生物技术通报 ›› 2022, Vol. 38 ›› Issue (11): 21-31.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0303
张靖1(), 尤垂淮2, 曹月1, 崔天真1, 杨靖涛1, 罗俊1,3()
收稿日期:
2022-03-14
出版日期:
2022-11-26
发布日期:
2022-12-01
作者简介:
张靖,硕士研究生,研究方向:作物抗性生物学,E-mail:基金资助:
ZHANG Jing1(), YOU Chui-huai2, CAO Yue1, CUI Tian-zhen1, YANG Jing-tao1, LUO Jun1,3()
Received:
2022-03-14
Published:
2022-11-26
Online:
2022-12-01
摘要:
黑穗病严重危害甘蔗生产,造成蔗茎产量降低和蔗糖分损失。该病害通过气传和土传等方式传播,其病原菌的孢子能在高温干燥环境下存活半年以上。根际微生态是根系与土壤紧密联系的微型生态体系。该体系的环境因素如土壤微生物、根系分泌物、土壤理化性质等对作物生长发育有着极为重要的影响。同样地,根际微生态与植物病害的发展和防控也有着极其密切关系。甘蔗根际微生态系统的特征及其与黑穗病之间内在联系的阐述,有助于甘蔗黑穗病的早期预防及生防资源的开拓挖掘。本文从甘蔗黑穗病的发生与危害、植物根际微生态与病害的关系、甘蔗根际微生态及黑穗病防治这几方面,对前人研究进展进行综述,旨在为甘蔗根际微生态的研究和优异生防资源的挖掘及甘蔗黑穗病的高效防治提供参考和借鉴。
张靖, 尤垂淮, 曹月, 崔天真, 杨靖涛, 罗俊. 甘蔗根际微生态及其与黑穗病防治之间的关系[J]. 生物技术通报, 2022, 38(11): 21-31.
ZHANG Jing, YOU Chui-huai, CAO Yue, CUI Tian-zhen, YANG Jing-tao, LUO Jun. Sugarcane Rhizosphere Microecology and Its Relationship with Smut Control[J]. Biotechnology Bulletin, 2022, 38(11): 21-31.
防治措施Control strategy | 措施Measures | 不足之处Deficiencies |
---|---|---|
植物检疫 Plant quarantine | 出入本国或本地区的甘蔗及相关产品进行隔离试种、检验和处理;局部地区发生的检疫性有害生物应封锁在一定范围内并立即采取一切必要措施加以铲除[ | 《植物检疫条例》宣传力度不够 |
新品种选育 New variety breeding | (1)建立甘蔗种质资源圃;如国内广西等地区,国外佛罗里达等地区[ (2)种质资源的引进、收集、研究和利用;如通过杂交选育出的抗病品种,国内如中糖2号、福农15号等,国外如98A163、2000A241等[ (3)通过基因克隆和转基因技术;如具有潜力抗黑穗病基因ScSEC/ScGluA/ScGluD1/ScGluD2等,验证具有抗性的转几丁质酶和β-1,3-葡聚糖酶基因的5个甘蔗转基因株系(SCG1-5)等[ | 甘蔗转育成本高; 生态适应性强的甘蔗新品种不多 |
农业防治 Agricultural control | (1)使用无菌种蔗;从无病区选取健壮蔗株的第一段梢头苗留种进行调运,其中梢头苗外有叶鞘包裹,蔗芽不易受到病菌侵染; (2)轮作、套作等耕作措施;利用大豆与甘蔗、水稻和红花草子与甘蔗、红花草子与甘蔗等轮作或套种[ (3)加强田间管理;补足养分及水分,及时除草 | 人工成本高;机械化欠缺 |
物理防治 Physical control | 热力处理;将带病蔗种进行52℃处理3-4 h或54℃处理2-3 h[ | 并非适用于所有品种; 病害严重时防治效果微弱 |
化学防治 Chemical control | (1)种苗消毒;用福尔马林或石灰水进行浸种,利用薄膜覆盖闷种或40%拌种双可湿性粉剂/40%拌种灵可湿性粉剂/25%三唑酮可湿性粉剂/80%代森锰锌可湿性粉剂/2.5%扑力猛悬浮种衣剂500-800倍液进行浸种; (2)化学杀菌剂利用;如有机汞/氯杀菌剂、三唑类杀真菌剂、氟虫酚杀真菌剂、待开发新型24元大乳素生化杀菌剂等[ | 对环境产生污染 |
生物防治 Biological control | 利用拮抗微生物进行“以菌治菌”;内生菌如叶片分离出的伯克霍尔德氏菌CGB10,非内生菌如根际土壤分离出的假单胞属菌ST4等[ | 生防制品保质周期短 |
表1 甘蔗黑穗病防治措施及其不足
Table 1 Control strategies of sugarcane smut and their deficiencies
防治措施Control strategy | 措施Measures | 不足之处Deficiencies |
---|---|---|
植物检疫 Plant quarantine | 出入本国或本地区的甘蔗及相关产品进行隔离试种、检验和处理;局部地区发生的检疫性有害生物应封锁在一定范围内并立即采取一切必要措施加以铲除[ | 《植物检疫条例》宣传力度不够 |
