生物技术通报 ›› 2022, Vol. 38 ›› Issue (9): 35-46.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0688
• 细菌耐药性专题(专题主编: 刘雅红 教授 孙坚 教授) • 上一篇 下一篇
收稿日期:
2022-06-03
出版日期:
2022-09-26
发布日期:
2022-10-11
作者简介:
刘艺云,女,博士,副教授,研究方向:细菌耐药性;E-mail: 基金资助:
LIU Yi-yun(), DENG Li-min, YUE Hui-ying, YUE Chao, LIU Jian-hua()
Received:
2022-06-03
Published:
2022-09-26
Online:
2022-10-11
摘要:
随着细菌耐药性快速发展且不断出现新的耐药菌,临床抗感染治疗可选择的抗菌药物越来越少,不通过直接杀灭病原菌而寻求控制耐药基因的传播正成为一种新的耐药性防控策略。质粒是耐药基因最重要的载体之一,通过接合转移可在不同来源(如动物、人和环境)细菌间传播,对耐药性传播发挥了重要作用,因而抑制质粒接合转移被认为是防控耐药性传播的有效策略之一,受到越来越多研究者的重视。本文在简要介绍耐药性传播机制的基础上,阐述质粒接合转移过程及其机制,并总结了目前质粒接合抑制剂的研究进展,以期为耐药性防控新策略的研究提供参考和借鉴。
刘艺云, 邓利敏, 岳慧颖, 岳超, 刘健华. 质粒接合转移及其抑制剂的研究进展[J]. 生物技术通报, 2022, 38(9): 35-46.
LIU Yi-yun, DENG Li-min, YUE Hui-ying, YUE Chao, LIU Jian-hua. Research Progress in Plasmid Conjugation and Its Inhibitors[J]. Biotechnology Bulletin, 2022, 38(9): 35-46.
图2 接合转移的结构模型和接合抑制剂的潜在靶点(修改自文献[17])
Fig. 2 Structure of conjugation and the potential targets of conjugation inhibitors(Modified based on the reference[17])
类别 Categories | 组分 Components | 菌属 Species | 质粒 Plasmids | 耐药基因 Antimicrobial resistance genes | 质粒接合频率下降倍数d Fold reduction in plasmid transfer frequency | 参考文献 References |
---|---|---|---|---|---|---|
脂肪酸类及其衍生物 | 油酸/亚油酸/脱氢戊烯酸(DHCA) | 大肠杆菌→大肠杆菌 | R388(IncW)a, pKM101(IncN)c, RP4(IncP)c | DHCA(140 μmol/L): 350倍 | [ | |
2-炔基脂肪酸(2-HAD) | 大肠杆菌→大肠杆菌 | (IncF,IncW和IncH)a(IncI,IncL/M和IncX)b | (0.4 mmol/L)2-HDA : IncW,IncF和IncH(100倍) (1 mmol/L)2-HDA : IncI,IncL/M和IncX(6-25倍) | [ | ||
Tanzawaic acids A和B | 大肠杆菌→大肠杆菌 | (IncW和IncFII)a(IncFI,IncI,IncL/M,IncX,IncH)b(IncN,IncP)c | (0.4 mmol/L)TZA-B : 98倍 | [ | ||
2-溴软脂酸(2-BP) | 大肠杆菌→大肠杆菌 | R388(IncW) | (0.3 mmol/L)2-BP:98倍 | [ | ||
磷酸化多糖类抗生素 | (体外)黄霉素 | 粪肠球菌→粪肠球菌 | 8-16 mmol/L : 50-70倍 | [ | ||
大肠杆菌→粪肠球菌 | IncFIB,IncI1-Iγ,IncN | blaCTX-M-15,blaCTX-M-14, blaCTX-M-2 | 0.5 mmol/L FPL : 7.2-10.7倍 | [ | ||
(体内)黄霉素 | 大肠杆菌→沙门氏菌 | str,tet,amp | 饲料中添加64 ppm的黄霉素对接合转移具有抑制作用 | [ | ||
亚水杨基酰肼类及其衍生物 | BAR-072,BAR-073,UM-024 | 大肠杆菌→大肠杆菌 | pKM101(IncN) | BAR-072 : 10倍 | [ | |
105055,239852 | 大肠杆菌→大肠杆菌 | pKM101(IncN) | 105055和239852 : 2倍 | [ | ||
