifera[J]. BMC Genomics, 2010,11(1):54-56. |
[18] | Sohn KH, Lee SC, Jung HW, et al. Expression and functional roles of the pepper pathogen-induced transcription factor RAV1 in bacterial disease resistance, and drought and salt stress tolerance[J], Plant Molecular Biology, 2006,61(6):897-915. |
[19] | Song X, Li Y, Hou X. Genome-wide analysis of the AP2/ERF transcription factor superfamily in Chinese cabbage(Brassica rapa ssp. pekinensis)[J]. BMC Genomics, 2013,14(1):573-588. |
[20] | Ohme-Takagi M, Shinshi H. Structure and expression of a tobacco beta-1, 3-glucanase gene[J]. Plant Molecular Biology, 1990,15(6):941-946. |
[21] | Zarei A, Krbes AP, Younessi P, et al. Two GCCboxes and AP2/ERF-domain transcriptionfactor ORA59 in jasmonate/ethylene-mediated activation of the PDF1. 2 promoter in Arabidopsis[J]. Plant Molecular Biology, 2011,75(4-5):321-331. |
[22] | 王雅慧, 李彤, 黄莹, 等. 番茄2个ERF-B1亚族转录因子基因的克隆及其对生物和非生物胁迫响应[J]. 核农学报, 2019,33(10):1893-1904. |
Wang YH, Li T, Huang Y, et al. Cloning of two tomato ERF-B1 subfamily transcription factor genes and their response to biotic and abiotic stress[J]. Journal of Nuclear Agricultural Sciences, 2019,33(10):1893-1904. | |
[23] | Takafuji K, Rim H, Kawauchi K, et al. Evidence that ERF transcriptional regulators serve as possible key molecules for natural variation in defense against herbivores in tall goldenrod[J]. Scientific Reports, 2020,10(1):5352. |
[24] | Tsukagoshi H, Saijo T, Shibata D, et al. Analysis of a sugar response mutant of Arabidopsis identified a novel B3 domain protein that functions as an active transcriptional repressor[J]. Plant Physiology, 2005,138(2):675-685. |
[25] |
Stockinger EJ, Gilmour SJ, Thomashow MF. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat /DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit[J], Proceedings of the National Academy of Sciences of the United States of America, 1997,94:1035-1040.
URL pmid: 9023378 |
[26] | 吕静. 水稻抗虫相关基因OsERF3及OsACS2的功能解析[D]. 杭州:浙江大学, 2011. |
Lv J. Functional characterization of herbivore resistance-related genes OsERR3 and Os4CS2 in rice[D]. Hangzhou:Zhejiang University, 2011. | |
[27] | Mariam C, Mariam S, Safa C, et al. Ectopic expression of StERF94 transcription factor in potato plants[J]. Plant Molecular Biology, 2019,37(60):450-463. |
[28] | Steppuhn A, Gase K, Krock B, et al. Nicotine’s defensive function in nature[J]. PLoS Biology, 2004,2(8):1074-1080. |
[29] | Shoji T, Hashimoto T. Tobacco MYC2 regulates jasmonate-inducible nicotine biosynjournal genes directly and by way of the NIC2-locus ERF genes[J]. Plant Cell Physiol, 2011,52:1117-1130. |
[30] | Li J, Zhang K, Meng Y, et al. Jasmonic acid/ethylene signaling coordinates hydroxycinnamic acid amides biosynjournal through ORA59 transcription factor[J]. Plant Journal for Cell & Molecular Biology, 2018,95:444-457. |
[31] | 陈梦婷, 周书行, 张月白, 等. 沉默转录因子OsERF7提高水稻对褐飞虱和白背飞虱的抗性[J]. 植物保护学报, 2018,45(5):979-986. |
Chen MT, Zhou SX, Zhang YB, et al. Silencing of OsERF7 enhances the resistance of rice to the brown planthopper Nilaparvata lugens and the white-backed planthopper Sogatella furcifera[J]. Journal of Plant Protection, 2018,45(5):979-986. | |
[32] | 王福军. 利用TALENs和CRISPR/Cas9基因编辑技术改良水稻稻瘟病抗性[D]. 南宁:广西大学, 2016. |
Wang FJ. Enhanced rice blast resistance by TALENs and CRISPR/Cas9 genome-editing techniques[D]. Nanning:Guangxi University, 2016. | |
[33] | Huang PY, Zhang JS, Jiang B, et al. NINJA-associated ERF19 negatively regulates Arabidopsis pattern-triggered immunity[J]. Journal of Experimental Botany, 2019,70:1033-1047. |