新品种选育 New variety breeding | (1)建立甘蔗种质资源圃;如国内广西等地区,国外佛罗里达等地区[ (2)种质资源的引进、收集、研究和利用;如通过杂交选育出的抗病品种,国内如中糖2号、福农15号等,国外如98A163、2000A241等[ (3)通过基因克隆和转基因技术;如具有潜力抗黑穗病基因ScSEC/ScGluA/ScGluD1/ScGluD2等,验证具有抗性的转几丁质酶和β-1,3-葡聚糖酶基因的5个甘蔗转基因株系(SCG1-5)等[ | 甘蔗转育成本高; 生态适应性强的甘蔗新品种不多 |
农业防治 Agricultural control | (1)使用无菌种蔗;从无病区选取健壮蔗株的第一段梢头苗留种进行调运,其中梢头苗外有叶鞘包裹,蔗芽不易受到病菌侵染; (2)轮作、套作等耕作措施;利用大豆与甘蔗、水稻和红花草子与甘蔗、红花草子与甘蔗等轮作或套种[ (3)加强田间管理;补足养分及水分,及时除草 | 人工成本高;机械化欠缺 |
物理防治 Physical control | 热力处理;将带病蔗种进行52℃处理3-4 h或54℃处理2-3 h[ | 并非适用于所有品种; 病害严重时防治效果微弱 |
化学防治 Chemical control | (1)种苗消毒;用福尔马林或石灰水进行浸种,利用薄膜覆盖闷种或40%拌种双可湿性粉剂/40%拌种灵可湿性粉剂/25%三唑酮可湿性粉剂/80%代森锰锌可湿性粉剂/2.5%扑力猛悬浮种衣剂500-800倍液进行浸种; (2)化学杀菌剂利用;如有机汞/氯杀菌剂、三唑类杀真菌剂、氟虫酚杀真菌剂、待开发新型24元大乳素生化杀菌剂等[ | 对环境产生污染 |
生物防治 Biological control | 利用拮抗微生物进行“以菌治菌”;内生菌如叶片分离出的伯克霍尔德氏菌CGB10,非内生菌如根际土壤分离出的假单胞属菌ST4等[ | 生防制品保质周期短 |
图1 受甘黑穗病菌侵染后甘蔗地下部的响应机制预测图 虚线为图标注释,红色粗箭头表示甘蔗与地下部的互作,红色细箭头表示正向作用,绿色细箭头表示反向作用
Fig. 1 Prediction of response mechanism in underground parts of sugarcane after infected by smut fungi The dotted line is the icon annotation,the thick red arrow indicates the interaction between sugarcane and the underground,the thin red arrow indicates the positive action,and the thin green arrow indicates the reverse action
[1] |
Hiltner L. Uber neuer erfahrungen und probleme auf Dem gebiet der bodenbakteriologie unter besonderer berücksichtigung der gründüngung und brache[J]. Soil Biol Biochem, 1904, 32:1405-1417.
doi: 10.1016/S0038-0717(00)00058-4 URL |
[2] |
Kobierski M, Kondratowicz-Maciejewska K, Banach-Szott M, et al. Humic substances and aggregate stability in rhizospheric and non-rhizospheric soil[J]. J Soils Sediments, 2018, 18(8):2777-2789.
doi: 10.1007/s11368-018-1935-1 URL |
[3] | Gao ML, Dong YM, Zhang Z, et al. Effect of dibutyl phthalate on microbial function diversity and enzyme activity in wheat rhizosphere and non-rhizosphere soils[J]. Environ Pollut, 2020, 265(Pt B):114800. |
[4] | Wang JQ, Shi XZ, Li LQ, et al. Changes in soil Nematodes in rhizosphere and non-rhizosphere soils following combined elevated[CO2]and canopy warming in a winter wheat field[J]. Geoderma, 2021, 386:114907. |
[5] |
Raaijmakers JM, Mazzola M. Soil immune responses[J]. Science, 2016, 352(6292):1392-1393.