拟肽类化合物 | C10,KSK85 | 大肠杆菌→大肠杆菌 | pKM101(IncN)和R1-16(IncF) | (150 μm)C10 : 4倍 | [ | |
纳米材料 | nano-Al2O3,nano-TiO2,nano-SiO2和nano-Fe2O3 | 大肠杆菌→大肠杆菌、沙门氏菌 | RP4(IncP) | 5000 mmol/L : 100倍* | [ | |
CuO NPs / Cu2+ | 大肠杆菌→恶臭假单胞菌 | RP4(IncP) | (5 mmol/L)CuO NPs : 40倍* | [ | ||
Fe2O3@MoS2 | 大肠杆菌→大肠杆菌 | RP4-7(IncP) | Fe2O3(0.1 g)@MoS2 : 100倍 | [ | ||
CeO2 纳米材料 | 大肠杆菌→大肠杆菌 | RP4(IncP) | (1 000和5 000 μg/L)CeO2 NPs : 4倍 | [ | ||
等离子体 | 等离子体 | 大肠杆菌→大肠杆菌 | tet(C),tet(W),blaTEM-1,aac(3)-II | 9 kv(10 min): 1 000倍 | [ | |
NO3-,Cu2+,Fe2+ | 大肠杆菌→大肠杆菌 | tet(C),tet(W),blaTEM-1, aac(3)-II,intI1 | Fe2+: 98倍 | [ | ||
其他 | 双膦酸盐(PNP) | 大肠杆菌→大肠杆菌 | IncF | 10 mmol/L(PNP): 90倍 | [ | |
单链Fv抗体 | 大肠杆菌→大肠杆菌 | R388(IncW) | scFv-P4.E7: 20倍 | [ | ||
自由亚硝酸 | 大肠杆菌→大肠杆菌 | RP4(IncP) | 20 μg/L:100倍 | [ |
表1 接合转移抑制剂的分类
Table 1 Categorization of conjugation inhibitors
类别 Categories | 组分 Components | 菌属 Species | 质粒 Plasmids | 耐药基因 Antimicrobial resistance genes | 质粒接合频率下降倍数d Fold reduction in plasmid transfer frequency | 参考文献 References |
---|---|---|---|---|---|---|
脂肪酸类及其衍生物 | 油酸/亚油酸/脱氢戊烯酸(DHCA) | 大肠杆菌→大肠杆菌 | R388(IncW)a, pKM101(IncN)c, RP4(IncP)c | DHCA(140 μmol/L): 350倍 | [ | |
2-炔基脂肪酸(2-HAD) | 大肠杆菌→大肠杆菌 | (IncF,IncW和IncH)a(IncI,IncL/M和IncX)b | (0.4 mmol/L)2-HDA : IncW,IncF和IncH(100倍) (1 mmol/L)2-HDA : IncI,IncL/M和IncX(6-25倍) | [ | ||
Tanzawaic acids A和B | 大肠杆菌→大肠杆菌 | (IncW和IncFII)a(IncFI,IncI,IncL/M,IncX,IncH)b(IncN,IncP)c | (0.4 mmol/L)TZA-B : 98倍 | [ | ||
2-溴软脂酸(2-BP) | 大肠杆菌→大肠杆菌 | R388(IncW) | (0.3 mmol/L)2-BP:98倍 | [ | ||
磷酸化多糖类抗生素 | (体外)黄霉素 | 粪肠球菌→粪肠球菌 | 8-16 mmol/L : 50-70倍 | [ | ||
大肠杆菌→粪肠球菌 | IncFIB,IncI1-Iγ,IncN | blaCTX-M-15,blaCTX-M-14, blaCTX-M-2 | 0.5 mmol/L FPL : 7.2-10.7倍 | [ | ||
(体内)黄霉素 | 大肠杆菌→沙门氏菌 | str,tet,amp | 饲料中添加64 ppm的黄霉素对接合转移具有抑制作用 | [ | ||
亚水杨基酰肼类及其衍生物 | BAR-072,BAR-073,UM-024 | 大肠杆菌→大肠杆菌 | pKM101(IncN) | BAR-072 : 10倍 | [ | |
105055,239852 | 大肠杆菌→大肠杆菌 | pKM101(IncN) | 105055和239852 : 2倍 | [ | ||
拟肽类化合物 | C10,KSK85 | 大肠杆菌→大肠杆菌 | pKM101(IncN)和R1-16(IncF) | (150 μm)C10 : 4倍 | [ | |
纳米材料 | nano-Al2O3,nano-TiO2,nano-SiO2和nano-Fe2O3 | 大肠杆菌→大肠杆菌、沙门氏菌 | RP4(IncP) | 5000 mmol/L : 100倍* | [ | |
CuO NPs / Cu2+ | 大肠杆菌→恶臭假单胞菌 | RP4(IncP) | (5 mmol/L)CuO NPs : 40倍* | [ | ||
