生物技术通报 ›› 2022, Vol. 38 ›› Issue (6): 136-146.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1124
祖雪1,2,3(), 周瑚1,2,3, 朱华珺1,2,3, 任佐华1,2,3, 刘二明1,2,3()
收稿日期:
2021-09-01
出版日期:
2022-06-26
发布日期:
2022-07-11
作者简介:
祖雪,女,硕士研究生,研究方向:植物病理学;E-mail: 基金资助:
ZU Xue1,2,3(), ZHOU Hu1,2,3, ZHU Hua-jun1,2,3, REN Zuo-hua1,2,3, LIU Er-ming1,2,3()
Received:
2021-09-01
Published:
2022-06-26
Online:
2022-07-11
摘要:
生防细菌是绿色防控稻瘟病的有效措施。为了发掘高效拮抗稻瘟病菌的生防细菌,本研究采用平板对峙法从感病品种K020268的健康稻株叶片中筛选获得1株对稻瘟病菌抑制效果较好的拮抗细菌K-268,同时测定该菌的抑菌谱。通过形态学观察、生理生化鉴定16S rRNA 和gyrA序列分析对其进行菌种鉴定,并初步研究了该菌株的生物学特性和对稻叶瘟的防治效果。结果表明,菌株K-268对稻瘟病菌菌丝生长抑制率为86.30% ± 0.70%,同时对水稻纹枯病菌、玉米大斑病菌及柑橘沙皮病菌等供试的14株植物病原菌均有抑制作用;经鉴定菌株K-268为枯草芽孢杆菌(Bacillus subtilis),该菌株对数生长期为14-32 h,生长最适温度为30℃,生长最适pH值为6.0-7.0,并且其具有良好的耐盐性。离体接种实验结果表明,稀释10倍即菌液浓度6×108 CFU/mL时,预防组和治疗组的叶瘟发病率分别为14.81%和23.46%,效果与稀释750倍的75%三环唑稀释液(WP)效果相当。活体喷雾接种结果表明,在接种稻瘟病菌分生孢子悬浮液(1×106个/mL)前 24 h 喷施稀释10 倍(6×108 CFU/mL)的发酵液和接种稻瘟病菌分生孢子悬浮液后 24 h 喷施稀释10倍的发酵液对稻叶瘟的防效分别为59.00%和60.23%,效果接近500稀释液的40%稻瘟灵(EC)。因此K-268在水稻稻瘟病生物防治中具有一定的开发和应用价值。
祖雪, 周瑚, 朱华珺, 任佐华, 刘二明. 枯草芽孢杆菌K-268的分离鉴定及对水稻稻瘟病的防病效果[J]. 生物技术通报, 2022, 38(6): 136-146.
ZU Xue, ZHOU Hu, ZHU Hua-jun, REN Zuo-hua, LIU Er-ming. Isolation and Identification of Bacillus subtilis K-268 and Its Biological Control Effect on Rice Blast[J]. Biotechnology Bulletin, 2022, 38(6): 136-146.
病原菌Pathogenic bacterium | 抑菌率Bacteriostatic rate/% |
---|---|
水稻纹枯病菌R. solan | 79.5±0.67 |
玉米大斑菌E.turcicum | 47.6±0.33 |
柑橘沙皮病菌D. citri | 21±5.7 |
草莓灰霉病菌 B. cinerea | 49.6±1.8 |
茭白根腐病菌F. graminearum | 43.5±10.3 |
辣椒枯萎病菌F. oxysporum | 62±4.0 |
茄子根腐病菌F. solani | 61.2±10.3 |
香樟炭疽病菌C. gloeosporioides | 32.8±5 |
棉花黄萎病菌 V. dahliae | 36.8±3.38 |
禾谷镰刀菌F.graminearum | 56.7±0.33 |
烟草赤星病菌A. alternate | 49.2±3.1 |
油菜菌核病菌S. sclerotiorum | 56.3±2.33 |
黄瓜疫霉病菌P. melonis | 56.8±0.0 |
水稻恶苗病菌F. moniliforme | 69.2±0.88 |
表1 菌株 K-268对不同植物病原菌的抑菌作用
Table 1 Bacteriostatic effects of strain K-268 on different plant pathogens
病原菌Pathogenic bacterium | 抑菌率Bacteriostatic rate/% |
---|---|
水稻纹枯病菌R. solan | 79.5±0.67 |
玉米大斑菌E.turcicum | 47.6±0.33 |
柑橘沙皮病菌D. citri | 21±5.7 |
草莓灰霉病菌 B. cinerea | 49.6±1.8 |
茭白根腐病菌F. graminearum | 43.5±10.3 |
辣椒枯萎病菌F. oxysporum | 62±4.0 |
茄子根腐病菌F. solani | 61.2±10.3 |
香樟炭疽病菌C. gloeosporioides | 32.8±5 |
棉花黄萎病菌 V. dahliae | 36.8±3.38 |
禾谷镰刀菌F.graminearum | 56.7±0.33 |
烟草赤星病菌A. alternate | 49.2±3.1 |
油菜菌核病菌S. sclerotiorum | 56.3±2.33 |
黄瓜疫霉病菌P. melonis | 56.8±0.0 |
水稻恶苗病菌F. moniliforme | 69.2±0.88 |
图2 K-268菌株菌落形态 A:平板划线 B:革兰氏染色 C:电镜扫描