doi: 10.1126/science.aaf3252 pmid: 27313024 |
[6] | 吴伟怀, 郑肖兰, 李锐, 等. 甘蔗黑穗病菌基础生物学特性[J]. 热带作物学报, 2010, 31(8):1388-1392. |
Wu WH, Zheng XL, Li R, et al. The biological characteristics of the pathogen of sugarcane smut disease[J]. Chin J Trop Crops, 2010, 31(8):1388-1392. | |
[7] | Mansoor S, Khan MA, Khan NA. Screening of sugarcane varieties/lines against whip smut disease in relation to epidemiological factors[J]. J Plant Pathol Microbiol, 2016, 7(7):1-7. |
[8] |
Bhuiyan SA, Magarey RC, McNeil MD, et al. Sugarcane smut, caused by Sporisorium scitamineum, a major disease of sugarcane:a contemporary review[J]. Phytopathology, 2021, 111(11):1905-1917.
doi: 10.1094/PHYTO-05-21-0221-RVW URL |
[9] |
Piepenbring M, Stoll M, Oberwinkler F. The generic position of Ustilago maydis, Ustilago scitaminea, and Ustilago esculenta(Ustilaginales)[J]. Mycol Prog, 2002, 1(1):71-80.
doi: 10.1007/s11557-006-0006-y URL |
[10] | Mcmartin A. Sugar-cane smut:reappearance in Natal[J]. South African Sugar Journal, 1945, 29:55-57. |
[11] | Tom L, Braithwaite K, Kuniata LS. Incursion of sugarcane smut in commercial cane crops at Ramu, Papua New Guinea[C]. Papua New Guinea: Australian Society of Sugarcane Technologist, 2017. |
[12] | Nyvall RF. Diseases of sugarcane[M]// Nyvall RF. Field Crop Diseases Handbook. Boston, MA: Springer US, 1989:597-638. |
[13] |
Hoy JW, Grisham MP, Chao CP. Production of sori and dispersal of teliospores of Ustilago scitamineain in Louisiana[J]. Phytopathology, 1991, 81(5):574-579.
doi: 10.1094/Phyto-81-574 URL |
[14] | Rajput MA, Rajput NA, Syed RN, et al. Sugarcane smut:current knowledge and the way forward for management[J]. J Fungi(Basel), 2021, 7(12):1095. |
[15] |
Raboin LM, Selvi A, Oliveira KM, et al. Evidence for the dispersal of a unique lineage from Asia to America and Africa in the sugarcane fungal pathogen Ustilago scitaminea[J]. Fungal Genet Biol, 2007, 44(1):64-76.
doi: 10.1016/j.fgb.2006.07.004 URL |
[16] | Li YR. Effect of sugarcane smut(Ustilago scitaminea syd.)on ultrastructure and biochemical indices of sugarcane[J]. Biomed J Sci Tech Res, 2019, 17(1):12546-12551. |
[17] | 王文治, 杨本鹏, 熊国如, 等. 带黑穗病菌蔗种的种植对蔗茎产量和蔗糖分的影响[J]. 热带作物学报, 2014, 35(9):1683-1687. |
Wang WZ, Yang BP, Xiong GR, et al. Influence of planting of sugarcane seeds carrying smut fungus on cane yield and sugar content[J]. Chin J Trop Crops, 2014, 35(9):1683-1687. | |
[18] |
Tegene S, Terefe H, Dejene M, et al. Survey of sugarcane smut(Sporisorium scitamineum)and association of factors influencing disease epidemics in sugarcane plantations of Ethiopia[J]. Trop Plant Pathol, 2021, 46(4):393-405.
doi: 10.1007/s40858-021-00437-1 URL |
[19] | Putra LK, Damayanti TA. Major diseases affecting sugarcane production in Indonesia[J]. Functional Plant Science and Biotechnology, 2012, 6(2):124-129. |
[20] |
Whittle AM, Walker DIT. Interpretation of sugarcane smut susceptibility trials[J]. Trop Pest Manag, 1982, 28(3):228-237.
doi: 10.1080/09670878209370715 URL |
[21] |
van der Putten WH, Bardgett RD, de Ruiter PC, et al. Empirical and theoretical challenges in aboveground-belowground ecology[J]. Oecologia, 2009, 161(1):1-14.