Fe2O3@MoS2 | 大肠杆菌→大肠杆菌 | RP4-7(IncP) | Fe2O3(0.1 g)@MoS2 : 100倍 | [ | ||
CeO2 纳米材料 | 大肠杆菌→大肠杆菌 | RP4(IncP) | (1 000和5 000 μg/L)CeO2 NPs : 4倍 | [ | ||
等离子体 | 等离子体 | 大肠杆菌→大肠杆菌 | tet(C),tet(W),blaTEM-1,aac(3)-II | 9 kv(10 min): 1 000倍 | [ | |
NO3-,Cu2+,Fe2+ | 大肠杆菌→大肠杆菌 | tet(C),tet(W),blaTEM-1, aac(3)-II,intI1 | Fe2+: 98倍 | [ | ||
其他 | 双膦酸盐(PNP) | 大肠杆菌→大肠杆菌 | IncF | 10 mmol/L(PNP): 90倍 | [ | |
单链Fv抗体 | 大肠杆菌→大肠杆菌 | R388(IncW) | scFv-P4.E7: 20倍 | [ | ||
自由亚硝酸 | 大肠杆菌→大肠杆菌 | RP4(IncP) | 20 μg/L:100倍 | [ |
[1] | O'Neill J. Antimicrobial Resistance:Tackling a crisis for the health and wealth of nations. The review on antimicrobial resistance[M]. London: The UK Prime Minister, 2014. |
[2] | Partridge SR, Kwong SM, Firth N, et al. Mobile genetic elements associated with antimicrobial resistance[J]. Clin Microbiol Rev, 2018, 31(4): e00088-e00017. |
[3] |
San MA. Evolution of plasmid-mediated antibiotic resistance in the clinical context[J]. Trends Microbiol, 2018, 26(12): 978-985.
doi: S0966-842X(18)30142-2 pmid: 30049587 |
[4] |
Buckner MMC, Ciusa ML, Piddock LJV. Strategies to combat antimicrobial resistance: anti-plasmid and plasmid curing[J]. FEMS Microbiol Rev, 2018, 42(6): 781-804.
doi: 10.1093/femsre/fuy031 pmid: 30085063 |
[5] |
Vrancianu CO, Popa LI, Bleotu C, et al. Targeting plasmids to limit acquisition and transmission of antimicrobial resistance[J]. Front Microbiol, 2020, 11: 761.
doi: 10.3389/fmicb.2020.00761 pmid: 32435238 |
[6] |
Patangia DV, Ryan CA, Dempsey E, et al. Vertical transfer of antibiotics and antibiotic resistant strains across the mother/baby axis[J]. Trends Microbiol, 2022, 30(1): 47-56.
doi: 10.1016/j.tim.2021.05.006 URL |
[7] |
von Wintersdorff CJH, Penders J, van Niekerk JM, et al. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer[J]. Front Microbiol, 2016, 7: 173.
doi: 10.3389/fmicb.2016.00173 pmid: 26925045 |
[8] |
Liu YY, Chen S, Burrus V, et al. Editorial: globally or regionally spread of epidemic plasmids carrying clinically important resistance genes: epidemiology, molecular mechanism, and drivers[J]. Front Microbiol, 2021, 12: 822802.
