生物技术通报 ›› 2022, Vol. 38 ›› Issue (12): 175-183.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0382
尹卓然1(), 轩栋栋1, 李晨依1, 李长1, 柴哲1,2, 王锟瑶1, 赵孟琦1, 彭靖媛1, 董杰1, 贾宏昉1()
收稿日期:
2022-03-30
出版日期:
2022-12-26
发布日期:
2022-12-29
作者简介:
尹卓然,女,硕士研究生,研究方向:烟草生物技术;E-mail:基金资助:
YIN Zhuo-ran1(), XUAN Dong-dong1, LI Chen-yi1, LI Chang1, CHAI Zhe1,2, WANG Kun-yao1, ZHAO Meng-qi1, PENG Jing-yuan1, DONG Jie1, JIA Hong-fang1()
Received:
2022-03-30
Published:
2022-12-26
Online:
2022-12-29
摘要:
铁影响植物的生长发育,在动植物中,天然抗性相关巨噬蛋白NRAMP(natural resistance-associated macrophage protein)家族主要负责Fe、Mn和Cd等金属离子的吸收与转运,研究NtNRAMP3b对Fe的转运机制,为明确NtNRAMP3b在烟草转运铁中的机理提供理论基础。以烟草品种K326的cDNA为模板,克隆烟草NtNRAMP3b,并分析该基因的序列特征,利用RT-qPCR测定NtNRAMP3b的表达模式,运用转基因技术获得NtNRAMP3b-OE(NtNRAMP3b overexpression),并测定其铁浓度。NtNRAMP3b全长1 530 bp、编码509个氨基酸序列。NtNRAMP3b与AtNRAMP3的亲缘关系最近,同源性达74.85%。RT-qPCR结果表明,NtNRAMP3b在叶片中表达量最高,缺铁处理后的相对表达量均增加。缺铁处理后,与野生型相比,NtNRAMP3b-OE生物量增加,叶绿素浓度增加,铁含量降低。NtNRAMP3b主要参与铁元素从液泡向细胞器转运,提高了叶片中铁的吸收与再利用。
尹卓然, 轩栋栋, 李晨依, 李长, 柴哲, 王锟瑶, 赵孟琦, 彭靖媛, 董杰, 贾宏昉. 烟草NtNRAMP3b的克隆及功能分析[J]. 生物技术通报, 2022, 38(12): 175-183.
YIN Zhuo-ran, XUAN Dong-dong, LI Chen-yi, LI Chang, CHAI Zhe, WANG Kun-yao, ZHAO Meng-qi, PENG Jing-yuan, DONG Jie, JIA Hong-fang. Cloning and Functional Analysis of Gene NtNRAMP3b in Nicotiana tabacum[J]. Biotechnology Bulletin, 2022, 38(12): 175-183.
图6 不同铁浓度处理下的生物量 在同一处理下,对WT、OE1与OE2进行差异显著性分析,*表示在P<0.05水平差异显著;**表示在P<0.01水平差异极显著。下同
Fig. 6 Biomass under treatment with different cadmium concentrations In the same treatment, *and ** indicate OE1 and OE2 has a significant difference in the P<0.05 or P< 0.01 compared to WT. The same below
[1] | 潘珊珊. 锌铁硒引发提高烟草种子耐寒性的研究[D]. 杭州: 浙江大学, 2021. |
Pan SS. Effect of seed priming with zinc, iron and selenium on tolerance to low temperature of Nicotiana tabacum l. seed[D]. Hangzhou: Zhejiang University, 2021. | |
[2] | 李凤娟. 植物铁蛋白基因表达载体的构建及对烟草和杨树的遗传转化[D]. 哈尔滨: 东北林业大学, 2007. |
Li FJ.Construction of plant expression vector with ferritin gene and transformation of tobacco and P.davidiana × P. bolleana[D]. Harb in:Northeast Forestry University, 2007. | |
[3] |
Singh AK, Singh PP, Tripathi V, et al. Distribution of cyanobacteria and their interactions with pesticides in paddy field:a comprehensive review[J]. J Environ Manage, 2018, 224:361-375.
