生物技术通报 ›› 2023, Vol. 39 ›› Issue (7): 113-122.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1347
张曼1,2,3,4(), 张叶卓1,2,3,4, 何其邹洪1,2,3,4, 鄂一岚1,2,3,4, 李晔1,2,3,4()
收稿日期:
2022-11-02
出版日期:
2023-07-26
发布日期:
2023-08-17
通讯作者:
李晔,女,副教授,研究方向:细胞壁形成机制,纳米材料作为植物基因载体;E-mail: liye0223@bjfu.edu.cn作者简介:
张曼,女,硕士研究生,研究方向:细胞壁形成机制;E-mail: ZhangMan1998@bjfu.edu.cn
基金资助:
ZHANG Man1,2,3,4(), ZHANG Ye-zhuo1,2,3,4, HE Qi-zou-hong1,2,3,4, E Yi-lan1,2,3,4, LI Ye1,2,3,4()
Received:
2022-11-02
Published:
2023-07-26
Online:
2023-08-17
摘要:
植物细胞壁作为细胞外复杂交联网络,为植物细胞生长、发育以及适应环境变化提供机械支撑,具有调节植物形态、抵抗胁迫、运输水分等功能。除此之外,植物光合作用积累的生物质大部分贮藏在细胞壁中,因此,研究细胞壁的成分和纳微结构对更好的利用植物能源具有重要意义。植物细胞壁的结构研究是当今植物界研究的前沿热点之一。随着新型成像技术的发展,近年来关于细胞壁成分和纳微结构的研究取得了阶段性的进展。本文就植物细胞壁的成分、结构、成像技术和力学性质进行了总结与展望,以期为植物细胞壁的相关研究提供新思路。
张曼, 张叶卓, 何其邹洪, 鄂一岚, 李晔. 植物细胞壁结构及成像技术研究进展[J]. 生物技术通报, 2023, 39(7): 113-122.
ZHANG Man, ZHANG Ye-zhuo, HE Qi-zou-hong, E Yi-lan, LI Ye. Advances in Plant Cell Wall Structure and Imaging Technology[J]. Biotechnology Bulletin, 2023, 39(7): 113-122.
技术 Technology | 原理 Principle | 优势 Advantages | 不足 Disadvantages | 参考文献 Reference |
---|---|---|---|---|
原子力显微镜 Atomic force microscope | 探针与样品表面相互作 用力变化来获取信息 | 具有原子级分辨率,样品不需要特殊处理,可在生理状态下观察 | 检测效率低,存在图像假象 | [ |
拉曼显微术 Raman microscopy | 基于光与物质作用后发生的拉曼散射,能够获得样品分子和化学水平的结构信息 | CRM非侵入性原位成像 CARS信号灵敏度增加 SRS成像快,信噪比高 | CRM有荧光干扰,成像时间长 CARS具有非共振背景,信噪比低 SRS需要化学成分达到一定丰度 | [ |
点击化学 Click chemistry | 通过简单的化学合成利用带有荧光染料的基团对多糖类似物进行标记 | 反应条件简单且反应迅速,可在活体状态下追踪多糖、脂质的行踪 | 反应过程需要铜催化,会对植物体具有毒害作用 | [ |
傅里叶变换红外光谱技术 Fourier transform infrared spectroscopy | 通过检测化合物的红外分子吸收光谱,从而对样品中的不同化合物进行鉴定 | 快速、无损、需样品量少 | 背景复杂,空间分辨率有限 | [ |
表1 细胞壁成像技术原理及优缺点
Table1 Principles and advantages/disadvantages of imaging technologies of plant cell wall
技术 Technology | 原理 Principle | 优势 Advantages | 不足 Disadvantages | 参考文献 Reference |
---|---|---|---|---|
原子力显微镜 Atomic force microscope | 探针与样品表面相互作 用力变化来获取信息 | 具有原子级分辨率,样品不需要特殊处理,可在生理状态下观察 | 检测效率低,存在图像假象 | [ |
拉曼显微术 Raman microscopy | 基于光与物质作用后发生的拉曼散射,能够获得样品分子和化学水平的结构信息 | CRM非侵入性原位成像 CARS信号灵敏度增加 SRS成像快,信噪比高 | CRM有荧光干扰,成像时间长 CARS具有非共振背景,信噪比低 SRS需要化学成分达到一定丰度 | [ |
点击化学 Click chemistry | 通过简单的化学合成利用带有荧光染料的基团对多糖类似物进行标记 | 反应条件简单且反应迅速,可在活体状态下追踪多糖、脂质的行踪 | 反应过程需要铜催化,会对植物体具有毒害作用 | [ |
傅里叶变换红外光谱技术 Fourier transform infrared spectroscopy | 通过检测化合物的红外分子吸收光谱,从而对样品中的不同化合物进行鉴定 | 快速、无损、需样品量少 | 背景复杂,空间分辨率有限 | [ |
[1] |
Anderson CT, Kieber JJ. Dynamic construction, perception, and remodeling of plant cell walls[J]. Annu Rev Plant Biol, 2020, 71: 39-69.