doi: 10.1007/s00442-009-1351-8 pmid: 19412705 |
[22] |
Ma JF, Ryan PR, Delhaize E. Aluminium tolerance in plants and the complexing role of organic acids[J]. Trends Plant Sci, 2001, 6(6):273-278.
pmid: 11378470 |
[23] | 吴晓宗. 烟草青枯病发病对植烟根际土壤微生态的影响[D]. 郑州: 郑州大学, 2020. |
Wu XZ. The effect of tobacco bacterial wilt on the rhizosphere soil microecology of tobacco[D]. Zhengzhou: Zhengzhou University, 2020. | |
[24] |
Bakker PAHM, Pieterse CMJ, de Jonge R, et al. The soil-borne legacy[J]. Cell, 2018, 172(6):1178-1180.
doi: S0092-8674(18)30168-5 pmid: 29522740 |
[25] |
Jain A, Chakraborty J, Das S. Underlying mechanism of plant-microbe crosstalk in shaping microbial ecology of the rhizosphere[J]. Acta Physiol Plant, 2020, 42(1):1-13.
doi: 10.1007/s11738-019-2990-y URL |
[26] |
Seaton FM, Barrett G, Burden A, et al. Soil health cluster analysis based on national monitoring of soil indicators[J]. Eur J Soil Sci, 2021, 72(6):2414-2429.
doi: 10.1111/ejss.12958 URL |
[27] | 孟博, 周一帆, 战健, 等. 广西蔗区土壤肥力和叶片养分状况调查研究[J]. 中国土壤与肥料, 2022(2):181-188. |
Meng B, Zhou YF, Zhan J, et al. Investigation on soil and sugarcane leaf nutrient status in Guangxi[J]. Soil Fertil Sci China, 2022(2):181-188. | |
[28] |
Li SL, Liu YQ, Wang J, et al. Soil acidification aggravates the occurrence of bacterial wilt in South China[J]. Front Microbiol, 2017, 8:703.
doi: 10.3389/fmicb.2017.00703 pmid: 28487678 |
[29] |
Feng YX, Hu YY, Wu JS, et al. Change in microbial communities, soil enzyme and metabolic activity in a Torreya grandis plantation in response to root rot disease[J]. For Ecol Manag, 2019, 432:932-941.
doi: 10.1016/j.foreco.2018.10.028 URL |
[30] |
Jiang JL, Yu M, Hou RP, et al. Changes in the soil microbial community are associated with the occurrence of Panax quinquefolius L. root rot diseases[J]. Plant Soil, 2019, 438(1/2):143-156.
doi: 10.1007/s11104-018-03928-4 URL |
[31] |
Shen GH, Zhang ST, Liu XJ, et al. Soil acidification amendments change the rhizosphere bacterial community of tobacco in a bacterial wilt affected field[J]. Appl Microbiol Biotechnol, 2018, 102(22):9781-9791.
doi: 10.1007/s00253-018-9347-0 pmid: 30302520 |
[32] |
Bruulsema T. Managing nutrients to mitigate soil pollution[J]. Environ Pollut, 2018, 243(Pt B):1602-1605.
doi: S0269-7491(18)33007-0 pmid: 30296755 |
[33] |
Johnson RM, Grisham MP, Richard EP. Relationship between sugarcane rust severity and soil properties in Louisiana[J]. Phytopathology, 2007, 97(6):748-755.
doi: 10.1094/PHYTO-97-6-0748 pmid: 18943606 |
[34] |
Johnson RM, Grisham MP, Warnke KZ, et al. Relationship of soil properties and sugarcane yields to red stripe in Louisiana[J]. Phytopathology, 2016, 106(7):737-744.
doi: 10.1094/PHYTO-09-15-0218-R pmid: 27003508 |
[35] |
梁文举, 董元华, 李英滨, 等. 土壤健康的生物学表征与调控[J]. 应用生态学报, 2021, 32(2):719-728.
doi: 10.13287/j.1001-9332.202102.041 |
Liang WJ, Dong YH, Li YB, et al. Biological characterization and regulation of soil health[J]. Chin J Appl Ecol, 2021, 32(2):719-728. | |
[36] |
Shanmugam V, Verma R, Rajkumar S, et al. Bacterial diversity and soil enzyme activity in diseased and disease free apple rhizosphere soils[J]. Ann Microbiol, 2011, 61(4):765-772.