doi: 10.1016/j.jenvman.2018.07.039 URL |
[4] |
Hu T, Wang T, Wang GY, et al. Overexpression of FaHSP17. 8-CII improves cadmium accumulation and tolerance in tall fescue shoots by promoting chloroplast stability and photosynthetic electron transfer of PSII[J]. J Hazard Mater, 2021, 417:125932.
doi: 10.1016/j.jhazmat.2021.125932 URL |
[5] | 陈可欣, 蒋贤达, 朱祝军, 等. 植物Nramp家族参与金属离子吸收和分配的研究进展[J]. 植物生理学报, 2020, 56(3):345-355. |
Chen KX, Jiang XD, Zhu ZJ, et al. Advances in the study of plant Nramp family involved in metal ion absorption and distribution[J]. Plant Physiol J, 2020, 56(3):345-355.
doi: 10.1104/pp.56.3.345 URL |
|
[6] |
Cailliatte R, Schikora A, Briat JF, et al. High-affinity manganese uptake by the metal transporter NRAMP1 is essential for Arabidopsis growth in low manganese conditions[J]. Plant Cell, 2010, 22(3):904-917.
doi: 10.1105/tpc.109.073023 URL |
[7] |
Gao HL, Xie WX, Yang CH, et al. NRAMP2, a trans-Golgi network-localized manganese transporter, is required for Arabidopsis root growth under manganese deficiency[J]. New Phytol, 2018, 217(1):179-193.
doi: 10.1111/nph.14783 pmid: 28913895 |
[8] |
Lanquar V, Lelièvre F, Bolte S, et al. Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron[J]. EMBO J, 2005, 24(23):4041-4051.
doi: 10.1038/sj.emboj.7600864 pmid: 16270029 |
[9] |
Lanquar V, Lelièvre F, Barbier-Brygoo H, et al. Regulation and function of AtNRAMP4 metal transporter protein[J]. Soil Sci Plant Nutr, 2004, 50(7):1141-1150.
doi: 10.1080/00380768.2004.10408587 URL |
[10] |
Cailliatte R, Lapeyre B, Briat JF, et al. The NRAMP6 metal transporter contributes to cadmium toxicity[J]. Biochem J, 2009, 422(2):217-228.
doi: 10.1042/BJ20090655 pmid: 19545236 |
[11] |
Curie C, Alonso JM le Jean M, et al. Involvement of NRAMP1 from Arabidopsis thaliana in iron transport[J]. Biochem J, 2000, 347(Pt 3):749-755.
doi: 10.1042/bj3470749 URL |
[12] |
Lanquar V, Ramos MS, Lelièvre F, et al. Export of vacuolar manganese by AtNRAMP3 and AtNRAMP4 is required for optimal photosynthesis and growth under manganese deficiency[J]. Plant Physiol, 2010, 152(4):1986-1999.
doi: 10.1104/pp.109.150946 pmid: 20181755 |
[13] | 申卫红. 水稻OsNramp1基因的亚细胞定位及功能预测[D]. 北京: 首都师范大学, 2009. |
Shen WH. Subcellular localization and functional analysis of OsNramp1 gene[D]. Beijing: Capital Normal University, 2009. | |
[14] |
Yang M, Zhang W, Dong HX, et al. OsNRAMP3 is a vascular bundles-specific manganese transporter that is responsible for manganese distribution in rice[J]. PLoS One, 2013, 8(12):e83990.