[34] | Zheng X, Xing J, Zhang K, et al. Ethylene response factor ERF11 activates BT4 transcription to regulate immunity to Pseudomonas syringae[J]. Plant Physiology, 2019,180:1132-1151. |
[35] | Wang L, Liu WD, Wang YG. Heterologous expression of Chinese wild grapevine VqERFs in Arabidopsis thaliana enhance resistance to Pseudomonas syringae pv. tomato DC3000 and to Botrytis cinerea[J]. Plant Science, 2020,293. DOI: 10.1016/j.plantsci.2020.110421 |
[36] | Tezuka D, Kawamata A, Kato H, et al. The rice ethylene response factor OsERF83 positively regulates disease resistance to Magnaporthe oryzae[J]. Plant Physiology and Biochemistry, 2019,135:263-271. |
[37] | Marta BL, Antonio M, Roberto S. Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi[J]. The Plant Journal, 2002,29(1):23-32. |
[38] | Phukan UJ, Jeena GS, Tripathi V, et al. Regulation of Apetala2/ethylene response factors in plants[J]. Frontiers in Plant Science, 2017,8(150):1-18. |
[39] | 王峰, 程诗评, 牛春阳, 等. 杂交杨转录因子Pdt-ERF3抗锈病基因表达[J]. 森林工程, 2016,32(6):10-14. |
Wang F, Chen SP, Niu CY, et al. Pdt -ERF3 expression of the hybrid poplar infected with Melampsora larici- populina[J]. Forest Engineering, 2016,32(6):10-14. | |
[40] | 王梦楠. 中国野生山葡萄转录因子VaERF20克隆与功能研究[D]. 杨陵:西北农林科技大学, 2018. |
Wang MN. Cloning and functional analysis of a VaERF20 transcription factor in chinese wild Vitis amurensis[D]. Yangling:Northwest Agriculture and Forestry University, 2018. | |
[41] | 韩泽刚, 赵曾强, 何兰兰, 等. 棉花抗枯萎病相关转录因子基因GhERFB101的克隆与表达分析[J]. 华北农学报, 2015,30(1):66-72. |
Han ZG, Zhao ZQ, He LL, et al. Cloning and expression analysis of transcription factor gene GhERFB101 related to resistant Fusarium oxysporum f. sp. vasinfectum in cotton[J]. Acta Agriculturae Boreali Sinica, 2015,30(1):66-72. | |
[42] |
Steven D, Ryan W, Deborah C, et al. Ethylene Response Factor(ERF)genes modulate plant root exudate composition and the attraction of plant parasitic nematodes[J]. International Journal For Parasitology, 2019,49(13-14):999-1003.
URL pmid: 31726058 |
[43] | 牟少亮, 申磊, 石星辰, 等. 水稻OsERF96应答病原菌的表达及启动子的功能分析[J]. 植物遗传资源学报, 2017,18(1):115-133. |
Mou SH, Shen L, Shi XC, et al. Expression of rice OsERF96 in response to pathogens and functional analysis of its promoter[J]. Journal of Genetic Resources, 2017,18(1):115-133. | |
[44] | 徐志璇, 任仲海. 番茄AP2/ERF超家族重鉴定及过表达SlERF. D. 3株系表型[J]. 园艺学报, 2020,47(4):653-664. |
Xu ZX, Ren ZH. Re-identification of tomato AP2/ERF transcription factor superfamily and effects of overexpression of SlERF . D. 3 on plant growth and development[J]. Acta Horticulturae Sinica, 2020,47(4):653-664. | |
[45] | 丁安然, 孙晓红, 侯鸿敏, 等. 苹果MdERF113基因克隆及响应轮纹病菌侵染的表达分析[J]. 青岛农业大学学报, 2018,35(3):161-170. |
Ding AR, Sun XH, Hou HM, et al. Clone and expression analysis of MdERF113 gene from Apple Malus domestica infected wih Botryosphaeria dothidea[J]. Journal of Qingdao Agricultural University, 2018,35(3):161-170. | |
[46] | 化文平, 刘文超, 王喆之, 等. 干涉丹参SmORA1对植物抗病和丹参酮类次生代谢的影响[J]. 中国农业科学, 2016,49(3):491-502. |
Hua WP, Liu WC, Wang JZ, et al. Effect of RNAi of SmORA1 on disease resistance and tanshinones secondary metabolism in Salvia miltiorrhiza[J]. Scientia Agricultura Sinica, 2016,49(3):491-502. | |
[47] | Wang HY, Wang HL, Shao HB, et al. Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology[J]. Frontiers in Plant ence, 2016,7:67. |
[48] |
Aglawe SB, Fakrudin B, Patole CB, et al. Quantitative RT-PCR analysis of 20 transcription factor genes of MADS, ARF, HAP2, MBF and HB families in moisture stressed shoot and root tissues of sorghum[J]. Physiology and Molecular Biology of Plants, 2012,18(4):287-300.