doi: 10.1146/annurev-arplant-081519-035846 pmid: 32084323 |
[2] |
Zhang BC, Gao YH, Zhang LJ, et al. The plant cell wall: biosynthesis, construction, and functions[J]. J Integr Plant Biol, 2021, 63(1): 251-272.
doi: 10.1111/jipb.13055 |
[3] |
Cosgrove DJ, Jarvis MC. Comparative structure and biomechanics of plant primary and secondary cell walls[J]. Front Plant Sci, 2012, 3: 204.
doi: 10.3389/fpls.2012.00204 pmid: 22936943 |
[4] |
Carpita NC, Gibeaut DM. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth[J]. Plant J, 1993, 3(1): 1-30.
doi: 10.1111/j.1365-313x.1993.tb00007.x pmid: 8401598 |
[5] |
Zhong RQ, Cui DT, Ye ZH. Secondary cell wall biosynthesis[J]. New Phytol, 2019, 221(4): 1703-1723.
doi: 10.1111/nph.15537 pmid: 30312479 |
[6] |
Zhao YY, Man Y, Wen JL, et al. Advances in imaging plant cell walls[J]. Trends Plant Sci, 2019, 24(9): 867-878.
doi: S1360-1385(19)30135-9 pmid: 31257154 |
[7] |
Zamil MS, Geitmann A. The middle lamella-more than a glue[J]. Phys Biol, 2017, 14(1): 015004.
doi: 10.1088/1478-3975/aa5ba5 URL |
[8] |
Zhang WJ, Qin WQ, Li HL, et al. Biosynthesis and transport of nucleotide sugars for plant hemicellulose[J]. Front Plant Sci, 2021, 12: 723128.
doi: 10.3389/fpls.2021.723128 URL |
[9] | 刘佩佩, 张耿, 李晓娟. 植物果胶的生物合成与功能[J]. 植物学报, 2021, 56(2): 191-200. |
Liu PP, Zhang G, Li XJ. Biosynthesis and function of plant pectin[J]. Chin Bull Bot, 2021, 56(2): 191-200. | |
[10] |
Campbell MM, Sederoff RR. Variation in lignin content and composition(mechanisms of control and implications for the genetic improvement of plants)[J]. Plant Physiol, 1996, 110(1): 3-13.
pmid: 12226169 |
[11] |
Kang X, Kirui A, Dickwella Widanage MC, et al. Lignin-polysaccharide interactions in plant secondary cell walls revealed by solid-state NMR[J]. Nat Commun, 2019, 10(1): 347.
doi: 10.1038/s41467-018-08252-0 pmid: 30664653 |
[12] |
Coomey JH, Sibout R, Hazen SP. Grass secondary cell walls, Brachypodium distachyon as a model for discovery[J]. New Phytol, 2020, 227(6): 1649-1667.
doi: 10.1111/nph.v227.6 URL |
[13] |
Carpita NC. Structure and biogenesis of the cell walls of grasses[J]. Annu Rev Plant Physiol Plant Mol Biol, 1996, 47: 445-476.
doi: 10.1146/arplant.1996.47.issue-1 URL |
[14] |
Blaschek W, Haass D, Koehler H, et al. Cell wall regeneration by Nicotiana tabacum protoplast: chemical and biochemical aspects[J]. Plant Sci Lett, 1981, 22(1): 47-57.
doi: 10.1016/0304-4211(81)90281-9 URL |
[15] |
Meinert MC, Delmer DP. Changes in biochemical composition of the cell wall of the cotton fiber during development[J]. Plant Physiol, 1977, 59(6): 1088-1097.
doi: 10.1104/pp.59.6.1088 pmid: 16660000 |
[16] |
Ren YY, Sun PP, Wang XX, et al. Degradation of cell wall polysaccharides and change of related enzyme activities with fruit softening in Annona squamosa during storage[J]. Postharvest Biol Technol, 2020, 166: 111203.
doi: 10.1016/j.postharvbio.2020.111203 URL |
[17] | 李强, 姜山. 竹柳细胞壁综纤维素和木质素单体及含量研究[J]. 湖北农业科学, 2015, 54(1): 97-99, 104. |
Li Q, Jiang S. Holocellulose and lignin in cell wall of bamboo willow[J]. Hubei Agric Sci, 2015, 54(1): 97-99, 104. | |
[18] |
Abidi N, Cabrales L, Haigler CH. Changes in the cell wall and cellulose content of developing cotton fibers investigated by FTIR spectroscopy[J]. Carbohydr Polym, 2014, 100: 9-16.