doi: 10.1007/s13213-010-0193-2 URL |
[37] | 杨尚东, 郭霜, 任奎喻, 等. 甘蔗宿根矮化病感病与非感病株根际土壤生物学性状及细菌群落结构特征[J]. 植物营养与肥料学报, 2019, 25(6):910-916. |
Yang SD, Guo S, Ren KY, et al. Soil biological properties and bacterial community structures in rhizosphere soil of canes infected and non-infected by ratoon stunting disease[J]. J Plant Nutr Fertil, 2019, 25(6):910-916. | |
[38] |
Otten W, Gilligan CA, Watts CW, et al. Continuity of air-filled pores and invasion thresholds for a soil-borne fungal plant pathogen, Rhizoctonia solani[J]. Soil Biol Biochem, 1999, 31(13):1803-1810.
doi: 10.1016/S0038-0717(99)00099-1 URL |
[39] |
Baetz U, Martinoia E. Root exudates:the hidden part of plant defense[J]. Trends Plant Sci, 2014, 19(2):90-98.
doi: 10.1016/j.tplants.2013.11.006 URL |
[40] |
Vives-Peris V, de Ollas C, Gómez-Cadenas A, et al. Root exudates:from plant to rhizosphere and beyond[J]. Plant Cell Rep, 2020, 39(1):3-17.
doi: 10.1007/s00299-019-02447-5 pmid: 31346716 |
[41] |
Bais HP, Walker TS, Schweizer HP, et al. Root specific elicitation and antimicrobial activity of rosmarinic acid in hairy root cultures of Ocimum basilicum[J]. Plant Physiol Biochem, 2002, 40(11):983-995.
doi: 10.1016/S0981-9428(02)01460-2 URL |
[42] | Zhang CS, Feng C, Zheng YF, et al. Root exudates metabolic profiling suggests distinct defense mechanisms between resistant and susceptible tobacco cultivars against black shank disease[J]. Front Plant Sci, 2020, 11:559775. |
[43] |
Rudrappa T, Czymmek KJ, Paré PW, et al. Root-secreted malic acid recruits beneficial soil bacteria[J]. Plant Physiol, 2008, 148(3):1547-1556.
doi: 10.1104/pp.108.127613 pmid: 18820082 |
[44] |
Yuan J, Zhao J, Wen T, et al. Root exudates drive the soil-borne legacy of aboveground pathogen infection[J]. Microbiome, 2018, 6(1):156.
doi: 10.1186/s40168-018-0537-x pmid: 30208962 |
[45] |
Mohanram S, Kumar P. Rhizosphere microbiome:revisiting the synergy of plant-microbe interactions[J]. Ann Microbiol, 2019, 69(4):307-320.
doi: 10.1007/s13213-019-01448-9 |
[46] | 张德政. 棉花黄萎病罹病与健康植株根际微生物组分析及生防菌筛选[D]. 北京: 中国农业科学院, 2020. |
Zhang DZ. Deciphering the rhizosphere microbiome associated with healthy and Verticillium wilt diseased cotton plant and screening beneficial microbes[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020. | |
[47] | 杨尚东, 吴俊, 赵久成, 等. 番茄青枯病罹病植株和健康植株根际土壤理化性状及生物学特性的比较[J]. 中国蔬菜, 2013(22):64-69. |
Yang SD, Wu J, Zhao JC, et al. Physical, chemical and biological characteristics analysis of rhizosphere soils between infected plants of tomato bacterial wilt and non-infected plants[J]. China Veg, 2013(22):64-69. | |
[48] | 冯雨星. 香榧根腐病株根区土壤微生物群落特征研究[D]. 杭州: 浙江农林大学, 2019. |
Feng YX. Characterization of microbial communities in the root zone soil of Torreya grandis cv. merrillii suffering from root-rot disease[D]. Hangzhou: Zhejiang A & F University, 2019. | |
[49] |
Gu SH, Wei Z, Shao ZY, et al. Competition for iron drives phytopathogen control by natural rhizosphere microbiomes[J]. Nat Microbiol, 2020, 5(8):1002-1010.
doi: 10.1038/s41564-020-0719-8 pmid: 32393858 |
[50] |
Cha JY, Han S, Hong HJ, et al. Microbial and biochemical basis of a Fusarium wilt-suppressive soil[J]. ISME J, 2016, 10(1):119-129.
doi: 10.1038/ismej.2015.95 URL |
[51] |
Berendsen RL, Vismans G, Yu K, et al. Disease-induced assemblage of a plant-beneficial bacterial consortium[J]. ISME J, 2018, 12(6):1496-1507.