doi: 10.3389/fmicb.2021.822802 URL |
[9] |
Redondo-Salvo S, Fernández-López R, Ruiz R, et al. Pathways for horizontal gene transfer in bacteria revealed by a global map of their plasmids[J]. Nat Commun, 2020, 11(1): 3602.
doi: 10.1038/s41467-020-17278-2 pmid: 32681114 |
[10] |
Québatte M, Christen M, Harms A, et al. Gene transfer agent promotes evolvability within the fittest subpopulation of a bacterial pathogen[J]. Cell Syst, 2017, 4(6): 611-621.e6.
doi: S2405-4712(17)30226-0 pmid: 28624614 |
[11] |
Lopatkin AJ, Meredith HR, Srimani JK, et al. Persistence and reversal of plasmid-mediated antibiotic resistance[J]. Nat Commun, 2017, 8(1): 1689.
doi: 10.1038/s41467-017-01532-1 pmid: 29162798 |
[12] |
Smillie C, Garcillán-Barcia MP, Francia MV, et al. Mobility of plasmids[J]. Microbiol Mol Biol Rev, 2010, 74(3): 434-452.
doi: 10.1128/MMBR.00020-10 URL |
[13] |
Guglielmini J, Quintais L, Garcillán-Barcia MP, et al. The repertoire of ICE in prokaryotes underscores the unity, diversity, and ubiquity of conjugation[J]. PLoS Genet, 2011, 7(8): e1002222.
doi: 10.1371/journal.pgen.1002222 URL |
[14] |
Guglielmini J, Néron B, Abby SS, et al. Key components of the eight classes of type IV secretion systems involved in bacterial conjugation or protein secretion[J]. Nucleic Acids Res, 2014, 42(9): 5715-5727.
doi: 10.1093/nar/gku194 pmid: 24623814 |
[15] |
Low HH, Gubellini F, Rivera-Calzada A, et al. Structure of a type IV secretion system[J]. Nature, 2014, 508(7497): 550-553.
doi: 10.1038/nature13081 URL |
[16] |
Alvarez-Martinez CE, Christie PJ. Biological diversity of prokaryotic type IV secretion systems[J]. Microbiol Mol Biol Rev, 2009, 73(4): 775-808.
doi: 10.1128/MMBR.00023-09 URL |
[17] | Waksman G. From conjugation to T4S systems in Gram-negative bacteria: a mechanistic biology perspective[J]. EMBO Rep, 2019, 20(2): e47012. |
[18] |
Chandran Darbari V, Waksman G. Structural biology of bacterial type IV secretion systems[J]. Annu Rev Biochem, 2015, 84: 603-629.
doi: 10.1146/annurev-biochem-062911-102821 pmid: 26034891 |
[19] | Getino M, de la Cruz F. Natural and artificial strategies to control the conjugative transmission of plasmids[J]. Microbiol Spectr, 2018, 6(1). |
[20] |
Zechner EL, Moncalián G, de la Cruz F. Relaxases and plasmid transfer in gram-negative bacteria[J]. Curr Top Microbiol Immunol, 2017, 413: 93-113.
doi: 10.1007/978-3-319-75241-9_4 pmid: 29536356 |
[21] |
Wong JJW, Lu J, Glover JNM. Relaxosome function and conjugation regulation in F-like plasmids - a structural biology perspective[J]. Mol Microbiol, 2012, 85(4): 602-617.
doi: 10.1111/j.1365-2958.2012.08131.x pmid: 22788760 |
[22] |
Llosa M, Gomis-Rüth FX, Coll M, et al. Bacterial conjugation: a two-step mechanism for DNA transport[J]. Mol Microbiol, 2002, 45(1): 1-8.
pmid: 12100543 |
[23] |
Draper O, César CE, Machón C, et al. Site-specific recombinase and integrase activities of a conjugative relaxase in recipient cells[J]. Proc Natl Acad Sci USA, 2005, 102(45): 16385-16390.