doi: 10.1016/j.carbpol.2013.01.074 URL |
[19] |
Keegstra K, Talmadge KW, Bauer WD, et al. The structure of plant cell walls: a model of the walls of suspension-cultured Sycamore cells based on the interconnections of the macromolecular components[J]. Plant Physiol, 1973, 51(1): 188-197.
doi: 10.1104/pp.51.1.188 pmid: 16658282 |
[20] |
Cumming CM, Rizkallah HD, McKendrick KA, et al. Biosynthesis and cell-wall deposition of a pectin-xyloglucan complex in pea[J]. Planta, 2005, 222(3): 546-555.
pmid: 15912355 |
[21] |
Salmen L, Burgert I. Cell wall features with regard to mechanical performance. a review[J]. Holzforschung, 2009, 63(2): 121-129.
doi: 10.1515/HF.2009.011 URL |
[22] |
Zykwinska A, Thibault JF, Ralet MC. Competitive binding of pectin and xyloglucan with primary cell wall cellulose[J]. Carbohydr Polym, 2008, 74(4): 957-961.
doi: 10.1016/j.carbpol.2008.05.004 URL |
[23] |
Park YB, Cosgrove DJ. A revised architecture of primary cell walls based on biomechanical changes induced by substrate-specific endoglucanases[J]. Plant Physiol, 2012, 158(4): 1933-1943.
doi: 10.1104/pp.111.192880 pmid: 22362871 |
[24] |
Cosgrove DJ. Building an extensible cell wall[J]. Plant Physiol, 2022, 189(3): 1246-1277.
doi: 10.1093/plphys/kiac184 pmid: 35460252 |
[25] |
Cavalier DM, Lerouxel O, Neumetzler L, et al. Disrupting two Arabidopsis thaliana xylosyltransferase genes results in plants deficient in xyloglucan, a major primary cell wall component[J]. Plant Cell, 2008, 20(6): 1519-1537.
doi: 10.1105/tpc.108.059873 pmid: 18544630 |
[26] |
Kuki H, Yokoyama R, Kuroha T, et al. Xyloglucan is not essential for the formation and integrity of the cellulose network in the primary cell wall regenerated from Arabidopsis protoplasts[J]. Plants, 2020, 9(5): 629.
doi: 10.3390/plants9050629 URL |
[27] | Monika D, Claudia EV, Steve R, et al. Plant cell wall biosynthesis: making the bricks[J]. Annu Plant Rev, 2003, 8: 183-222. |
[28] | 张亚男. 生物降解与植物细胞壁结构的AFM单分子识别研究[D]. 南京: 南京航空航天大学, 2017. |
Zhang YN. The study of biodegradation and plant cell wall structure using AFM single molecular recognition technique[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017. | |
[29] |
Pi J, Cai JY. Cell topography and its quantitative imaging by AFM[J]. Methods Mol Biol, 2019, 1886: 99-113.
doi: 10.1007/978-1-4939-8894-5_6 pmid: 30374864 |
[30] | 杨静慧, 邱雪, 张海红, 等. 灵武长枣贮藏过程中细胞壁成分及其相关酶活性的变化[J]. 食品与发酵工业, 2022, 48(8): 64-69, 75. |
Yang JH, Qiu X, Zhang HH, et al. Changes in cell wall components and its related enzyme activities during the storage of Lingwu long jujube[J]. Food Ferment Ind, 2022, 48(8): 64-69, 75. | |
[31] |
Pieczywek PM, Cybulska J, Zdunek A. An atomic force microscopy study on the effect of β-galactosidase, α-L-rhamnosidase and α-L-arabinofuranosidase on the structure of pectin extracted from apple fruit using sodium carbonate[J]. Int J Mol Sci, 2020, 21(11): 4064.
doi: 10.3390/ijms21114064 URL |
[32] |
Adobes-Vidal M, Frey M, Keplinger T. Atomic force microscopy imaging of delignified secondary cell walls in liquid conditions facilitates interpretation of wood ultrastructure[J]. J Struct Biol, 2020, 211(2): 107532.
doi: 10.1016/j.jsb.2020.107532 URL |
[33] |
Crowe JD, Hao PC, Pattathil S, et al. Xylan is critical for proper bundling and alignment of cellulose microfibrils in plant secondary cell walls[J]. Front Plant Sci, 2021, 12: 737690.
doi: 10.3389/fpls.2021.737690 URL |
[34] |
Leszczuk A, Kozioł A, Szczuka E, et al. Analysis of AGP contribution to the dynamic assembly and mechanical properties of cell wall during pollen tube growth[J]. Plant Sci, 2019, 281: 9-18.