Fig. 2 Colony morphology of K-268 strain A:Streaking on the plate. B:Gram staining. C:Scanning electron microscope
生理生化试验Physiological and biochemical tests | 结果Result |
---|---|
接触酶试验Contact enzyme test | + |
硝酸盐还原试验Nitrate reduction test | + |
明胶液化试验Gelatin liquefaction test | + |
硫化氢试验Hydrogen sulfide test | - |
淀粉水解试验Starch hydrolysis test | - |
吲哚试验Indole test | + |
V.P试验V. P test | + |
甲基红试验Methyl red test | - |
石蕊牛奶试验Litmus milk test | 胨化Peptonization |
苯丙氨酸脱氨酶试验Phenylalanine deaminase test | - |
表2 菌株K-268的生理生化特性
Table 2 Physiological and biochemical characteristics of strain K-268
生理生化试验Physiological and biochemical tests | 结果Result |
---|---|
接触酶试验Contact enzyme test | + |
硝酸盐还原试验Nitrate reduction test | + |
明胶液化试验Gelatin liquefaction test | + |
硫化氢试验Hydrogen sulfide test | - |
淀粉水解试验Starch hydrolysis test | - |
吲哚试验Indole test | + |
V.P试验V. P test | + |
甲基红试验Methyl red test | - |
石蕊牛奶试验Litmus milk test | 胨化Peptonization |
苯丙氨酸脱氨酶试验Phenylalanine deaminase test | - |
图6 菌株K-268对叶瘟的防治效果(离体接种) a、g:清水;b、h:NB;c、i:75%三环唑(WP);d-f和j-l的浓度:6×107 CFU/mL、6×108 CFU/mL 和6×109 CFU/mL
Fig. 6 Control effect of strain K-268 on leaf blast(indoor detached-leaf inoculation) a,g:water;b,h:NB;c,i:75% tricyclazole(WP);the concentration of d-f and j-l:6×107 CFU/mL,6×108 CFU/mL and 6×109 CFU/mL
处理Treatment | 发病率Disease incidence(-24 h) | 发病率Disease incidence(+24 h) |
---|---|---|
清水对照CK Water control CK | 98.77±1.23a | 97±2.47a |
NB | 95.06±1.24ab | 98.71±1.23a |
75%三环唑(WP) 75% tricyclazole(WP) | 12.34±1.23d | 17.28±1.24d |
6×109CFU/mL | 93.83±1.24ab | 97.53±2.47a |
6×108CFU/mL | 14.81±2.41d | 23.46±1.24cd |
6×107 CFU/mL | 22.22±2.14c | 27.16±2.47c |
表3 不同浓度的K-268发酵液对水稻稻瘟病的离体拮抗效果
Table 3 In vitro antagonistic effects of different concent-rations of K-268 fermentation broth on rice blast
处理Treatment | 发病率Disease incidence(-24 h) | 发病率Disease incidence(+24 h) |
---|---|---|
清水对照CK Water control CK | 98.77±1.23a | 97±2.47a |
NB | 95.06±1.24ab | 98.71±1.23a |
75%三环唑(WP) 75% tricyclazole(WP) | 12.34±1.23d | 17.28±1.24d |
6×109CFU/mL | 93.83±1.24ab | 97.53±2.47a |
6×108CFU/mL | 14.81±2.41d | 23.46±1.24cd |
6×107 CFU/mL | 22.22±2.14c | 27.16±2.47c |
图7 菌株K-268对叶瘟的防效局部图(活体接种) m、t:清水;n、u:NB;o-q和v-x的浓度为6×109 CFU/mL、6×108 CFU/mL 和6×107 CFU/mL;r、y:75%三环唑(WP);s、z:40%稻瘟灵(EC)
Fig.7 Partial view of the control effect of strain K-268 agai-nst leaf blast(indoor live inoculation) m,t:water;n,u:NB;the concentrations of o-q and v-x:6×109 CFU/mL,6×108 CFU/mL and 6×107 CFU/mL;r,y:75% tricyclazole(WP);s,z:40% rice pyrazole(EC)
