生物技术通报 ›› 2022, Vol. 38 ›› Issue (1): 269-277.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0419
收稿日期:
2021-04-01
出版日期:
2022-01-26
发布日期:
2022-02-22
作者简介:
高启禹,男,博士,副教授,研究方向:微生物学,嗜酸氧化亚铁硫杆菌及嗜铁钩端螺旋菌等嗜酸嗜铁菌在微生物浸矿及电子垃圾处理过程中的代谢机制;E-mail: 基金资助:
GAO Qi-yu1,2(), XU Guang-cui3, CUI Cai-xia1, ZHANG Wen-bo1
Received:
2021-04-01
Published:
2022-01-26
Online:
2022-02-22
摘要:
铁蛋白作为一种重要的铁储存蛋白,在不同的微生物体中普遍存在。通过对典型的微生物铁蛋白分子(FTN)的结构及其功能的归纳分析发现,铁蛋白依赖其独特的结构特点,在铁的补充、转运、氧化、成核和储存中扮演着重要作用,也对生物体内的多种生物化学反应影响显著。同时借助基因工程技术对铁蛋白进行相应的分子改造,增加了其作为纳米载体的应用潜能。其次铁蛋白自身特殊的自组装特性,能够满足对药物或其他物质的目的性装载。为进一步探讨铁蛋白在微生物体内的作用特性和功能机制,本文就微生物铁蛋白的结构特点、铁的作用及释放机制、铁的调控与储存、铁蛋白的分子改造及其应用与研究展望进行了相关综述。
高启禹, 徐光翠, 崔彩霞, 张文博. 微生物铁蛋白的研究进展[J]. 生物技术通报, 2022, 38(1): 269-277.
GAO Qi-yu, XU Guang-cui, CUI Cai-xia, ZHANG Wen-bo. Research Progress in Microbial Ferritin[J]. Biotechnology Bulletin, 2022, 38(1): 269-277.
[1] |
Sugio T, Kuwano H, Hamago Y, et al. Existence of a tungsten-binding protein in Acidithiobacillus ferrooxidans AP19-3[J]. J Biosci Bioeng, 2004, 97(6):378-382.
doi: 10.1016/S1389-1723(04)70222-4 URL |
[2] |
Bradley JM, Le Brun NE, Moore GR. Ferritins:furnishing proteins with iron[J]. J Biol Inorg Chem, 2016, 21(1):13-28.
doi: 10.1007/s00775-016-1336-0 pmid: 26825805 |
[3] | Laufberge V. Sur la cristallisation dela ferritin[J]. Bulletin de la Société de Chimie Biologique, 1937, 19:1575-1582. |
[4] | 陈静, 赵永亮, 王丹. 铁蛋白研究现状[J]. 河南师范大学学报:自然科学版, 2010, 38(1):152-155. |
Chen J, Zhao YL, Wang D. Present research situation of ferritin[J]. J Henan Norm Univ:Nat Sci, 2010, 38(1):152-155. | |
[5] | 王玲, 吴洋, 张盛, 等. 铁蛋白的生物工程应用[J]. 中国生物工程杂志, 2018, 38(6):77-85. |
Wang L, Wu Y, Zhang S, et al. Bioengineering application of ferritin[J]. China Biotechnol, 2018, 38(6):77-85. | |
[6] |
Morrissey J, Bowler C. Iron utilization in marine cyanobacteria and eukaryotic algae[J]. Front Microbiol, 2012, 3:43.
doi: 10.3389/fmicb.2012.00043 pmid: 22408637 |
[7] |
de Alcântara NR, de Oliveira FM, Garcia W, et al. Dps protein is related to resistance of Mycobacterium abscessus subsp. massiliense against stressful conditions[J]. Appl Microbiol Biotechnol, 2020, 104(11):5065-5080.
doi: 10.1007/s00253-020-10586-z URL |
[8] |
Rahmanpour R, Bugg TD. Characterisation of Dyp-type peroxidases from Pseudomonas fluorescens Pf-5:Oxidation of Mn(II)and polymeric lignin by Dyp1B[J]. Arch Biochem Biophys, 2015, 574:93-98.
