[1] |
Ngo DH, Vo TS. An updated review on pharmaceutical properties of gamma-aminobutyric acid[J]. Molecules, 2019, 24(15):2678.
doi: 10.3390/molecules24152678
URL
|
[2] |
Li HX, Cao YS. Lactic acid bacterial cell factories for gamma-aminobutyric acid[J]. Amino Acids, 2010, 39(5):1107-1116.
doi: 10.1007/s00726-010-0582-7
pmid: 20364279
|
[3] |
王建峰, 任举. γ-氨基丁酸的生理作用与制备方法综述[J]. 山东化工, 2013, 42(2):51-52, 55.
|
|
Wang JF, Ren J. γ-aminobutyric acid physiological function and preparation methods were reviewed[J]. Shandong Chem Ind, 2013, 42(2):51-52, 55.
|
[4] |
Liu YP, Tang HZ, Lin ZL, et al. Mechanisms of acid tolerance in bacteria and prospects in biotechnology and bioremediation[J]. Biotechnol Adv, 2015, 33(7):1484-1492.
doi: 10.1016/j.biotechadv.2015.06.001
pmid: 26057689
|
[5] |
王凯凯, 孙朦, 宋佳敏, 等. γ-氨基丁酸(GABA)形成机理及富集方法的研究进展[J]. 食品工业科技, 2018, 39(14):323-329.
|
|
Wang KK, Sun M, Song JM, et al. Research progress in the formation mechanism and accumulation methods of γ-aminobutyric acid(GABA)[J]. Sci Technol Food Ind, 2018, 39(14):323-329.
|
[6] |
Lund P, Tramonti A, de Biase D. Coping with low pH:molecular strategies in neutralophilic bacteria[J]. FEMS Microbiol Rev, 2014, 38(6):1091-1125.
doi: 10.1111/1574-6976.12076
URL
|
[7] |
Krulwich TA, Sachs G, Padan E. Molecular aspects of bacterial pH sensing and homeostasis[J]. Nat Rev Microbiol, 2011, 9(5):330-343.
doi: 10.1038/nrmicro2549
pmid: 21464825
|
[8] |
孙丽慧, 李胜男, 宫宇晴, 等. 短乳杆菌DLF-19076全细胞催化合成γ-氨基丁酸[J]. 食品科技, 2019, 44(8):31-36.
|
|
Sun LH, Li SN, Gong YQ, et al. Synthesis of γ-aminobutyric acid by whole cells of Lactobacillus brevis DLF-19076[J]. Food Sci Technol, 2019, 44(8):31-36.
|
[9] |
Lyu CJ, Zhao WR, Hu S, et al. Physiology-oriented engineering strategy to improve gamma-aminobutyrate production in Lactobacillus brevis[J]. J Agric Food Chem, 2017, 65(4):858-866.
doi: 10.1021/acs.jafc.6b04442
URL
|
[10] |
Zhang K, Ni Y. Tyrosine decarboxylase from Lactobacillus brevis:soluble expression and characterization[J]. Protein Expr Purif, 2014, 94:33-39.
doi: 10.1016/j.pep.2013.10.018
URL
|
[11] |
朱黎君, 陈航娟, 肖正群, 等. 酪氨酸脱羧酶产生菌的筛选及脱羧条件研究[J]. 发酵科技通讯, 2015, 44(1):38-43.
|
|
Zhu LJ, Chen HJ, Xiao ZQ, et al. Screening for tyrosine decarboxylase producing strain and optimization of its decarboxylation conditions[J]. Bull Ferment Sci Technol, 2015, 44(1):38-43.
|
[12] |
Miyoshi M, Usami M, Kajita A, et al. Effect of oral tributyrin treatment on lipid mediator profiles in endotoxin-induced hepatic injury[J]. Kobe J Med Sci, 2020, 66(4):E129-E138.
pmid: 33994516
|
[13] |
Kang HR, Kim HS, Mah JH, et al. Tyramine reduction by tyrosine decarboxylase inhibitor in Enterococcus faecium for tyramine controlled cheonggukjang[J]. Food Sci Biotechnol, 2017, 27(1):87-93.