处理 Treatment | 预防组Prevention group | 治疗组Treatment group | ||||||
---|---|---|---|---|---|---|---|---|
病株率Disease rate /% | 病情指数 Disease index | 相对防效Relative control effect /% | 病株率Disease rate/% | 病情指数Disease index | 相对防效Relative control effect/% | |||
水Water | 96.67±0.33a | 61±1.5a | - | 92±1.0a | 56.13±0.52a | - | ||
NB | 90.33±0.88b | 51.6±0.6b | - | 91±0.88a | 54±0.52a | - | ||
6×109 CFU/mL | 66.33±2.18d | 33± 1.5c | 45.7±3.25d | 73±1.33 b | 33.47±1.07 b | 45.5±1.54d | ||
6×108 CFU/mL | 62.33±1.45e | 25±1.5 ef | 59.0±2.80ab | 58.33±1.86e | 22.27±0.65 e | 60.23±0.71b | ||
6×107 CFU/mL | 71.66±1.45c | 34±1.66 c | 38.8±4.89d | 67.33±1.76 c | 34.27±1.18b | 38.9±1.97e | ||
75%三环唑(WP) 75% Tricyclazole(WP) | 53.33±0.88f | 23±1.2 f | 60.6±1.15a | 50.33±0.88 f | 20±1.15e | 67.2±1.94a | ||
40%稻瘟灵(EC) 40% Pyrimethamine(EC) | 67±1.15 d | 28±0.87 e | 53.3±1.50b | 68.77±1.75d | 27.37±0.58d | 51±1. 11c |
表4 菌株K-268对水稻稻叶瘟的盆栽防治效果
Table 4 Control effect of strain K-268 on rice leaf blast in pot
处理 Treatment | 预防组Prevention group | 治疗组Treatment group | ||||||
---|---|---|---|---|---|---|---|---|
病株率Disease rate /% | 病情指数 Disease index | 相对防效Relative control effect /% | 病株率Disease rate/% | 病情指数Disease index | 相对防效Relative control effect/% | |||
水Water | 96.67±0.33a | 61±1.5a | - | 92±1.0a | 56.13±0.52a | - | ||
NB | 90.33±0.88b | 51.6±0.6b | - | 91±0.88a | 54±0.52a | - | ||
6×109 CFU/mL | 66.33±2.18d | 33± 1.5c | 45.7±3.25d | 73±1.33 b | 33.47±1.07 b | 45.5±1.54d | ||
6×108 CFU/mL | 62.33±1.45e | 25±1.5 ef | 59.0±2.80ab | 58.33±1.86e | 22.27±0.65 e | 60.23±0.71b | ||
6×107 CFU/mL | 71.66±1.45c | 34±1.66 c | 38.8±4.89d | 67.33±1.76 c | 34.27±1.18b | 38.9±1.97e | ||
75%三环唑(WP) 75% Tricyclazole(WP) | 53.33±0.88f | 23±1.2 f | 60.6±1.15a | 50.33±0.88 f | 20±1.15e | 67.2±1.94a | ||
40%稻瘟灵(EC) 40% Pyrimethamine(EC) | 67±1.15 d | 28±0.87 e | 53.3±1.50b | 68.77±1.75d | 27.37±0.58d | 51±1. 11c |
[1] |
Sha YX, Zeng QC, Sui ST. Screening and application of Bacillus strains isolated from nonrhizospheric rice soil for the biocontrol of rice blast[J]. Plant Pathol J, 2020, 36(3):231-243.
doi: 10.5423/PPJ.OA.02.2020.0028 URL |
[2] |
Li W, Liu Y, Wang J, et al. The durably resistant rice cultivar Digu activates defence gene expression before the full maturation of Magnaporthe oryzae appressorium[J]. Mol Plant Pathol, 2016, 17(3):354-368.
