生物技术通报 ›› 2022, Vol. 38 ›› Issue (8): 225-232.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1470
陈天赐1,2(), 武少兰1,2, 杨国辉1,2, 江丹霞1,2, 江玉姬1,2, 陈炳智1,2()
收稿日期:
2021-11-25
出版日期:
2022-08-26
发布日期:
2022-09-14
作者简介:
陈天赐,男,硕士,研究方向:食品功能开发;E-mail: 基金资助:
CHEN Tian-ci1,2(), WU Shao-lan1,2, YANG Guo-hui1,2, JIANG Dan-xia1,2, JIANG Yu-ji1,2, CHEN Bing-zhi1,2()
Received:
2021-11-25
Published:
2022-08-26
Online:
2022-09-14
摘要:
旨在探究无柄灵芝醇提物(Ganoderma resinaceum alcohol extract,GRAE)对小鼠睡眠和肠道菌群的影响,分析肠道菌群与睡眠之间的联系。连续灌胃30 d,观察戊巴比妥钠诱导下小鼠的入睡率和睡眠时长,观察巴比妥钠诱导下小鼠的睡眠潜伏期。检测小鼠的血清,采用16S rDNA测序分析GRAE对小鼠肠道菌群丰度的影响。结果表明,GRAE延长戊巴比妥钠诱导下小鼠的睡眠时长,增加戊巴比妥钠阈下剂量催眠下小鼠的入睡率,缩短巴比妥钠诱导下小鼠的睡眠潜伏期,降低小鼠血清中血糖和甘油三脂的含量。16S rDNA结果表明,在门水平上,GRAE增加了拟杆菌门和放线菌门的菌群丰度;在属水平上,GRAE增加双歧杆菌属的菌群丰度,减少乳酸菌属和克雷伯氏菌属的菌群丰度。因此,GRAE能调节肠道菌群的丰度影响小鼠的睡眠质量。
陈天赐, 武少兰, 杨国辉, 江丹霞, 江玉姬, 陈炳智. 无柄灵芝醇提物对小鼠睡眠及肠道菌群的影响[J]. 生物技术通报, 2022, 38(8): 225-232.
CHEN Tian-ci, WU Shao-lan, YANG Guo-hui, JIANG Dan-xia, JIANG Yu-ji, CHEN Bing-zhi. Effects of Ganoderma resinaceum Alcohol Extract on Sleep and Intestinal Microbiota in Mice[J]. Biotechnology Bulletin, 2022, 38(8): 225-232.
组别Group | 剂量Dose/(mg·kg-1·d-1) | 0 d/g | 7 d/g | 14 d/g | 21 d/g |
---|---|---|---|---|---|
CK | 0 | 29.06±1.19 | 33.67±1.90 | 36.05±1.84 | 37.74±1.95 |
LDG | 250 | 28.86±0.66 | 31.54±1.48 | 33.12±2.06 | 34.21±2.44 |
MDG | 500 | 28.33±0.98 | 31.30±1.75 | 33.23±1.64 | 34.41±2.05 |
HDG | 1 000 | 28.17±1.15 | 31.47±1.24 | 32.59±1.66 | 33.66±1.52 |
表1 无柄灵芝醇提物对小鼠的体重的影响
Table 1 Effects of GRAE on the body weights of mice
组别Group | 剂量Dose/(mg·kg-1·d-1) | 0 d/g | 7 d/g | 14 d/g | 21 d/g |
---|---|---|---|---|---|
CK | 0 | 29.06±1.19 | 33.67±1.90 | 36.05±1.84 | 37.74±1.95 |
LDG | 250 | 28.86±0.66 | 31.54±1.48 | 33.12±2.06 | 34.21±2.44 |
MDG | 500 | 28.33±0.98 | 31.30±1.75 | 33.23±1.64 | 34.41±2.05 |
HDG | 1 000 | 28.17±1.15 | 31.47±1.24 | 32.59±1.66 | 33.66±1.52 |
组别 Group | 直接睡眠Direct sleep rate/% | 巴比妥钠诱导的睡眠潜伏期 Sleep latency induced by sodium barbiturate/min | 戊巴比妥钠诱导的睡眠时长 Sleep time of pentobarbital sodium-induced/min | 戊巴比妥钠诱导的入睡率 Sleep rate of pentobarbital sodium-induced/% |
---|---|---|---|---|
CK | 0 | 28.88±8.61a | 30.94±1.54a | 10 |
LDG | 0 | 28.51±8.16a | 41.87±0.63a | 20 |
MDG | 0 | 27.70±8.87a | 63.23±2.32b | 40 |
HDG | 0 | 20.53±3.89b | 70.12±1.88c | 80 |
表2 无柄灵芝醇提物对小鼠睡眠质量的影响
Table 2 Effects of GRAE on the sleep quality of mice