doi: 10.1038/s41396-018-0093-1 pmid: 29520025 |
[52] |
Tayyab M, Yang ZQ, Zhang CF, et al. Sugarcane monoculture drives microbial community composition, activity and abundance of agricultural-related microorganisms[J]. Environ Sci Pollut Res Int, 2021, 28(35):48080-48096.
doi: 10.1007/s11356-021-14033-y URL |
[53] | Gao XN, Wu ZL, Liu R, et al. Rhizosphere bacterial community characteristics over different years of sugarcane ratooning in consecutive monoculture[J]. Biomed Res Int, 2019, 2019:4943150. |
[54] | Liu Q, Zhao XW, Liu Y, et al. Response of sugarcane rhizosphere bacterial community to drought stress[J]. Front Microbiol, 2021, 12:716196. |
[55] | Pereira LB, de Oliveira Gambarini VM, de Menezes AB, et al. Responses of the sugarcane rhizosphere microbiota to different levels of water stress[J]. Appl Soil Ecol, 2021, 159:103817. |
[56] |
da Costa DP, Dias ACF, Cotta SR, et al. Changes of bacterial communities in the rhizosphere of sugarcane under elevated concentration of atmospheric CO2[J]. GCB Bioenergy, 2018, 10(2):137-145.
doi: 10.1111/gcbb.12476 URL |
[57] |
Braga LPP, Yoshiura CA, Borges CD, et al. Disentangling the influence of earthworms in sugarcane rhizosphere[J]. Sci Rep, 2016, 6:38923.
doi: 10.1038/srep38923 pmid: 27976685 |
[58] | 韦江璐. 混合PGPR菌株接种对甘蔗生长及土壤微生物群落的影响[D]. 南宁: 广西大学, 2020. |
Wei JL. Effects of mixed nitrogen fixation strain inoculation on sugarcane growth and soil microbial community[D]. Nanning: Guangxi University, 2020. | |
[59] | Pang ZQ, Fallah N, Weng PY, et al. Sugarcane-peanut intercropping system enhances bacteria abundance, diversity, and sugarcane parameters in rhizospheric and bulk soils[J]. Front Microbiol, 2022, 12:815129. |
[60] |
Mehnaz S. Microbes - friends and foes of sugarcane[J]. J Basic Microbiol, 2013, 53(12):954-971.
doi: 10.1002/jobm.201200299 URL |
[61] | Wang Z, Solanki MK, Yu ZX, et al. Genome characteristics reveal the biocontrol potential of actinobacteria isolated from sugarcane rhizosphere[J]. Front Microbiol, 2021, 12:797889. |
[62] |
仓晓燕, 夏红明, 李文凤, 等. 甘蔗优良品种(系)对黑穗病的抗性评价[J]. 作物学报, 2021, 47(11):2290-2296.
doi: 10.3724/SP.J.1006.2021.04257 |
Cang XY, Xia HM, Li WF, et al. Evaluation of natural resistance to smut in elite sugarcane varieties(lines)[J]. Acta Agron Sin, 2021, 47(11):2290-2296.
doi: 10.3724/SP.J.1006.2021.04257 URL |
|
[63] | 农泽梅, 史国英, 曾泉, 等. 不同甘蔗品种根际土壤酶活性及微生物群落多样性分析[J]. 热带作物学报, 2020, 41(4):819-828. |
Nong ZM, Shi GY, Zeng Q, et al. Analysis on enzyme activity and microbial community diversity in rhizosphere soil of different sugarcane varieties[J]. Chin J Trop Crops, 2020, 41(4):819-828. | |
[64] | Singh P, Singh RK, Guo DJ, et al. Whole genome analysis of sugarcane root-associated endophyte Pseudomonas aeruginosa B18-A plant growth-promoting bacterium with antagonistic potential against Sporisorium scitamineum[J]. Front Microbiol, 2021, 12:628376. |
[65] | Sinha OK, Singh K. Antagonistic activity of Fusarium moniliforme var. subglutinans against sugarcane smut[J]. Indian Phytopathol, 1983, 36:92-94. |
[66] | 张桂英. 甘蔗黑穗病拮抗细菌的分离筛选鉴定及拮抗机制的研究[D]. 南宁: 广西大学, 2002. |
Zhang GY. Isolation screening and identification of antagonistic bacteria against Ustilago scitaminea sydow and studies on their antagonistic mechanisms[D]. Nanning: Guangxi University, 2002. | |
[67] | 高学文, 陈孝仁. 农业植物病理学[M]. 5版. 北京: 中国农业出版社, 2018. |
Gao XW, Chen XR. Agricultural plant pathology[M]. 5th ed. Beijing: Chinese Agriculture Press, 2018. | |
[68] | 韦金菊, 周会, 李海碧, 等. 广西近40年甘蔗种质资源引进及利用[J]. 南方农业学报, 2021, 52(2):280-287. |
Wei JJ, Zhou H, Li HB, et al. Introduction and utilization of sugarcane germplasm resources in Guangxi in the past 40 years[J]. J South Agric, 2021, 52(2):280-287. | |
[69] |
Boukari W, Alcalá-Briseño RI, Kraberger S, et al. Occurrence of a novel mastrevirus in sugarcane germplasm collections in Florida, Guadeloupe and Réunion[J]. Virol J, 2017, 14(1):146.