doi: 10.1111/mpp.12286 URL |
[3] |
Chen Z, Zhao L, Chen WQ, et al. Isolation and evaluation of Bacillus velezensis ZW-10 as a potential biological control agent against Magnaporthe oryzae[J]. Biotechnol Biotechnol Equip, 2020, 34(1):714-724.
doi: 10.1080/13102818.2020.1803766 URL |
[4] | 魏赛金. 有益微生物在水稻病害防治的研究进展与应用现状[J]. 生物灾害科学, 2020, 43(1):1-7. |
Wei SJ. Advance and status in the application of beneficial microorganisms in the control of rice diseases[J]. Biol Disaster Sci, 2020, 43(1):1-7. | |
[5] |
Ghasemi S, Ahmadian G, Sadeghi M, et al. First report of a bifunctional chitinase/lysozyme produced by Bacillus pumilus SG2[J]. Enzyme Microb Technol, 2011, 48(3):225-231.
doi: 10.1016/j.enzmictec.2010.11.001 URL |
[6] |
Tendulkar SR, Saikumari YK, Patel V, et al. Isolation, purification and characterization of an antifungal molecule produced by Bacillus licheniformis BC98, and its effect on phytopathogen Magnaporthe grisea[J]. J Appl Microbiol, 2007, 103(6):2331-2339.
pmid: 18045418 |
[7] | Wu SM, Liu G, Zhou SN, et al. Characterization of antifungal lipopeptide biosurfactants produced by marine bacterium Bacillus sp. CS30[J]. Mar Drugs, 2019, 17(4):E199. |
[8] | Zhang LL, Sun CM. Fengycins, cyclic lipopeptides from marine Bacillus subtilis strains, kill the plant-pathogenic fungus Magnaporthe grisea by inducing reactive oxygen species production and chromatin condensation[J]. Appl Environ Microbiol, 2018, 84(18):107-127. |
[9] | 冯蓉, 刘丽, 陈海念, 等. 解淀粉芽孢杆菌F11抗真菌活性研究[J]. 农业资源与环境学报, 2021, 38(5):849-857. |
Feng R, Liu L, Chen HN, et al. Study on antifungal activity of Bacillus amyloliquefaciens F11[J]. J Agric Resour Environ, 2021, 38(5):849-857. | |
[10] | 周瑚, 胡玲, 余曦玥, 等. 特基拉芽胞杆菌JN-369抗菌粗蛋白的理化性质和抑菌效果[J]. 中国生物防治学报, 2020, 36(2):211-219. |
Zhou H, Hu L, Yu XY, et al. Physical and chemical properties and inhibitory effect of crude antifungal protein produced by Bacillus tequilensis JN-369[J]. Chin J Biol Control, 2020, 36(2):211-219. | |
[11] | 高杜娟, 唐善军, 陈友德, 等. 水稻主要病害生物防治的研究进展[J]. 中国农学通报, 2019, 35(26):140-147. |
Gao DJ, Tang SJ, Chen YD, et al. Biological control of major rice diseases:a review[J]. Chin Agric Sci Bull, 2019, 35(26):140-147. | |
[12] | 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001:9-42. |
Dong XZ, Cai MY. Handbook of systematic identification of common bacteria[M]. Beijing: Science Press, 2001:9-42. | |
[13] | Don JB, Noel RK, James TS, et al. Bergey’s manual® of systematicbacteriology[M]. Boston:Springer, MA, 2001:331-364. |
[14] | 马晨燕, 袁正杰, 杨海河, 等. 水稻离体叶片抗纹枯病接种方法的研究[J]. 浙江农业学报, 2016, 28(10):1730-1737. |
Ma CY, Yuan ZJ, Yang HH, et al. Studies on the detached-leaf inoculation method for determination of rice resistance to sheath blight(Rhizoctonia solani)[J]. Acta Agric Zhejiangensis, 2016, 28(10):1730-1737. | |
[15] |
Yaseen Y, Diop A, Gancel F, et al. Polynucleotide phosphorylase is involved in the control of lipopeptide fengycin production in Bacillus subtilis[J]. Arch Microbiol, 2018, 200(5):783-791.
doi: 10.1007/s00203-018-1483-5 pmid: 29423562 |
[16] |
Zhang CX, Zhang XX, Shen SH. Proteome analysis for antifungal effects of Bacillus subtilis KB-1122 on Magnaporthe grisea P131[J]. World J Microbiol Biotechnol, 2014, 30(6):1763-1774.