组别 Group | 直接睡眠Direct sleep rate/% | 巴比妥钠诱导的睡眠潜伏期 Sleep latency induced by sodium barbiturate/min | 戊巴比妥钠诱导的睡眠时长 Sleep time of pentobarbital sodium-induced/min | 戊巴比妥钠诱导的入睡率 Sleep rate of pentobarbital sodium-induced/% |
---|---|---|---|---|
CK | 0 | 28.88±8.61a | 30.94±1.54a | 10 |
LDG | 0 | 28.51±8.16a | 41.87±0.63a | 20 |
MDG | 0 | 27.70±8.87a | 63.23±2.32b | 40 |
HDG | 0 | 20.53±3.89b | 70.12±1.88c | 80 |
Sample | Raw_Tags | Raw_Bases | Valid_Tags | Valid_Bases | Valid/% | Q20/% | Q30/% | GC/% |
---|---|---|---|---|---|---|---|---|
CK1 | 84 126 | 42.06 M | 77 501 | 32.07 M | 92.12 | 97.92 | 93.89 | 54.58 |
CK2 | 84 478 | 42.24 M | 77 242 | 32.37 M | 91.43 | 97.39 | 92.52 | 55.27 |
CK3 | 86 751 | 43.38 M | 74 655 | 31.17 M | 86.06 | 94.55 | 85.87 | 54.52 |
CK4 | 86 073 | 43.04 M | 78 882 | 32.96 M | 91.65 | 95.26 | 87.66 | 54.68 |
CK5 | 80 663 | 40.33 M | 71 430 | 29.39 M | 88.55 | 97.39 | 92.63 | 54.17 |
CK6 | 81 281 | 40.64 M | 70 531 | 29.26 M | 86.77 | 97.47 | 92.82 | 54.88 |
HDG1 | 84 427 | 42.21 M | 72 261 | 30.28 M | 85.59 | 97.06 | 91.60 | 54.58 |
HDG2 | 87 332 | 43.67 M | 76 096 | 31.55 M | 87.13 | 97.15 | 91.89 | 54.82 |
HDG3 | 64 752 | 32.38 M | 52 225 | 21.59 M | 80.65 | 87.32 | 73.18 | 55.95 |
HDG4 | 80 293 | 40.15 M | 71 835 | 29.72 M | 89.47 | 96.28 | 89.81 | 54.68 |
HDG5 | 86 806 | 43.40 M | 76 963 | 32.22 M | 88.66 | 97.99 | 93.92 | 55.02 |
HDG6 | 80 087 | 40.04 M | 69 329 | 28.57 M | 86.57 | 98.08 | 94.31 | 54.38 |
表3 有效数据统计
Table 3 Effective data statistics
Sample | Raw_Tags | Raw_Bases | Valid_Tags | Valid_Bases | Valid/% | Q20/% | Q30/% | GC/% |
---|---|---|---|---|---|---|---|---|
CK1 | 84 126 | 42.06 M | 77 501 | 32.07 M | 92.12 | 97.92 | 93.89 | 54.58 |
CK2 | 84 478 | 42.24 M | 77 242 | 32.37 M | 91.43 | 97.39 | 92.52 | 55.27 |
CK3 | 86 751 | 43.38 M | 74 655 | 31.17 M | 86.06 | 94.55 | 85.87 | 54.52 |
CK4 | 86 073 | 43.04 M | 78 882 | 32.96 M | 91.65 | 95.26 | 87.66 | 54.68 |
CK5 | 80 663 | 40.33 M | 71 430 | 29.39 M | 88.55 | 97.39 | 92.63 | 54.17 |
CK6 | 81 281 | 40.64 M | 70 531 | 29.26 M | 86.77 | 97.47 | 92.82 | 54.88 |
HDG1 | 84 427 | 42.21 M | 72 261 | 30.28 M | 85.59 | 97.06 | 91.60 | 54.58 |
HDG2 | 87 332 | 43.67 M | 76 096 | 31.55 M | 87.13 | 97.15 | 91.89 | 54.82 |
HDG3 | 64 752 | 32.38 M | 52 225 | 21.59 M | 80.65 | 87.32 | 73.18 | 55.95 |
HDG4 | 80 293 | 40.15 M | 71 835 | 29.72 M | 89.47 | 96.28 | 89.81 | 54.68 |
HDG5 | 86 806 | 43.40 M | 76 963 | 32.22 M | 88.66 | 97.99 | 93.92 | 55.02 |