URL pmid: 24082491 |
[49] |
Jeevanandam V, Srinivasan R. Genome-wide expansion and expression divergence of the basic leucine zipper transcription factors in higher plants with an emphasis on sorghum[J]. Journal of Integrative Plant Biology, 2011,53(3):212-231.
URL pmid: 21205183 |
[50] | Nakano T, Suzuki K, Fujimura T, et al. Genome-wide analysis of the ERF gene family in Arabidopsis and rice[J]. Plant Physiology, 2006,140(2):411-432. |
[51] | Xuan LTH, Du NHN, Nguyen BAT, et al. Transcription factors and their roles in signal transduction in plants under abiotic stresses[J]. Current Genomics, 2017,18:483-497. |
[1] | 赵雪婷, 高利燕, 王俊刚, 沈庆庆, 张树珍, 李富生. 甘蔗AP2/ERF转录因子基因ShERF3的克隆、表达及其编码蛋白的定位[J]. 生物技术通报, 2023, 39(6): 208-216. |
[2] | 李苑虹, 郭昱昊, 曹燕, 祝振洲, 王飞飞. 外源植物激素调控微藻生长及目标产物积累研究进展[J]. 生物技术通报, 2023, 39(6): 61-72. |
[3] | 冯珊珊, 王璐, 周益, 王幼平, 方玉洁. WOX家族基因调控植物生长发育和非生物胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(5): 1-13. |
[4] | 翟莹, 李铭杨, 张军, 赵旭, 于海伟, 李珊珊, 赵艳, 张梅娟, 孙天国. 异源表达大豆转录因子GmNF-YA19提高转基因烟草抗旱性[J]. 生物技术通报, 2023, 39(5): 224-232. |
[5] | 姚姿婷, 曹雪颖, 肖雪, 李瑞芳, 韦小妹, 邹承武, 朱桂宁. 火龙果溃疡病菌实时荧光定量PCR内参基因的筛选[J]. 生物技术通报, 2023, 39(5): 92-102. |
[6] | 杨春洪, 董璐, 陈林, 宋丽. 大豆VAS1基因家族的鉴定及参与侧根发育的研究[J]. 生物技术通报, 2023, 39(3): 133-142. |
[7] | 苗淑楠, 高宇, 李昕儒, 蔡桂萍, 张飞, 薛金爱, 季春丽, 李润植. 大豆GmPDAT1参与油脂合成和非生物胁迫应答的功能分析[J]. 生物技术通报, 2023, 39(2): 96-106. |
[8] | 许睿, 祝英方. 中介体复合物在植物非生物胁迫应答中的功能[J]. 生物技术通报, 2023, 39(11): 54-60. |
[9] | 孙雨桐, 刘德帅, 齐迅, 冯美, 黄栩筝, 姚文孔. 茉莉酸调控植物生长发育和胁迫的研究进展[J]. 生物技术通报, 2023, 39(11): 99-109. |
[10] | 杨旭妍, 赵爽, 马天意, 白玉, 王玉书. 三个甘蓝WRKY基因的克隆及其对非生物胁迫的表达[J]. 生物技术通报, 2023, 39(11): 261-269. |
[11] | 安昌, 陆琳, 沈梦千, 陈盛圳, 叶康卓, 秦源, 郑平. 植物bHLH基因家族研究进展及在药用植物中的应用前景[J]. 生物技术通报, 2023, 39(10): 1-16. |
[12] | 马赛买, 李同源, 马燕军, 韩富军, 彭海, 孔维宝. 几丁质酶在农作物病虫害生物防治中的研究进展[J]. 生物技术通报, 2023, 39(10): 29-40. |
[13] | 位欣欣, 兰海燕. 植物MYB转录因子调控次生代谢及逆境响应的研究进展[J]. 生物技术通报, 2022, 38(8): 12-23. |
[14] | 王慧, 马艺文, 乔正浩, 常彦彩, 术琨, 丁海萍, 聂永心, 潘光堂. AOX基因家族的结构和功能特征分析[J]. 生物技术通报, 2022, 38(7): 160-170. |
[15] | 周国彦, 银珊珊, 高佳鑫, 武春成, 闫立英, 谢洋. 黄瓜AHP基因家族的鉴定及其非生物胁迫表达分析[J]. 生物技术通报, 2022, 38(6): 112-119. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||