doi: 10.1007/s11274-014-1596-1 URL |
[17] |
Asaka O, Shoda M. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14[J]. Appl Environ Microbiol, 1996, 62(11):4081-4085.
doi: 10.1128/aem.62.11.4081-4085.1996 URL |
[18] |
Cavaglieri L, Orlando J, Etcheverry M. In vitro influence of bacterial mixtures on Fusarium verticillioides growth and fumonisin B1 production:effect of seeds treatment on maize root colonization[J]. Lett Appl Microbiol, 2005, 41(5):390-396.
pmid: 16238641 |
[19] |
李瑾, 彭可为, 潘求一, 等. 解淀粉芽胞杆菌HR-2的分离鉴定及对水稻稻瘟病菌的拮抗效果[J]. 生物技术通报, 2021, 37(3):27-34.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0970 |
Li J, Peng KW, Pan QY, et al. Isolation and identification of Bacillus amyloliquefaciens HR-2 and biological control of rice blast[J]. Biotechnol Bull, 2021, 37(3):27-34. | |
[20] | 张国庆, 董晓芳, 佟建明, 等. 一株芽孢杆菌的分离和鉴定[J]. 微生物学通报, 2010, 37(8):1159-1163. |
Zhang GQ, Dong XF, Tong JM, et al. Isolation and identification of a Bacillus sp. Starin[J]. Microbiol China, 2010, 37(8):1159-1163. | |
[21] | 赵庆新, 韩丰敏. 产果胶酸裂解酶的耐盐碱性菌株分离及培养条件[J]. 南京师大学报:自然科学版, 2007, 30(4):89-93. |
Zhao QX, Han FM. Isolation of salt-resistant and salkali-resistant pectate lyase producing strains and its cultural conditions[J]. J Nanjing Norm Univ:Nat Sci Ed, 2007, 30(4):89-93. | |
[22] | 隋好林, 王仁山, 王义华, 等. 土壤酸碱度对作物生长的影响及改良剂应用效果初探[J]. 山东农业科学, 2007, 39(2):90-91. |
Sui HL, Wang RS, Wang YH, et al. Effect of soil pH on crop growth and application effect of modifier[J]. Shandong Agric Sci, 2007, 39(2):90-91. | |
[23] | 杨杰. 枯草杆菌fmb60的NRPS和Ⅰ型PKS基因簇代谢产物发掘及其生物活性研究[D]. 南京: 南京农业大学, 2017. |
Yang J. Genomics-driven discovery of NRPS and type Ⅰ PKS metabolites from Bacillus subtilis fmb60 and their bioactivity[D]. Nanjing: Nanjing Agricultural University, 2017. | |
[24] |
Zhang C, Zhang X, Shen S. Proteome analysis for antifungal effects of Bacillus subtilis KB-1122 on Magnaporthe grisea P131[J]. World J Microbiol Biotechnol, 2014, 30(6):1763-1774.
doi: 10.1007/s11274-014-1596-1 URL |
[25] | 余贤美, 侯长明, 王洁, 等. 枯草芽孢杆菌Bs-15对柿树炭疽病的离体防治效果[J]. 山东农业科学, 2017, 49(7):125-127. |
Yu XM, Hou CM, Wang J, et al. In vitro control effect of Bacillus subtilis bs-15 on persimmon anthracnose[J]. Shandong Agric Sci, 2017, 49(7):125-127. | |
[26] |
Wijtzes T, de Wit JC, In Huis, et al. Modelling bacterial growth of Lactobacillus curvatus as a function of acidity and temperature[J]. Appl Environ Microbiol, 1995, 61(7):2533-2539.