HDG6 | 80 087 | 40.04 M | 69 329 | 28.57 M | 86.57 | 98.08 | 94.31 | 54.38 |
组别 Groups | Observed_OTUs | Chao1 | Shannon | Simpson | Goods_coverage |
---|---|---|---|---|---|
CK | 377.000 | 550.657 | 7.287 | 0.985 | 0.908 |
HDG | 350.500 | 544.757 | 6.893 | 0.973 | 0.908 |
表4 各组小鼠粪便样品中α多样性的指数
Table 4 Alpha diversity index of each group in fecal samples
组别 Groups | Observed_OTUs | Chao1 | Shannon | Simpson | Goods_coverage |
---|---|---|---|---|---|
CK | 377.000 | 550.657 | 7.287 | 0.985 | 0.908 |
HDG | 350.500 | 544.757 | 6.893 | 0.973 | 0.908 |
[1] |
Gamaldo CE, Shaikh AK, McArthur JC. The sleep-immunity relationship[J]. Neurol Clin, 2012, 30(4):1313-1343.
doi: 10.1016/j.ncl.2012.08.007 URL |
[2] |
Buzatu M, Bulteau C, Altuzarra C, et al. Corticosteroids as treatment of epileptic syndromes with continuous spike-waves during slow-wave sleep[J]. Epilepsia, 2009, 50(S 7):68-72.
doi: 10.1111/j.1528-1167.2009.02224.x URL |
[3] |
Palma JA, Urrestarazu E, Iriarte J. Sleep loss as risk factor for neurologic disorders:a review[J]. Sleep Med, 2013, 14(3):229-236.
doi: 10.1016/j.sleep.2012.11.019 URL |
[4] |
Lu RD, Wang ZY, Lin XM, et al. How do family role overload and work interferance with family affect the life satisfaction and sleep sufficiency of construction professionals?[J]. Int J Environ Res Public Health, 2019, 16(17):3094.
doi: 10.3390/ijerph16173094 URL |
[5] |
Clarke G, O’Mahony SM, Dinan TG, et al. Priming for health:gut microbiota acquired in early life regulates physiology, brain and behaviour[J]. Acta Paediatr, 2014, 103(8):812-819.
doi: 10.1111/apa.12674 URL |
[6] |
Isaiah S, Loots DT, Solomons R, et al. Overview of brain-to-gut axis exposed to chronic CNS bacterial infection(s)and a predictive urinary metabolic profile of a brain infected by Mycobacterium tuberculosis[J]. Front Neurosci, 2020, 14:296.
doi: 10.3389/fnins.2020.00296 URL |
[7] |
Reynolds AC, Paterson JL, Ferguson SA, et al. The shift work and health research agenda:considering changes in gut microbiota as a pathway linking shift work, sleep loss and circadian misalignment, and metabolic disease[J]. Sleep Med Rev, 2017, 34:3-9.
doi: S1087-0792(16)30061-2 pmid: 27568341 |
[8] |
Li CL, Ai GX, Wang YF, et al. Oxyberberine, a novel gut microbiota-mediated metabolite of berberine, possesses superior anti-colitis effect:impact on intestinal epithelial barrier, gut microbiota profile and TLR4-MyD88-NF-κB pathway[J]. Pharmacol Res, 2020, 152:104603.