doi: 10.1073/pnas.0506081102 URL |
[24] |
Garcillán-Barcia MP, Jurado P, González-Pérez B, et al. Conjugative transfer can be inhibited by blocking relaxase activity within recipient cells with intrabodies[J]. Mol Microbiol, 2007, 63(2): 404-416.
pmid: 17163977 |
[25] | Fernandez-Lopez R, Machón C, Longshaw CM, et al. Unsaturated fatty acids are inhibitors of bacterial conjugation[J]. Microbiology(Reading), 2005, 151(Pt 11): 3517-3526. |
[26] |
Li G, Xia LJ, Zhou SY, et al. Linoleic acid and α-linolenic acid inhibit conjugative transfer of an IncX4 plasmid carrying mcr-1[J]. J Appl Microbiol, 2021, 130(6): 1893-1901.
doi: 10.1111/jam.14885 URL |
[27] | Getino M, Sanabria-Ríos DJ, Fernández-López R, et al. Synthetic fatty acids prevent plasmid-mediated horizontal gene transfer[J]. mBio, 2015, 6(5): e01032-e01015. |
[28] |
Palencia-Gándara C, Getino M, Moyano G, et al. Conjugation inhibitors effectively prevent plasmid transmission in natural environments[J]. mBio, 2021, 12(4): e0127721.
doi: 10.1128/mBio.01277-21 URL |
[29] |
Getino M, Fernández-López R, Palencia-Gándara C, et al. Tanzawaic acids, a chemically novel set of bacterial conjugation inhibitors[J]. PLoS One, 2016, 11(1): e0148098.
doi: 10.1371/journal.pone.0148098 URL |
[30] |
García-Cazorla Y, Getino M, Sanabria-Ríos DJ, et al. Conjugation inhibitors compete with palmitic acid for binding to the conjugative traffic ATPase TrwD, providing a mechanism to inhibit bacterial conjugation[J]. J Biol Chem, 2018, 293(43): 16923-16930.
doi: 10.1074/jbc.RA118.004716 pmid: 30201608 |
[31] |
Walsh TR, Wu YN. China bans colistin as a feed additive for animals[J]. Lancet Infect Dis, 2016, 16(10): 1102-1103.
doi: S1473-3099(16)30329-2 pmid: 27676338 |
[32] |
van den Bogaard AE, Hazen M, Hoyer M, et al. Effects of flavophospholipol on resistance in fecal Escherichia coli and enterococci of fattening pigs[J]. Antimicrob Agents Chemother, 2002, 46(1): 110-118.
doi: 10.1128/AAC.46.1.110-118.2002 pmid: 11751120 |
[33] |
Lim K, Pennell M, Lewis S, et al. Effects of flavophospholipol on conjugation and plasmid curing of multidrug-resistant Salmonella enteritidis in broiler chickens[J]. JAC Antimicrob Resist, 2021, 3(1): dlab022.
doi: 10.1093/jacamr/dlab022 URL |
[34] |
Kimura J, Kudo H, Fukuda A, et al. Decreasing the abundance of tetracycline-resistant Escherichia coli in pig feces during nursery using flavophospholipol as a pig feed additive[J]. Vet Anim Sci, 2022, 15: 100236.
doi: 10.1016/j.vas.2022.100236 URL |
[35] |
Poole TL, McReynolds JL, Edrington TS, et al. Effect of flavophospholipol on conjugation frequency between Escherichia coli donor and recipient pairs in vitro and in the chicken gastrointestinal tract[J]. J Antimicrob Chemother, 2006, 58(2): 359-366.
doi: 10.1093/jac/dkl249 URL |
[36] |
Riedl S, Ohlsen K, Werner G, et al. Impact of flavophospholipol and vancomycin on conjugational transfer of vancomycin resistance plasmids[J]. Antimicrob Agents Chemother, 2000, 44(11): 3189-3192.
doi: 10.1128/AAC.44.11.3189-3192.2000 pmid: 11036050 |
[37] |
Kudo H, Usui M, Nagafuji W, et al. Inhibition effect of flavophospholipol on conjugative transfer of the extended-spectrum β-lactamase and vanA genes[J]. J Antibiot, 2019, 72(2): 79-85.