doi: 10.1016/j.abb.2014.12.022 pmid: 25558792 |
[9] |
Gabashvili AN, Chmelyuk NS, Efremova MV, et al. Encapsulins—bacterial protein nanocompartments:structure, properties, and application[J]. Biomolecules, 2020, 10(6):966.
doi: 10.3390/biom10060966 URL |
[10] |
Zeth K, Hoiczyk E, Okuda M. Ferroxidase-mediated iron oxide biomineralization:novel pathways to multifunctional nanoparticles[J]. Trends Biochem Sci, 2016, 41(2):190-203.
doi: 10.1016/j.tibs.2015.11.011 URL |
[11] |
Chiou B, Connor J. Emerging and dynamic biomedical uses of ferritin[J]. Pharmaceuticals, 2018, 11(4):124.
doi: 10.3390/ph11040124 URL |
[12] | 孙雪松, 何庆瑜. 含铁蛋白介导的铁转运分子机制[J]. 化学进展, 2007, 19(12):1986-1990. |
Sun XS, He QY. Molecular mechanism of iron transport mediated by iron-containing proteins[J]. Prog Chem, 2007, 19(12):1986-1990. | |
[13] |
Pulliainen AT, Kauko A, Haataja S, et al. Dps/Dpr ferritin-like protein:insights into the mechanism of iron incorporation and evidence for a central role in cellular iron homeostasis in Streptococcus suis[J]. Mol Microbiol, 2005, 57(4):1086-1100.
pmid: 16091046 |
[14] |
Arosio P, Elia L, Poli M. Ferritin, cellular iron storage and regulation[J]. IUBMB Life, 2017, 69(6):414-422.
doi: 10.1002/iub.1621 pmid: 28349628 |
[15] |
Zeth K, Hoiczyk E, Okuda M. Ferroxidase-mediated iron oxide biomineralization:novel pathways to multifunctional nanoparticles[J]. Trends Biochem Sci, 2016, 41(2):190-203.
doi: 10.1016/j.tibs.2015.11.011 URL |
[16] |
Pfaffen S, Bradley JM, Abdulqadir R, et al. A diatom ferritin optimized for iron oxidation but not iron storage[J]. J Biol Chem, 2015, 290(47):28416-28427.
doi: 10.1074/jbc.M115.669713 URL |
[17] |
Zhang Y, Orner BP. Self-assembly in the ferritin nano-cage protein superfamily[J]. Int J Mol Sci, 2011, 12(8):5406-5421.
doi: 10.3390/ijms12085406 pmid: 21954367 |
[18] |
Stillman TJ, Connolly PP, Latimer CL, et al. Insights into the effects on metal binding of the systematic substitution of five key glutamate ligands in the ferritin of Escherichia coli[J]. J Biol Chem, 2003, 278(28):26275-26286.
pmid: 12730190 |
[19] |
Bou-Abdallah F, Paliakkara J, Melman G, et al. Reductive mobilization of iron from intact ferritin:mechanisms and physiological implication[J]. Pharmaceuticals, 2018, 11(4):120.
doi: 10.3390/ph11040120 URL |
[20] |
Granick S, Michaelis L. Ferritin[J]. J Biol Chem, 1943, 147(1):91-97.
doi: 10.1016/S0021-9258(18)72416-2 URL |
[21] |
Honarmand Ebrahimi K, Bill E, Hagedoorn PL, et al. The catalytic center of ferritin regulates iron storage via Fe(II)-Fe(III)displacement[J]. Nat Chem Biol, 2012, 8(11):941-948.
doi: 10.1038/nchembio.1071 pmid: 23001032 |
[22] |
Gao QY, Tang DP, Song P, et al. Bio-adsorption and Bio-transformation of arsenic by Acidithiobacillus ferrooxidans BY3[J]. Int Microbiol, 2018, 21(4):207-214.
doi: 10.1007/s10123-018-0017-y URL |
[23] |
Honarmand Ebrahimi K, Hagedoorn PL, Hagen WR. Unity in the biochemistry of the iron-storage proteins ferritin and bacterioferritin[J]. Chem Rev, 2015, 115(1):295-326.