doi: 10.1016/j.phrs.2019.104603 URL |
[9] |
Luo S, Wen RY, Wang Q, et al. Rhubarb Peony Decoction ameliorates ulcerative colitis in mice by regulating gut microbiota to restoring Th17/Treg balance[J]. J Ethnopharmacol, 2019, 231:39-49.
doi: 10.1016/j.jep.2018.08.033 URL |
[10] |
Collins SM. The intestinal microbiota in the irritable bowel syndrome[J]. Int Rev Neurobiol, 2016, 131:247-261.
doi: S0074-7742(16)30136-2 pmid: 27793222 |
[11] |
Sampson TR, Mazmanian SK. Control of brain development, function, and behavior by the microbiome[J]. Cell Host Microbe, 2015, 17(5):565-576.
doi: 10.1016/j.chom.2015.04.011 URL |
[12] |
Lin A, Shih CT, Huang CL, et al. Hypnotic effects of Lactobacillus fermentum PS150 TM on pentobarbital-induced sleep in mice[J]. Nutrients, 2019, 11(10):2409.
doi: 10.3390/nu11102409 URL |
[13] |
Chen JJ, Wang Q, Wang AQ, et al. Structural and functional characterization of the gut microbiota in elderly women with migraine[J]. Front Cell Infect Microbiol, 2020, 9:470.
doi: 10.3389/fcimb.2019.00470 URL |
[14] |
Lau CI, Lin CC, Chen WH, et al. Association between migraine and irritable bowel syndrome:a population-based retrospective cohort study[J]. Eur J Neurol, 2014, 21(9):1198-1204.
doi: 10.1111/ene.12468 pmid: 24838228 |
[15] |
Chen WY, Chang CY, Li JR, et al. Anti-inflammatory and neuroprotective effects of fungal immunomodulatory protein involving microglial inhibition[J]. Int J Mol Sci, 2018, 19(11):3678.
doi: 10.3390/ijms19113678 URL |
[16] |
Chen BZ, Ke BR, Ye LY, et al. Isolation and varietal characterization of Ganoderma resinaceum from areas of Ganoderma lucidum production in China[J]. Sci Hortic, 2017, 224:109-114.
doi: 10.1016/j.scienta.2017.06.002 URL |
[17] | 李亚晗, 刘佳琳, 王天添, 等. 灵芝多糖抗肿瘤免疫调节机制的研究进展[J]. 中国免疫学杂志, 2021, 37(4):511-514. |
Li YH, Liu JL, Wang TT, et al. Research progress of Ganoderma lucidum polysaccharides in anti-tumor immunomodulatory mechanism[J]. Chin J Immunol, 2021, 37(4):511-514. | |
[18] | 罗云, 陈霖, 张雪涟, 等. 灵芝三萜类成分药理活性研究进展[J]. 中国药理学通报, 2021, 37(9):1185-1188. |
Luo Y, Chen L, Zhang XL, et al. Research progress on pharmacological activities of triterpenes from Ganoderma lucidum[J]. Chin Pharmacol Bull, 2021, 37(9):1185-1188. | |
[19] |
Chu QP, Wang LE, Cui XY, et al. Extract of Ganoderma lucidum potentiates pentobarbital-induced sleep via a GABAergic mechanism[J]. Pharmacol Biochem Behav, 2007, 86(4):693-698.
doi: 10.1016/j.pbb.2007.02.015 URL |
[20] |
Cui XY, Cui SY, Zhang J, et al. Extract of Ganoderma lucidum prolongs sleep time in rats[J]. J Ethnopharmacol, 2012, 139(3):796-800.
doi: 10.1016/j.jep.2011.12.020 URL |
[21] |
Cho SM, Shimizu M, Lee CJ, et al. Hypnotic effects and binding studies for GABA(A)and 5-HT(2C)receptors of traditional medicinal plants used in Asia for insomnia[J]. J Ethnopharmacol, 2010, 132(1):225-232.