doi: 10.1038/s41429-018-0113-4 URL |
[38] |
Paschos A, den Hartigh A, Smith MA, et al. An in vivo high-throughput screening approach targeting the type IV secretion system component VirB8 identified inhibitors of Brucella abortus 2308 proliferation[J]. Infect Immun, 2011, 79(3): 1033-1043.
doi: 10.1128/IAI.00993-10 URL |
[39] |
Kauppi AM, Nordfelth R, Uvell H, et al. Targeting bacterial virulence: inhibitors of type III secretion in Yersinia[J]. Chem Biol, 2003, 10(3): 241-249.
doi: 10.1016/S1074-5521(03)00046-2 URL |
[40] |
Casu B, Smart J, Hancock MA, et al. Structural analysis and inhibition of TraE from the pKM101 type IV secretion system[J]. J Biol Chem, 2016, 291(45): 23817-23829.
pmid: 27634044 |
[41] |
Casu B, Arya T, Bessette B, et al. Fragment-based screening identifies novel targets for inhibitors of conjugative transfer of antimicrobial resistance by plasmid pKM101[J]. Sci Rep, 2017, 7(1): 14907.
doi: 10.1038/s41598-017-14953-1 pmid: 29097752 |
[42] |
Svensson A, Larsson A, Emtenäs H, et al. Design and evaluation of pilicides: potential novel antibacterial agents directed against uropathogenic Escherichia coli[J]. Chembiochem, 2001, 2(12): 915-918.
pmid: 11948880 |
[43] |
Chorell E, Pinkner JS, Phan G, et al. Design and synthesis of C-2 substituted thiazolo and dihydrothiazolo ring-fused 2-pyridones: pilicides with increased antivirulence activity[J]. J Med Chem, 2010, 53(15): 5690-5695.
doi: 10.1021/jm100470t pmid: 20586493 |
[44] | Shaffer CL, Good JAD, Kumar S, et al. Peptidomimetic small molecules disrupt type IV secretion system activity in diverse bacterial pathogens[J]. mBio, 2016, 7(2): e00221-e00216. |
[45] |
Makabenta JMV, Nabawy A, Li CH, et al. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections[J]. Nat Rev Microbiol, 2021, 19(1): 23-36.
doi: 10.1038/s41579-020-0420-1 URL |
[46] |
Wang LL, Hu C, Shao LQ. The antimicrobial activity of nanoparticles: present situation and prospects for the future[J]. Int J Nanomedicine, 2017, 12: 1227-1249.
doi: 10.2147/IJN.S121956 URL |
[47] |
Kolatka K, Kubik S, Rajewska M, et al. Replication and partitioning of the broad-host-range plasmid RK2[J]. Plasmid, 2010, 64(3): 119-134.
doi: 10.1016/j.plasmid.2010.06.004 pmid: 20600283 |
[48] |
Qiu ZG, Yu YM, Chen ZL, et al. Nanoalumina promotes the horizontal transfer of multiresistance genes mediated by plasmids across genera[J]. PNAS, 2012, 109(13): 4944-4949.
doi: 10.1073/pnas.1107254109 pmid: 22411796 |
[49] |
Zhang S, Wang Y, Song HL, et al. Copper nanoparticles and copper ions promote horizontal transfer of plasmid-mediated multi-antibiotic resistance genes across bacterial genera[J]. Environ Int, 2019, 129: 478-487.
doi: S0160-4120(19)31232-2 pmid: 31158594 |
[50] |
Lu J, Wang Y, Jin M, et al. Both silver ions and silver nanoparticles facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes[J]. Water Res, 2020, 169: 115229.
doi: 10.1016/j.watres.2019.115229 URL |
[51] |
Wang HG, Qi HC, Zhu M, et al. MoS2 decorated nanocomposite: Fe2O3@MoS2 inhibits the conjugative transfer of antibiotic resistance genes[J]. Ecotoxicol Environ Saf, 2019, 186: 109781.
doi: 10.1016/j.ecoenv.2019.109781 URL |
[52] |
Parra B, Tortella GR, Cuozzo S, et al. Negative effect of copper nanoparticles on the conjugation frequency of conjugative catabolic plasmids[J]. Ecotoxicol Environ Saf, 2019, 169: 662-668.