doi: 10.1021/cr5004908 pmid: 25418839 |
[24] | Le Brun NE, Crow A, Murphy ME, et al. Iron core mineralisation in prokaryotic ferritins[J]. Biochim Biophys Acta, 2010, 1800(8):732-744. |
[25] |
Linder MC. Mobilization of stored iron in mammals:a review[J]. Nutrients, 2013, 5(10):4022-4050.
doi: 10.3390/nu5104022 pmid: 24152745 |
[26] | 黄河清, 张凤章, 陈灿和, 等. 细菌铁蛋白释放铁的动力学研究[J]. 生物物理学报, 1996, 12(1):33-38. |
Huang HQ, Zhang FZ, Chen CH, et al. Studies on kinetics of iron releasing from bacterial ferritin[J]. Acta Biophys Sin, 1996, 12(1):33-38 | |
[27] |
La A, Nguyen T, Tran K, et al. Mobilization of iron from ferritin:new steps and details[J]. Metallomics, 2018, 10(1):154-168.
doi: 10.1039/c7mt00284j pmid: 29260183 |
[28] |
Sakurai K, Nabeyama A, Fujimoto Y. Ascorbate-mediated iron release from ferritin in the presence of alloxan[J]. Biometals, 2006, 19(3):323-333.
pmid: 16799870 |
[29] |
Koochana PK, Mohanty A, Subhadarshanee B, et al. Phenothiazines and phenoxazines:as electron transfer mediators for ferritin iron release[J]. Dalton Trans, 2019, 48(10):3314-3326.
doi: 10.1039/C8DT04383C URL |
[30] |
Sankari S, O’Brian MR. A bacterial iron exporter for maintenance of iron homeostasis[J]. J Biol Chem, 2014, 289(23):16498-16507.
doi: 10.1074/jbc.M114.571562 pmid: 24782310 |
[31] |
Guan G, Pinochet-Barros A, Gaballa A, et al. PfeT, a P1B4 -type ATPase, effluxes ferrous iron and protects Bacillus subtilis against iron intoxication[J]. Mol Microbiol, 2015, 98(4):787-803.
doi: 10.1111/mmi.2015.98.issue-4 URL |
[32] |
Kim S, Lee JH, Seok JH, et al. Structural basis of novel iron-uptake route and reaction intermediates in ferritins from gram-negative bacteria[J]. J Mol Biol, 2016, 428(24 pt b):5007-5018.
doi: 10.1016/j.jmb.2016.10.022 URL |
[33] |
Zhao G, Bou-Abdallah F, Arosio P, et al. Multiple pathways for mineral core formation in mammalian apoferritin. The role of hydrogen peroxide[J]. Biochemistry, 2003, 42(10):3142-3150.
doi: 10.1021/bi027357v URL |
[34] | 胡菊, 邓建军, 李朝睿, 等. 铁蛋白铁氧化沉淀机理的研究进展[J]. 食品工业科技, 2009, 30(12):436-439. |
Hu J, Deng JJ, Li CR, et al. Research progress in mechanism of iron oxidative deposition in ferritin[J]. Sci Technol Food Ind, 2009, 30(12):436-439. | |
[35] |
Khare G, Nangpal P, Tyagi AK. Differential roles of iron storage proteins in maintaining the iron homeostasis in Mycobacterium tuberculosis[J]. PLoS One, 2017, 12(1):e0169545.
doi: 10.1371/journal.pone.0169545 URL |
[36] |
Rivera M. Bacterioferritin:structure, dynamics, and protein-protein interactions at play in iron storage and mobilization[J]. Acc Chem Res, 2017, 50(2):331-340.
doi: 10.1021/acs.accounts.6b00514 URL |
[37] |
Andrews SC. Iron storage in bacteria[J]. Adv Microb Physiol, 1998, 40:281-351.