doi: 10.1186/s12985-017-0810-9 URL |
[70] | 甘仪梅, 武媛丽, 杨本鹏, 等. 高抗黑穗病甘蔗新品种‘中糖2号’的选育[J]. 热带作物学报, 2021, 42(3):816-821. |
Gan YM, Wu YL, Yang BP, et al. Breeding of a new sugarcane variety ‘Zhongtang no. 2’ with high resistance to smut[J]. Chin J Trop Crops, 2021, 42(3):816-821. | |
[71] | Nasiru I, Ifenkwe O. Screening of Bi-parental and mutant clones of sugarcane Saccharum officinarum L. for resistance to smut disease[J]. Tropicultura, 2004, 22(4):173-175. |
[72] |
Mao HY, Wang WJ, Su WH, et al. Genome-wide identification, phylogeny, and expression analysis of Sec14-like PITP gene family in sugarcane[J]. Plant Cell Rep, 2019, 38(5):637-655.
doi: 10.1007/s00299-019-02394-1 URL |
[73] |
Su YC, Xu LP, Xue BT, et al. Molecular cloning and characterization of two pathogenesis-related β-1, 3-glucanase genes ScGluA1 and ScGluD1 from sugarcane infected by Sporisorium scitamineum[J]. Plant Cell Rep, 2013, 32(10):1503-1519.
doi: 10.1007/s00299-013-1463-9 URL |
[74] | Su YC, Wang ZQ, Liu F, et al. Isolation and characterization of ScGluD2, a new sugarcane beta-1, 3-glucanase D family gene induced by Sporisorium scitamineum, ABA, H2O2, NaCl, and CdCl2 stresses[J]. Front Plant Sci, 2016, 7:1348. |
[75] | 李娇, 王震, 杨本鹏, 等. 转基因甘蔗抗黑穗病鉴定研究[J]. 广西农业科学, 2009, 40(9):1150-1155. |
Li J, Wang Z, Yang BP, et al. Identification of smut resistance in transgenic sugarcane[J]. Guangxi Agric Sci, 2009, 40(9):1150-1155. | |
[76] |
Solanki MK, Wang FY, Wang Z, et al. Rhizospheric and endospheric diazotrophs mediated soil fertility intensification in sugarcane-legume intercropping systems[J]. J Soils Sediments, 2019, 19(4):1911-1927.
doi: 10.1007/s11368-018-2156-3 URL |
[77] | Rajput MA, Syed RN, Khanzada MA, et al. Chemical control of whip smut of sugarcane caused by Sporisorium scitamineum[J]. Pak J Bot, 2019, 51(5):1891-1897. |
[78] | 朱桂宁, 林珊宇, 贤小勇, 等. 5种杀菌剂对甘蔗黑穗病的防控试验[J]. 南方农业学报, 2014, 45(8):1393-1397. |
Zhu GN, Lin SY, Xian XY, et al. Field control test of 5 fungicides to sugarcane smut[J]. J South Agric, 2014, 45(8):1393-1397. | |
[79] |
Bhuiyan SA, Croft BJ, Tucker GR. New method of controlling sugarcane smut using flutriafol fungicide[J]. Plant Dis, 2015, 99(10):1367-1373.
doi: 10.1094/PDIS-07-14-0768-RE pmid: 30690985 |
[80] |
Gao CH, Chen XQ, Yu L, et al. New 24-membered macrolactins isolated from marine bacteria Bacillus siamensis as potent fungal inhibitors against sugarcane smut[J]. J Agric Food Chem, 2021, 69(15):4392-4401.