doi: 10.1016/j.ecoenv.2018.11.057 URL |
[53] |
Yu KQ, Chen FR, Yue L, et al. CeO2 nanoparticles regulate the propagation of antibiotic resistance genes by altering cellular contact and plasmid transfer[J]. Environ Sci Technol, 2020, 54(16): 10012-10021.
doi: 10.1021/acs.est.0c01870 URL |
[54] |
Liu Y, Gao JF, Wang YW, et al. Synergistic effect of sulfidated nanoscale zerovalent iron in donor and recipient bacterial inactivation and gene conjugative transfer inhibition[J]. J Hazard Mater, 2022, 432: 128722.
doi: 10.1016/j.jhazmat.2022.128722 URL |
[55] |
Matic I, Rayssiguier C, Radman M. Inter species gene exchange in bacteria: the role of SOS and mismatch repair systems in evolution of species[J]. Cell, 1995, 80(3): 507-515.
pmid: 7859291 |
[56] |
Baharoglu Z, Bikard D, Mazel D. Conjugative DNA transfer induces the bacterial SOS response and promotes antibiotic resistance development through integron activation[J]. PLoS Genet, 2010, 6(10): e1001165.
doi: 10.1371/journal.pgen.1001165 URL |
[57] |
Crane JK, Cheema MB, Olyer MA, et al. Zinc blockade of SOS response inhibits horizontal transfer of antibiotic resistance genes in enteric bacteria[J]. Front Cell Infect Microbiol, 2018, 8: 410.
doi: 10.3389/fcimb.2018.00410 URL |
[58] |
Li H, Kang Z, Jiang EL, et al. Plasma induced efficient removal of antibiotic-resistant Escherichia coli and antibiotic resistance genes, and inhibition of gene transfer by conjugation[J]. J Hazard Mater, 2021, 419: 126465.
doi: 10.1016/j.jhazmat.2021.126465 URL |
[59] |
Li H, Song RY, Wang YY, et al. Inhibited conjugative transfer of antibiotic resistance genes in antibiotic resistant bacteria by surface plasma[J]. Water Res, 2021, 204: 117630.
doi: 10.1016/j.watres.2021.117630 URL |
[60] |
Lujan SA, Guogas LM, Ragonese H, et al. Disrupting antibiotic resistance propagation by inhibiting the conjugative DNA relaxase[J]. Proc Natl Acad Sci USA, 2007, 104(30): 12282-12287.
doi: 10.1073/pnas.0702760104 URL |
[61] |
Nash RP, McNamara DE, Ballentine WK 3rd, et al. Investigating the impact of bisphosphonates and structurally related compounds on bacteria containing conjugative plasmids[J]. Biochem Biophys Res Commun, 2012, 424(4): 697-703.
doi: 10.1016/j.bbrc.2012.07.012 URL |
[62] |
Huang HN, Liao JQ, Zheng X, et al. Low-level free nitrous acid efficiently inhibits the conjugative transfer of antibiotic resistance by altering intracellular ions and disabling transfer apparatus[J]. Water Res, 2019, 158: 383-391.
doi: S0043-1354(19)30360-4 pmid: 31059932 |
[63] |
Jia YQ, Yang BQ, Shi JR, et al. Melatonin prevents conjugative transfer of plasmid-mediated antibiotic resistance genes by disrupting proton motive force[J]. Pharmacol Res, 2022, 175: 105978.
doi: 10.1016/j.phrs.2021.105978 URL |
[64] |
Liu Y, Jia YQ, Yang KN, et al. Melatonin overcomes MCR-mediated colistin resistance in gram-negative pathogens[J]. Theranostics, 2020, 10(23): 10697-10711.
doi: 10.7150/thno.45951 pmid: 32929375 |
[65] |
Costa TRD, Ilangovan A, Ukleja M, et al. Structure of the bacterial sex F pilus reveals an assembly of a stoichiometric protein-phospholipid complex[J]. Cell, 2016, 166(6): 1436-1444.e10.