pmid: 9889981 |
[38] | 谭潇, 李冉辉, 游晓星, 等. 鲍曼不动杆菌铁蛋白的抗氧化功能研究[J]. 微生物学通报, 2014, 41(12):2474-2480. |
Tan X, Li RH, You XX, et al. The anti-oxidative activity of Acinetobacter baumannii ferritin protein[J]. Microbiol China, 2014, 41(12):2474-2480. | |
[39] |
McHugh CA, Fontana J, Nemecek D, et al. A virus capsid-like nanocompartment that stores iron and protects bacteria from oxidative stress[J]. EMBO J, 2014, 33(17):1896-1911.
doi: 10.15252/embj.201488566 URL |
[40] |
He DD, Hughes S, Vanden-Hehir S, et al. Structural characterization of encapsulated ferritin provides insight into iron storage in bacterial nanocompartments[J]. eLife, 2016, 5:e18972.
doi: 10.7554/eLife.18972 URL |
[41] |
Stupka I, Heddle JG. Artificial protein cages - inspiration, construction, and observation[J]. Curr Opin Struct Biol, 2020, 64:66-73.
doi: 10.1016/j.sbi.2020.05.014 URL |
[42] | 范克龙, 周萌, 阎锡蕴. 细菌生产人铁蛋白的新功能及应用[J]. 微生物学通报, 2014, 41(3):520-538. |
Fan KL, Zhou M, Yan XY. Novel properties and applications of human ferritin expressed by Escherichia coli[J]. Microbiol China, 2014, 41(3):520-538. | |
[43] |
Panahandeh S, Li SY, Zandi R. The equilibrium structure of self-assembled protein nano-cages[J]. Nanoscale, 2018, 10(48):22802-22809.
doi: 10.1039/c8nr07202g pmid: 30516220 |
[44] | 张瑜, 刘中车, 王丽君, 等. N端延长对大肠杆菌铁蛋白结构稳定性及其自组装的影响[J]. 南京林业大学学报:自然科学版, 2017, 41(1):35-41. |
Zhang Y, Liu ZC, Wang LJ, et al. Effects of N-terminal elongation on the stability and self-assembly of Escherichia coli bacterioferritin[J]. J Nanjing For Univ:Nat Sci Ed, 2017, 41(1):35-41. | |
[45] |
杨彩云, 曹长乾, 蔡垚, 等. 铁蛋白表面修饰及其应用[J]. 化学进展, 2016, 28(1):91-102.
doi: 10.7536/PC150633 |
Yang CY, Cao CQ, Cai Y, et al. The surface modification of ferritin and its applications[J]. Prog Chem, 2016, 28(1):91-102. | |
[46] |
Liu X, Lopez PA, Giessen TW, et al. Engineering genetically-encoded mineralization and magnetism via directed evolution[J]. Sci Rep, 2016, 6:38019.
doi: 10.1038/srep38019 URL |
[47] |
Schoonen L, van Hest JC. Functionalization of protein-based nanocages for drug delivery applications[J]. Nanoscale, 2014, 6(13):7124-7141.
doi: 10.1039/c4nr00915k pmid: 24860847 |
[48] | 季鹏, 王思琦, 陈苡蔚, 等. 铁蛋白纳米笼的研究进展[J]. 中国新药杂志, 2020, 29(2):170-175. |
Ji P, Wang SQ, Chen YW, et al. Research progress of ferritin nanocage[J]. Chin J New Drugs, 2020, 29(2):170-175. | |
[49] |
Okuda M, Suzumoto Y, Yamashita I. Bioinspired synjournal of homogenous cerium oxide nanoparticles and two- or three-dimensional nanoparticle arrays using protein supramolecules[J]. Cryst Growth Des, 2011, 11(6):2540-2545.
doi: 10.1021/cg200299y URL |
[50] |
Jutz G, van Rijn P, Santos Miranda B, et al. Ferritin:a versatile building block for bionanotechnology[J]. Chem Rev, 2015, 115(4):1653-1701.
doi: 10.1021/cr400011b URL |
[51] |
Theil EC. Ferritin protein nanocages use ion channels, catalytic sites, and nucleation channels to manage iron/oxygen chemistry[J]. Curr Opin Chem Biol, 2011, 15(2):304-311.