doi: 10.1016/j.jep.2010.08.009 URL |
[22] | 张圣洁, 郭锦瑞, 康安, 等. 肠道菌群对中药糖苷类成分脱糖基代谢的研究进展[J]. 中国中药杂志, 2013, 38(10):1459-1466. |
Zhang SJ, Guo JR, Kang A, et al. Advance in studies on gut microbiota in de-glycosylation of traditional Chinese medicine glycosides[J]. China J Chin Mater Med, 2013, 38(10):1459-1466. | |
[23] |
Hu RK, Guo WL, Huang ZR, et al. Extracts of Ganoderma lucidum attenuate lipid metabolism and modulate gut microbiota in high-fat diet fed rats[J]. J Funct Foods, 2018, 46:403-412.
doi: 10.1016/j.jff.2018.05.020 URL |
[24] |
Chang CJ, Lin CS, Lu CC, et al. Ganoderma lucidum reduces obesity in mice by modulating the composition of the gut microbiota[J]. Nat Commun, 2015, 6:7489.
doi: 10.1038/ncomms8489 URL |
[25] | 钟千贵, 陈天赐, 邱铭锰, 等. 无柄灵芝提取物中营养成分及体外抗氧化活性分析[J]. 食品工业科技, 2020, 41(19):321-326. |
Zhong QG, Chen TC, Qiu MM, et al. Analysis of nutritional components and antioxidant activity in vitro of extracts from Ganoderma resinaceum[J]. Sci Technol Food Ind, 2020, 41(19):321-326. | |
[26] |
Yu LL, Han X, Cen S, et al. Beneficial effect of GABA-rich fermented milk on insomnia involving regulation of gut microbiota[J]. Microbiol Res, 2020, 233:126409.
doi: 10.1016/j.micres.2020.126409 URL |
[27] |
Callahan BJ, McMurdie PJ, Rosen MJ, et al. DADA2:High-resolution sample inference from Illumina amplicon data[J]. Nat Methods, 2016, 13(7):581-583.
doi: 10.1038/NMETH.3869 |
[28] | 黄曙文. 高脂饮食对小鼠摄食及情绪活动的影响及柴胡疏肝散的干预作用研究[D]. 福州: 福建中医药大学, 2018. |
Huang SW. Effect of high-fat diet on feeding and emotional activity in mice and the intervention of Chaihu Shugan Powder[D]. Fuzhou: Fujian University of Traditional Chinese Medicine, 2018. | |
[29] |
Bear TLK, Dalziel JE, Coad J, et al. The role of the gut microbiota in dietary interventions for depression and anxiety[J]. Adv Nutr, 2020, 11(4):890-907.
doi: 10.1093/advances/nmaa016 URL |
[30] | 李云, 周明眉, 苟小军, 等. 姜黄素对间歇性睡眠剥夺大鼠特定肠道菌的影响[J]. 中草药, 2016, 47(5):794-798. |
Li Y, Zhou MM, Gou XJ, et al. Effects of curcumin on gut microbiota of interval sleep deprivation rats[J]. Chin Tradit Herb Drugs, 2016, 47(5):794-798. | |
[31] | 闫鑫磊, 郭超男, 韩汶荧, 等. 双歧杆菌对肿瘤治疗作用的研究进展[J]. 食品科技, 2020, 45(2):1-5. |
Yan XL, Guo CN, Han WY, et al. Research progress of Bifidobacterium on tumor treatment[J]. Food Sci Technol, 2020, 45(2):1-5.
doi: 10.1016/j.tifs.2015.05.002 URL |
|
[32] | 任晓宇, 李廷利. 酸枣仁汤对慢性睡眠剥夺小鼠肝功能和特定肠道菌的影响[J]. 药物评价研究, 2020, 43(2):226-231. |
Ren XY, Li TL. Effect of Suan-Zao-Ren Decoction on liver function and specific gut microbiota in mice with chronic sleep deprivation[J]. Drug Eval Res, 2020, 43(2):226-231. | |
[33] |
Mairesse J, Rodenas CLG, Silletti V, et al. Lactobacillus reuteri DSM 17938 and Bifidobacterium longum ATCC BAA-999 normalize sleep patterns in prenatal stress rats[J]. Pediatr Res, 2011, 70(5):797.