doi: S0092-8674(16)31076-5 pmid: 27610568 |
[66] |
Amin H, Ilangovan A, Costa TRD. Architecture of the outer-membrane core complex from a conjugative type IV secretion system[J]. Nat Commun, 2021, 12(1): 6834.
doi: 10.1038/s41467-021-27178-8 pmid: 34824240 |
[67] |
Liu XG, Khara P, Baker ML, et al. Structure of a type IV secretion system core complex encoded by multi-drug resistance F plasmids[J]. Nat Commun, 2022, 13(1): 379.
doi: 10.1038/s41467-022-28058-5 pmid: 35046412 |
[1] | 陈勇, 李亚鑫, 王亚瑄, 梁露洁, 冯思源, 田国宝. MCR-1介导多黏菌素耐药性的分子机制研究进展[J]. 生物技术通报, 2023, 39(6): 102-108. |
[2] | 文畅, 刘晨, 卢诗韵, 许忠兵, 艾超凡, 廖汉鹏, 周顺桂. 一株新的多重耐药福氏志贺菌噬菌体生物学特性及基因组分析[J]. 生物技术通报, 2022, 38(9): 127-135. |
[3] | 胡功政, 崔小蝶, 翟亚军, 贺丹丹. 细菌黏菌素耐药性及其逆转机制研究进展[J]. 生物技术通报, 2022, 38(9): 28-34. |
[4] | 刘成程, 胡小芳, 冯友军. 细菌耐药:生化机制与应对策略[J]. 生物技术通报, 2022, 38(9): 4-16. |
[5] | 刘理慧, 储锦华, 隋雨欣, 陈杨, 程古月. 沙门氏菌中主要毒力因子的研究进展[J]. 生物技术通报, 2022, 38(9): 72-83. |
[6] | 刘晓黎, 童真艺, 赵亮, 尹丽, 刘晨光. 非抗生素类活性物质抗幽门螺杆菌研究进展[J]. 生物技术通报, 2022, 38(9): 96-105. |
[7] | 陈福暖, 黄瑜, 蔡佳, 王忠良, 简纪常, 王蓓. ABC转运蛋白结构及其在细菌致病性中的研究进展[J]. 生物技术通报, 2022, 38(6): 43-52. |
[8] | 赵海晴, 李耘, 梁严内, 刘哲, 任亚林, 李金娟. 联合用药对嗜水气单胞菌耐药性影响研究进展[J]. 生物技术通报, 2022, 38(6): 53-65. |
[9] | 朱浩, 张严伟, 刘润, 梁艳, 杨奕, 徐天乐, 杨章平. 抗生素佐剂与抗生素联用的抑菌作用研究进展[J]. 生物技术通报, 2022, 38(6): 66-73. |
[10] | 许博楠, 冯佳, 周见庭, 蒋建兰. 无细胞蛋白合成系统中细胞提取物和模板DNA的研究进展[J]. 生物技术通报, 2022, 38(12): 100-114. |
[11] | 田露, 吴咪, 缑敬轩, 龚国利. 细菌素的研究与应用进展[J]. 生物技术通报, 2021, 37(4): 224-233. |
[12] | 王凯凯, 王晓璐, 苏小运, 张杰. 大肠杆菌双质粒CRISPR-Cas9系统的优化及应用[J]. 生物技术通报, 2021, 37(12): 252-264. |
[13] | 龚争, 张俊杰, 钟登科. 华东地区猪丹毒杆菌分离株的生物学特征及其耐药析[J]. 生物技术通报, 2020, 36(6): 174-182. |
[14] | 刘鹏, 岑妍慧, 林江, 梁忠秀, 兰太进, 韩丝银, 陈振兴. 海洋创伤弧菌反式翻译系统关键因子SmpB基因的克隆及原核表达[J]. 生物技术通报, 2020, 36(4): 100-106. |
[15] | 梅芬, 李瑞玮, 张娟娟, 左荣霞, 邹云莲, 沈涛, 撒亚莲. 构建基于CRISPR/Cas9技术敲除ALOX5的质粒[J]. 生物技术通报, 2020, 36(3): 110-114. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||