doi: 10.1371/journal.pone.0083990 URL |
[15] | 王建伟, 汤宏, 贺晓岚, 等. 水稻‘宜香优2115’OsNramp5基因的克隆及生物信息学分析[J/OL]. 分子植物育种, 2022. . |
Wang JW, Tang H, He XL, et al. Cloning and bioinformatics analysis of OsNramp5 gene from rice(Oryza sativa L.)‘Yixiangyou 2115’[J/OL]. Mol Plant Breed, 2022. . | |
[16] | 杨校. 水稻镉相关基因OsNRAMP6的功能研究[D]. 长沙: 湖南师范大学, 2016. |
Yang X. The functional analysis of OsNRAMP6 on rice Cd accumulation[D]. Changsha: Hunan Normal University, 2016. | |
[17] | 吴天昊, 李曜魁, 孙远涛, 等. 水稻OsNRAMP7基因的克隆、表达及生物信息学分析[J]. 分子植物育种, 2021, 19(7):2103-2110. |
Wu TH, Li YK, Sun YT, et al. Cloning, expression and bioinformatical analysis of OsNRAMP7 gene in rice[J]. Mol Plant Breed, 2021, 19(7):2103-2110. | |
[18] |
Takahashi R, Ishimaru Y, Senoura T, et al. The OsNRAMP1 iron transporter is involved in Cd accumulation in rice[J]. J Exp Bot, 2011, 62(14):4843-4850.
doi: 10.1093/jxb/err136 pmid: 21697258 |
[19] |
Li Y, Li JJ, Yu YH, et al. The tonoplast-localized transporter OsNRAMP2 is involved in iron homeostasis and affects seed germination in rice[J]. J Exp Bot, 2021, 72(13):4839-4852.
doi: 10.1093/jxb/erab159 URL |
[20] | 杨猛. 水稻NRAMP家族基因在Mn和Cd转运中的功能研究[D]. 武汉: 华中农业大学, 2014. |
Yang M. Functional analysis of rice NRAMP genes in Mn and Cd transport[D]. Wuhan: Huazhong Agricultural University, 2014. | |
[21] | 陈邦兰, 翟梦倩, 龙涛, 等. 烟草自然抗性相关巨噬细胞蛋白基因家族的鉴定与分析[J]. 安徽农业科学, 2021, 49(3):100-104, 109. |
Chen BL, Zhai MQ, Long T, et al. Identification and analysis of natural resistance associated macrophage proteins gene family in tabacco[J]. J Anhui Agric Sci, 2021, 49(3):100-104, 109. | |
[22] |
Tang Z, Cai HL, Li J, et al. Allelic variation of NtNramp5 associated with cultivar variation in cadmium accumulation in tobacco[J]. Plant Cell Physiol, 2017, 58(9):1583-1593.
doi: 10.1093/pcp/pcx087 pmid: 28922747 |
[23] |
Jia HF, Yin ZR, Xuan DD, et al. Mutation of NtNRAMP3 improves cadmium tolerance and its accumulation in tobacco leaves by regulating the subcellular distribution of cadmium[J]. J Hazard Mater, 2022, 432:128701.
doi: 10.1016/j.jhazmat.2022.128701 URL |
[24] | 宋科. 铵硝混合营养对烤烟苗期根系生长的影响[D]. 北京: 中国农业科学院, 2017. |
Song K. Effects of ammonium and nitrate nutrition on root growth of flue cured tobacco[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. | |
[25] |
Chen CJ, Chen H, Zhang Y, et al. TBtools:an integrative toolkit developed for interactive analyses of big biological data[J]. Mol Plant, 2020, 13(8):1194-1202.
doi: 10.1016/j.molp.2020.06.009 URL |
[26] | 黄化刚, 申燕, 王卫峰, 等. 烟草硝酸盐转运蛋白基因NtNRT2. 4的克隆及表达分析[J]. 中国烟草学报, 2016, 22(1):84-91. |
Huang HG, Shen Y, Wang WF, et al. Cloning and characterization of NtNRT2. 4 gene from Nicotiana tabacum L[J]. Acta Tabacaria Sin, 2016, 22(1):84-91. | |
[27] |
Jia HF, Zhang ST, Wang LZ, et al. OsPht1;8, a phosphate transporter, is involved in auxin and phosphate starvation response in rice[J]. J Exp Bot, 2017, 68(18):5057-5068.