doi: 10.1128/aem.61.7.2533-2539.1995 URL |
[27] | 孔建, 王文夕, 赵白鸽, 等. 枯草芽孢杆菌B-903菌株的研究 Ⅰ. 对植物病原菌的抑制作用和防治试验[J]. 中国生物防治, 1999, 15(4):157-161. |
Kong J, Wang WX, Zhao BG, et al. Studies on Bacillus subtilis B903 strain I. Inhibitory action and control effect on plant pathogenic fungi[J]. Chin J Biol Control, 1999, 15(4):157-161. | |
[28] | 刘连盟. 稻用生物与化学组合增效杀菌剂的研发和相关机制研究[D]. 武汉: 华中农业大学, 2020. |
Liu LM. Development and mechanisms of synergetic combinations of bioloigical and chemical fungicides for rice disease control[D]. Wuhan: Huazhong Agricultural University, 2020. | |
[29] | 朱华珺, 周瑚, 任佐华, 等. 枯草芽孢杆菌JN005胞外抗菌物质及对水稻叶瘟防治效果[J]. 中国水稻科学, 2020, 34(5):470-478. |
Zhu HJ, Zhou H, Ren ZH, et al. Extracellular antimicrobial substances produced by Bacillus subtilis JN005 and its control efficacy on rice leaf blast[J]. Chin J Rice Sci, 2020, 34(5):470-478. |
[1] | 赵志祥, 王殿东, 周亚林, 王培, 严婉荣, 严蓓, 罗路云, 张卓. 枯草芽孢杆菌Ya-1对辣椒枯萎病的防治及其对根际真菌群落的影响[J]. 生物技术通报, 2023, 39(9): 213-224. |
[2] | 褚睿, 李昭轩, 张学青, 杨东亚, 曹行行, 张雪艳. 黄瓜枯萎病拮抗芽孢杆菌的筛选、鉴定及其生防潜力[J]. 生物技术通报, 2023, 39(8): 262-271. |
[3] | 饶紫环, 谢志雄. 一株Olivibacter jilunii 纤维素降解菌株的分离鉴定与降解能力分析[J]. 生物技术通报, 2023, 39(8): 283-290. |
[4] | 游子娟, 陈汉林, 邓辅财. 鱼皮生物活性肽的提取及功能活性研究进展[J]. 生物技术通报, 2023, 39(7): 91-104. |
[5] | 任沛东, 彭健玲, 刘圣航, 姚姿婷, 朱桂宁, 陆光涛, 李瑞芳. 沙福芽孢杆菌GX-H6的分离鉴定及对水稻细菌性条斑病的防病效果[J]. 生物技术通报, 2023, 39(5): 243-253. |
[6] | 车永梅, 郭艳苹, 刘广超, 叶青, 李雅华, 赵方贵, 刘新. 菌株C8和B4的分离鉴定及其耐盐促生效果和机制[J]. 生物技术通报, 2023, 39(5): 276-285. |
[7] | 章乐乐, 王冠, 柳凤, 胡汉桥, 任磊. 芒果炭疽病拮抗菌分离、鉴定及生防机制研究[J]. 生物技术通报, 2023, 39(4): 277-287. |
[8] | 杨冬, 唐璎. 枯草芽孢杆菌WTX1胞外酶降解AFB1酶学特性及降解位点分析[J]. 生物技术通报, 2023, 39(4): 93-102. |
[9] | 易希, 廖红东, 郑井元. 植物内生真菌防治根结线虫研究进展[J]. 生物技术通报, 2023, 39(3): 43-51. |
[10] | 王伟宸, 赵进, 黄薇颐, 郭芯竹, 李婉颖, 张卓. 芽胞杆菌代谢产物防治三种常见植物病原真菌的研究进展[J]. 生物技术通报, 2023, 39(3): 59-68. |
[11] | 王凤婷, 王岩, 孙颖, 崔文婧, 乔凯彬, 潘洪玉, 刘金亮. 耐盐碱土曲霉SYAT-1的分离鉴定及抑制植物病原真菌特性研究[J]. 生物技术通报, 2023, 39(2): 203-210. |
[12] | 杨东亚, 祁瑞雪, 李昭轩, 林薇, 马慧, 张雪艳. 黄瓜茄病镰刀菌拮抗芽孢杆菌的筛选、鉴定及促生效果[J]. 生物技术通报, 2023, 39(2): 211-220. |
[13] | 罗宁, 焦阳, 茆振川, 李惠霞, 谢丙炎. 木霉菌对根结线虫和孢囊线虫防治机理研究进展[J]. 生物技术通报, 2023, 39(2): 35-50. |
[14] | 马赛买, 李同源, 马燕军, 韩富军, 彭海, 孔维宝. 几丁质酶在农作物病虫害生物防治中的研究进展[J]. 生物技术通报, 2023, 39(10): 29-40. |
[15] | 李白, 蔡之军, 王蕾, 陈婕, 曹奎荣, 李军, 种高军. 抗稻瘟病基因Pigm组合标记的开发及应用[J]. 生物技术通报, 2022, 38(7): 153-159. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||