doi: 10.1021/acs.jafc.0c07415 URL |
[81] |
Cui GB, Yin K, Lin NQ, et al. Burkholderia gladioli CGB10:a novel strain biocontrolling the sugarcane smut disease[J]. Microorganisms, 2020, 8(12):1943.
doi: 10.3390/microorganisms8121943 URL |
[82] |
Liu SY, Lin NQ, Chen YM, et al. Biocontrol of sugarcane smut disease by interference of fungal sexual mating and hyphal growth using a bacterial isolate[J]. Front Microbiol, 2017, 8:778.
doi: 10.3389/fmicb.2017.00778 pmid: 28536557 |
[1] | 赵雪婷, 高利燕, 王俊刚, 沈庆庆, 张树珍, 李富生. 甘蔗AP2/ERF转录因子基因ShERF3的克隆、表达及其编码蛋白的定位[J]. 生物技术通报, 2023, 39(6): 208-216. |
[2] | 李心怡, 姜春秀, 薛丽, 蒋洪涛, 姚伟, 邓祖湖, 张木清, 余凡. 多荧光标记引物增强甘蔗染色体寡聚核苷酸探针杂交信号[J]. 生物技术通报, 2023, 39(5): 103-111. |
[3] | 黄佳艳, 冯小艳, 沈林波, 王文治, 胡海燕, 张树珍. 甘蔗ShPR10基因的克隆及其编码蛋白与甘蔗线条花叶病毒P1蛋白的互作研究[J]. 生物技术通报, 2023, 39(10): 163-174. |
[4] | 高小宁, 刘睿, 吴自林, 吴嘉云. 宿根矮化病抗感甘蔗品种茎部内生真菌和细菌群落特征分析[J]. 生物技术通报, 2022, 38(6): 166-173. |
[5] | 赵婷婷, 王俊刚, 王文治, 冯翠莲, 冯小艳, 张树珍. 甘蔗单糖转运蛋白基因ShSTP7序列分析及组织表达特征测定[J]. 生物技术通报, 2022, 38(4): 72-78. |
[6] | 冯翠莲, 万玥, 王俊刚, 冯小艳, 赵婷婷, 王文治, 沈林波, 张树珍. 转Cry1Ac-2A-gna基因甘蔗BCG-17转化体特异性检测方法的建立[J]. 生物技术通报, 2021, 37(5): 248-258. |
[7] | 冯翠莲, 张树珍. 抗虫转基因甘蔗的培育及其抗性丧失的防控策略[J]. 生物技术通报, 2020, 36(7): 209-219. |
[8] | 甘崇琨, 周慧文, 陈荣发, 范业赓, 丘立杭, 黄杏, 李杨瑞, 卢星高, 吴建明. 化学调控在甘蔗生产上的研究应用[J]. 生物技术通报, 2019, 35(2): 163-170. |
[9] | 张保青, 邵敏, 黄玉新, 黄杏, 宋修鹏, 陈虎, 王盛, 谭秦亮, 杨丽涛, 李杨瑞. 甘蔗抗坏血酸过氧化物酶基因ScAPX1的克隆和表达分析[J]. 生物技术通报, 2019, 35(12): 31-37. |
[10] | 郭莺 ,汪文华 ,刘黎卿 ,胡敏. 甘蔗宿根矮化病多克隆抗体和免疫磁珠的制备[J]. 生物技术通报, 2018, 34(6): 79-83. |
[11] | 唐仕云, 杨丽涛, 李杨瑞. 低温胁迫下不同甘蔗品种的转录组比较分析[J]. 生物技术通报, 2018, 34(12): 116-124. |
[12] | 赵婷婷, 王俊刚, 杨本鹏, 沈林波, 冯小艳, 王文治, 冯翠莲, 熊国如, 张树珍. 甘蔗脱毒健康种苗中蔗糖转运蛋白基因的差异表达分析[J]. 生物技术通报, 2018, 34(12): 125-131. |
[13] | 冯小艳,王文治,沈林波,冯翠莲,张树珍. 甘蔗线条花叶病毒研究进展[J]. 生物技术通报, 2017, 33(7): 22-28. |
[14] | 李佳慧,袁丹,陆建明,杨丽涛,李杨瑞,邢永秀. 氮肥对甘蔗叶片内生固氮菌nifH基因表达的影响[J]. 生物技术通报, 2017, 33(7): 100-106. |
[15] | 崔学强,张树珍,冯翠莲. 一种简易的甘蔗叶组织PCR模板制备方法[J]. 生物技术通报, 2016, 32(3): 58-62. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||