doi: 10.1093/jxb/erx317 pmid: 29036625 |
[28] |
Einset J, Winge P, Bones AM, et al. The FRO2 ferric reductase is required for Glycine betaine’s effect on chilling tolerance in Arabidopsis roots[J]. Physiol Plant, 2008, 134(2):334-341.
doi: 10.1111/j.1399-3054.2008.01141.x pmid: 18513375 |
[29] | 余沁, 何林燊, 霍春松, 等. 烟草NRAMP家族全基因组鉴定及响应重金属胁迫的表达分析[J]. 分子植物育种, 2022, 20(5):1496-1504. |
Yu Q, He LS, Huo CS, et al. Genome-wide identification of NRAMP family and expression analysis in response to heavy metal stress in Nicotiana tabacum L[J]. Mol Plant Breed, 2022, 20(5):1496-1504. | |
[30] | 袁金玮. 金属转运蛋白NtNramp5影响Cd在烟草中积累的分子机制研究[D]. 重庆: 重庆科技学院, 2019. |
Yuan JW. Molecular mechanisms of metal transport protein NtNramp5 affecting Cd accumulation in tobacco[D]. Chongqing: Chongqing University of Science & Technology, 2019. | |
[31] |
Qin L, Han PP, Chen LY, et al. Genome-wide identification and expression analysis of NRAMP family genes in soybean(Glycine max L.)[J]. Front Plant Sci, 2017, 8:1436.
doi: 10.3389/fpls.2017.01436 pmid: 28868061 |
[32] |
Ishida JK, Caldas DGG, Oliveira LR, et al. Genome-wide characterization of the NRAMP gene family in Phaseolus vulgaris provides insights into functional implications during common bean development[J]. Genet Mol Biol, 2018, 41(4):820-833.
doi: S1415-47572018000500820 pmid: 30334565 |
[33] |
Ihnatowicz A, Siwinska J, Meharg AA, et al. Conserved histidine of metal transporter AtNRAMP1 is crucial for optimal plant growth under manganese deficiency at chilling temperatures[J]. New Phytol, 2014, 202(4):1173-1183.
doi: 10.1111/nph.12737 pmid: 24571269 |
[34] |
Tambussi EA, Bartoli CG, Guiamet JJ, et al. Oxidative stress and photodamage at low temperatures in soybean(Glycine max L. Merr. )leaves[J]. Plant Sci, 2004, 167(1):19-26.
doi: 10.1016/j.plantsci.2004.02.018 URL |
[35] |
Zhou YH, Huang LF, Du YS, et al. Greenhouse and field cucumber genotypes use different mechanisms to protect against dark chilling[J]. Funct Plant Biol, 2004, 31(12):1215.
doi: 10.1071/FP04045 URL |
[36] |
Parvanova D, Popova A, Zaharieva I, et al. Low temperature tolerance of tobacco plants transformed to accumulate proline, fructans, or Glycine betaine. variable chlorophyll fluorescence evidence[J]. Photosynthetica, 2004, 42(2):179-185.
doi: 10.1023/B:PHOT.0000040588.31318.0f URL |
[37] |
Luo Y, Wei YW, Sun SG, et al. Selenium modulates the level of auxin to alleviate the toxicity of cadmium in tobacco[J]. Int J Mol Sci, 2019, 20(15):3772.
doi: 10.3390/ijms20153772 URL |
[38] | 蔡海林, 李帆, 曾维爱, 等. NtNramp1基因参与不同镉积累基因型烟草品种镉积累差异的功能解析[J]. 中国烟草学报, 2017, 23(4):84-91. |
Cai HL, Li F, Zeng WA, et al. Functional analysis of NtNramp1 pariticipating in Cd accumulation in tobacco of different Cd accumulating genotypes[J]. Acta Tabacaria Sin, 2017, 23(4):84-91. | |
[39] |
Nouet C, Motte P, Hanikenne M. Chloroplastic and mitochondrial metal homeostasis[J]. Trends Plant Sci, 2011, 16(7):395-404.