doi: 10.1016/j.cbpa.2011.01.004 URL |
[52] |
Mazzucchelli S, Truffi M, Baccarini F, et al. H-Ferritin-nanocaged olaparib:a promising choice for both BRCA-mutated and sporadic triple negative breast cancer[J]. Sci Rep, 2017, 7(1):7505.
doi: 10.1038/s41598-017-07617-7 pmid: 28790402 |
[53] |
Liu X, Theil EC. Ferritins:dynamic management of biological iron and oxygen chemistry[J]. Acc Chem Res, 2005, 38(3):167-175.
doi: 10.1021/ar0302336 URL |
[54] | Williams SM, Chandran AV, Prakash S, et al. A mutation directs the structural switch of DNA binding proteins under starvation to a ferritin-like protein cage[J]. Structure, 2017, 25(9):1449-1454. e3. |
[55] | Hu QJ, Wang JD, Lu GM. Research progress of ferritin as a new MRI reporter gene in molecular imaging[J]. Chinese Journal of Medical Imaging Technology, 2008, 24(9):1480-1482. |
[1] | 张伟业, 宋浩志, 刘兴健, 李轶女, 张志芳. 铁蛋白与口蹄疫病毒VP1在大肠杆菌中融合表达及纳米颗粒自组装[J]. 生物技术通报, 2021, 37(2): 96-102. |
[2] | 马坤,赵宏鑫,李倩,王嘉榕,孙红宾. 磁小体膜蛋白Mms6功能与应用研究进展[J]. 生物技术通报, 2017, 33(9): 48-55. |
[3] | 裴杰,褚敏,包鹏甲,阎萍,郭宪. 乳铁蛋白抗菌机理研究进展[J]. 生物技术通报, 2017, 33(9): 56-63. |
[4] | 吴小丽, 刘盈盈, 江世杰, 陈云, 刘小利, 汪雨舟, 平淑珍, 王劲. 铁蛋白DrfE对耐辐射异常球菌抗氧化酶活性的影响[J]. 生物技术通报, 2017, 33(2): 164-171. |
[5] | 邢朝晖, 苏跃龙, 张琦, 阮馨怡, 林燕, 王欣泽, 孔海南. 磁性纳米材料载体固定纤维素酶技术研究进展[J]. 生物技术通报, 2015, 31(8): 59-65. |
[6] | 江翱, 李伟. 黄鳝转铁蛋白受体1基因的克隆及表达分析[J]. 生物技术通报, 2015, 31(7): 132-137. |
[7] | 李志鹏,刘庆友,石德顺,. 铁蛋白纳米颗粒应用于生物医疗领域的研究进展[J]. 生物技术通报, 2015, 31(10): 38-47. |
[8] | 胡伟莲, 戴德慧. 沙根骨中碳酸钙矿化微生物分离筛选及鉴定[J]. 生物技术通报, 2014, 0(2): 171-175. |
[9] | 王艳玲;李东;王秀利;. 海参免疫相关基因的研究进展[J]. , 2011, 0(09): 22-26. |
[10] | 李忠清;王亮;. 抗菌肽牛乳铁蛋白肽衍生肽在毕赤酵母中的表达及活性鉴定[J]. , 2011, 0(06): 145-149. |
[11] | 冯小明;储岳峰;贺英;高鹏程;赵萍;郭晗;樊祜卿;逯忠新;. 副猪嗜血杆菌毒力因子研究进展[J]. , 2010, 0(12): 46-49. |
[12] | 王峰;孙晗笑;莫雪梅;李秀英;张光;. 通用型转铁蛋白融合表达载体的构建及应用价值[J]. , 2010, 0(08): 98-101. |
[13] | 朱艳萍;滕达;田子罡;白雪晶;杨雅麟;王建华;. 乳铁蛋白分子结构及其抗菌机制[J]. , 2010, 0(06): 37-42. |
[14] | 潘欣;. 转铁蛋白受体在土拉弗朗西斯菌LVS入侵巨噬细胞期间的作用[J]. , 2009, 0(S1): 376-379. |
[15] | 汪开治. 利用生物技术提高水稻籽粒的含铁量[J]. , 1999, 0(05): 15-15. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||