doi: 10.1007/s10068-017-0205-0
URL
|
[14] |
胡梦裳, 张云艳, 万建美, 等. 不同浓度的碘化丙啶染色对细胞周期分布的影响[J]. 激光杂志, 2015, 36(1):144-147.
|
|
Hu MS, Zhang YY, Wan JM, et al. Study on the effect of different concentrations of propidium iodide in cell cycle distribution experiment[J]. Laser J, 2015, 36(1):144-147.
|
[15] |
冯宇, 高年发, 张颖, 等. 短乳杆菌生产γ-氨基丁酸培养基的优化[J]. 现代食品科技, 2010, 26(1):34-37.
|
|
Feng Y, Gao NF, Zhang Y, et al. Optimization of fermentation medium for γ-aminobutyric acid production by Lactobacillus brevis[J]. Mod Food Sci Technol, 2010, 26(1):34-37.
|
[16] |
石秀峰. 利用短乳杆菌制备γ-氨基丁酸的研究[D]. 天津: 天津科技大学, 2016.
|
|
Shi XF. Study on the preparation of γ-aminobutyric acid by Lactobacillus brevis[D]. Tianjin: Tianjin University of Science & Technology, 2016.
|
[17] |
李俊南, 侯艳, 孙凤宇, 等. OPLS方法的原理及其在代谢组学数据判别分析中的应用[J]. 中国卫生统计, 2014, 31(5):765-769.
|
|
Li JN, Hou Y, Sun FY, et al. The theoretical properties of orthogonal projection to latent structures(OPLS)and its application in metabolomics data analysis[J]. Chin J Heal Stat, 2014, 31(5):765-769.
|
[18] |
Wu W, Jiao CX, Li H, et al. LC-MS based metabolic and metabonomic studies of Panax ginseng[J]. Phytochem Anal, 2018, 29(4):331-340.
doi: 10.1002/pca.2752
URL
|
[19] |
Huang Q, Tan YX, Yin PY, et al. Metabolic characterization of hepatocellular carcinoma using nontargeted tissue metabolomics[J]. Cancer Res, 2013, 73(16):4992-5002.
doi: 10.1158/0008-5472.CAN-13-0308
pmid: 23824744
|
[20] |
Newbold A, Martin BP, Cullinane C, et al. Detection of apoptotic cells using propidium iodide staining[J]. Cold Spring Harb Protoc, 2014, 2014(11):1202-1206.
doi: 10.1101/pdb.prot082545
pmid: 25368311
|
[21] |
Russell NJ. Cold adaptation of microorganisms[J]. Philos Trans Royal Soc Lond Ser B Biol Sci, 1990, 326(1237):595-608, discussion 608.
|
[22] |
Denich TJ, Beaudette LA, Lee H, et al. Effect of selected environmental and physico-chemical factors on bacterial cytoplasmic membranes[J]. J Microbiol Methods, 2003, 52(2):149-182.
pmid: 12459238
|
[23] |
Alia MJ, Bhalu B, Mohanty P. Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants[J]. Curr Sci, 2002, 82(5):525-532.
|
[24] |
Taji T, Ohsumi C, Iuchi S, et al. Important roles of drought- and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana[J]. Plant J, 2002, 29(4):417-426.
doi: 10.1046/j.0960-7412.2001.01227.x
URL
|
[25] |
Glaasker E, Konings WN, Poolman B. Osmotic regulation of intracellular solute pools in Lactobacillus plantarum[J]. J Bacteriol, 1996, 178(3):575-582.
pmid: 8550485
|
[26] |
高飞雄, 梁引库, 李云祥. 蒲公英植酸对沙门氏菌抑制作用及其抑菌机理研究[J]. 天然产物研究与开发, 2019, 31(6):975-980, 985.
|
|
Gao FX, Liang YK, Li YX. Antibacterial effect and mechanism of dandelion phytic acid on Salmonella[J]. Nat Prod Res Dev, 2019, 31(6):975-980, 985.
|