doi: 10.1016/j.tplants.2011.03.005 pmid: 21489854 |
[1] | 杨志晓, 侯骞, 刘国权, 卢志刚, 曹毅, 芶剑渝, 王轶, 林英超. 不同抗性烟草品系Rubisco及其活化酶对赤星病胁迫的响应[J]. 生物技术通报, 2023, 39(9): 202-212. |
[2] | 刘珍银, 段郅臻, 彭婷, 王童欣, 王健. 基于三角梅的病毒诱导基因沉默体系的建立与优化[J]. 生物技术通报, 2023, 39(7): 123-130. |
[3] | 李文辰, 刘鑫, 康越, 李伟, 齐泽铮, 于璐, 王芳. TRV病毒诱导大豆基因沉默体系优化及应用[J]. 生物技术通报, 2023, 39(7): 143-150. |
[4] | 张路阳, 韩文龙, 徐晓雯, 姚健, 李芳芳, 田效园, 张智强. 烟草TCP基因家族的鉴定及表达分析[J]. 生物技术通报, 2023, 39(6): 248-258. |
[5] | 王羽, 尹铭绅, 尹晓燕, 奚家勤, 杨建伟, 牛秋红. 烟草甲体内烟碱降解菌的筛选、鉴定及降解特性[J]. 生物技术通报, 2023, 39(6): 308-315. |
[6] | 申云鑫, 施竹凤, 周旭东, 李铭刚, 张庆, 冯路遥, 陈齐斌, 杨佩文. 三株具生防功能芽孢杆菌的分离鉴定及其生物活性研究[J]. 生物技术通报, 2023, 39(3): 267-277. |
[7] | 余世洲, 曹领改, 王世泽, 刘勇, 边文杰, 任学良. 烟草种质基因分型核心SNP标记的开发[J]. 生物技术通报, 2023, 39(3): 89-100. |
[8] | 崔吉洁, 蔡文波, 庄庆辉, 高爱平, 黄建峰, 陈亚辉, 宋志忠. 杧果Fe-S簇装配基因MiISU1的生物学功能[J]. 生物技术通报, 2023, 39(2): 139-146. |
[9] | 杜清洁, 周璐瑶, 杨思震, 张嘉欣, 陈春林, 李娟起, 李猛, 赵士文, 肖怀娟, 王吉庆. 过表达CaCP1提高转基因烟草对盐胁迫的敏感性[J]. 生物技术通报, 2023, 39(2): 172-182. |
[10] | 汪格格, 邱诗蕊, 张琳晗, 杨国伟, 徐小云, 汪爱羚, 曾淑华, 刘雅洁. 异源三倍体普通烟草(SST)减数分裂期的分子细胞学研究[J]. 生物技术通报, 2023, 39(2): 183-192. |
[11] | 车永梅, 刘广超, 郭艳苹, 叶青, 赵方贵, 刘新. 一种耐盐复合菌剂的制备和促生作用研究[J]. 生物技术通报, 2023, 39(11): 217-225. |
[12] | 尹国英, 刘畅, 常永春, 羽王洁, 王兵, 张盼, 郭玉双. 烟草半胱氨酸蛋白酶家族和相应miRNAs的鉴定及其对PVY的响应[J]. 生物技术通报, 2023, 39(10): 184-196. |
[13] | 刘广超, 叶青, 车永梅, 李雅华, 安东, 刘新. 烟草根际高效解磷菌的筛选鉴定及促生作用研究[J]. 生物技术通报, 2022, 38(8): 179-187. |
[14] | 张昊鑫, 王中华, 牛兵, 郭慷, 刘璐, 姜瑛, 张仕祥. 产IAA兼具溶磷解钾高效促生菌的筛选、鉴定及其广谱性应用[J]. 生物技术通报, 2022, 38(5): 100-111. |
[15] | 付偲僮, 司未佳, 刘颖, 程堂仁, 王佳, 张启翔, 潘会堂. TRV介导的小报春基因沉默技术体系的建立[J]. 生物技术通报, 2022, 38(4): 295-302. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||