doi: 10.1038/pr.2011.1022 URL |
[34] | Dos Reis Lucena L, Terra Loyola V, Leopoldino de Bortolli C, et al. Effects of supplementation with Lactobacillus probiotics on insomnia treatment[J]. Altern Ther Health Med, 2021, 27(S1):178-184. |
[35] | 隋明, 王静霞, 唐贤华, 等. 四川地区牦牛源肺炎克雷伯氏菌的分离鉴定及其耐药性分析[J]. 中国畜牧兽医, 2019, 46(6):1816-1824. |
Sui M, Wang JX, Tang XH, et al. Isolation, identification and drug resistance analysis of Klebsiella pneumonia isolated from yak in Sichuan[J]. China Animal Husb Vet Med, 2019, 46(6):1816-1824. | |
[36] |
Mangiola F, Ianiro G, Franceschi F, et al. Gut microbiota in autism and mood disorders[J]. World J Gastroenterol, 2016, 22(1):361-368.
doi: 10.3748/wjg.v22.i1.361 URL |
[1] | 沙珊珊, 董世荣, 杨玉菊. 肠道菌群及代谢物调控宿主肠道免疫的研究进展[J]. 生物技术通报, 2023, 39(8): 126-136. |
[2] | 熊淑琪. 胆汁酸生理功能及其与肠道微生物互作研究进展[J]. 生物技术通报, 2023, 39(4): 187-200. |
[3] | 孙海航, 官会林, 王旭, 王童, 李泓霖, 彭文洁, 刘柏桢, 樊芳玲. 生物炭对三七连作土壤性质及真菌群落的影响[J]. 生物技术通报, 2023, 39(2): 221-231. |
[4] | 王松, 简晓平, 潘婉舒, 张永光, 王涛, 游玲. 玉米小曲酒糟发酵饲料对育肥猪肠道菌群的影响[J]. 生物技术通报, 2022, 38(9): 248-257. |
[5] | 王子夜, 王志刚, 阎爱华. 不同树龄桑根际土壤原生生物群落组成多样性[J]. 生物技术通报, 2022, 38(8): 206-215. |
[6] | 钟辉, 刘亚军, 王滨花, 和梦洁, 吴兰. 分析方法对细菌群落16S rRNA基因扩增测序分析结果的影响[J]. 生物技术通报, 2022, 38(6): 81-92. |
[7] | 何亚伦, 曾丽荣, 刘雄, 张铃, 王琼. 高剂量单宁酸对小鼠肠道屏障和肠道菌群的影响[J]. 生物技术通报, 2022, 38(4): 278-287. |
[8] | 钟明月, 刘春妍, 颜妍, 张晓慧, 原海升, 徐国全, 张和平, 王玉珍. 乳双歧杆菌V9对高脂饮食诱导的NAFLD大鼠的改善作用[J]. 生物技术通报, 2022, 38(3): 181-187. |
[9] | 赵林艳, 官会林, 向萍, 李泽诚, 柏雨龙, 宋洪川, 孙世中, 徐武美. 白及根腐病植株根际土壤微生物群落组成特征分析[J]. 生物技术通报, 2022, 38(2): 67-74. |
[10] | 陈宇捷, 郑华宝, 周昕彦. 改良高通量测序技术揭示除藻剂对藻类群落的影响[J]. 生物技术通报, 2022, 38(11): 70-79. |
[11] | 曹修凯, 王珊, 葛玲, 张卫博, 孙伟. 染色体外环形DNA研究进展及其在畜禽育种中的应用[J]. 生物技术通报, 2022, 38(1): 247-257. |
[12] | 毛婷, 牛永艳, 郑群, 杨涛, 穆永松, 祝英, 季彬, 王治业. 菌剂对苜蓿青贮发酵品质及微生物群落的影响[J]. 生物技术通报, 2021, 37(9): 86-94. |
[13] | 唐蝶, 周倩. 植物基因组组装技术研究进展[J]. 生物技术通报, 2021, 37(6): 1-12. |
[14] | 吕燕, 刘建利, 李靖宇, 候琳琳, 孙敏, 苟琪. 不同品种和产区宁夏枸杞根系AMF多样性[J]. 生物技术通报, 2021, 37(6): 36-48. |
[15] | 朱斌, 甘晨晨, 王洪程. 球花石斛(Dendrobium thyrsiflorum)叶绿体基因组特征及亲缘关系解析[J]. 生物技术通报, 2021, 37(5): 38-47. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||