doi: S0168-9452(18)30935-X pmid: 30824065 |
[35] |
He Q, Zabotina OA, Yu CX. Principal component analysis facilitated fast and noninvasive Raman spectroscopic imaging of plant cell wall pectin distribution and interaction with enzymatic hydrolysis[J]. J Raman Spectrosc, 2020, 51(12): 2458-2467.
doi: 10.1002/jrs.v51.12 URL |
[36] |
Jin KX, Liu XG, Jiang ZH, et al. Delignification kinetics and selectivity in poplar cell wall with acidified sodium chlorite[J]. Ind Crops Prod, 2019, 136: 87-92.
doi: 10.1016/j.indcrop.2019.04.067 URL |
[37] |
Xu HM, Zhao YY, Suo YZ, et al. A label-free, fast and high-specificity technique for plant cell wall imaging and composition analysis[J]. Plant Methods, 2021, 17(1): 29-44.
doi: 10.1186/s13007-021-00730-9 pmid: 33741013 |
[38] |
Syed A, Smith EA. Raman imaging in cell membranes, lipid-rich organelles, and lipid bilayers[J]. Annu Rev Anal Chem, 2017, 10(1): 271-291.
doi: 10.1146/anchem.2017.10.issue-1 URL |
[39] | 陈涛, 虞之龙, 张先念, 等. 相干拉曼散射显微术[J]. 中国科学: 化学, 2012, 42(1): 1-16. |
Chen T, Yu ZL, Zhang XN, et al. Coherent Raman scattering microscopy[J]. Sci Sin Chimica, 2012, 42(1): 1-16. | |
[40] | Zeng YN, Himmel ME, Ding SY. Coherent Raman microscopy analysis of plant cell walls[M]//Biomass Conversion. Totowa, NJ: Humana Press, 2012: 49-60. |
[41] |
Zeng YN, Yarbrough JM, Mittal A, et al. In situ label-free imaging of hemicellulose in plant cell walls using stimulated Raman scattering microscopy[J]. Biotechnol Biofuels, 2016, 9: 256-272.
doi: 10.1186/s13068-016-0669-9 |
[42] |
Zhu N, Yang YF, Ji MB, et al. Label-free visualization of lignin deposition in loquats using complementary stimulated and spontaneous Raman microscopy[J]. Hortic Res, 2019, 6: 72-85.
doi: 10.1038/s41438-019-0153-3 |
[43] | He Q, Yang JY, Zabotina OA, et al. Surface-enhanced Raman spectroscopic chemical imaging reveals distribution of pectin and its co-localization with xyloglucan inside onion epidermal cell wall[J]. PLoS One, 2021, 16(5): e0250650. |
[44] |
Anderson CT, Wallace IS, Somerville CR. Metabolic click-labeling with a fucose analog reveals pectin delivery, architecture, and dynamics in Arabidopsis cell walls[J]. Proc Natl Acad Sci USA, 2012, 109(4): 1329-1334.
doi: 10.1073/pnas.1120429109 pmid: 22232683 |
[45] |
Dumont M, Lehner A, Vauzeilles B, et al. Plant cell wall imaging by metabolic click-mediated labelling of rhamnogalacturonan II using azido 3-deoxy-D-manno-oct-2-ulosonic acid[J]. Plant J, 2016, 85(3): 437-447.
doi: 10.1111/tpj.2016.85.issue-3 URL |
[46] |
Brown C, Martin AP, Grof CPL. The application of fourier transform mid-infrared(FTIR)spectroscopy to identify variation in cell wall composition of Setaria italica ecotypes[J]. J Integr Agric, 2017, 16(6): 1256-1267.
doi: 10.1016/S2095-3119(16)61574-5 URL |
[47] |
Alonso-Simón A, Encina AE, García-Angulo P, et al. FTIR spectroscopy monitoring of cell wall modifications during the habituation of bean(Phaseolus vulgaris L.) callus cultures to dichlobenil[J]. Plant Sci, 2004, 167(6): 1273-1281.
doi: 10.1016/j.plantsci.2004.06.025 URL |
[48] | 周枫然, 韩桥, 张体强, 等. 傅里叶变换红外光谱技术的应用及进展[J]. 化学试剂, 2021, 43(8): 1001-1009. |
Zhou FR, Han Q, Zhang TQ, et al. Application and progress of fourier transform infrared spectroscopy technology[J]. Chem Reag, 2021, 43(8): 1001-1009. | |
[49] | da Costa R, Allison G, Bosch M. Cell wall biomass preparation and fourier transform mid-infrared(FTIR)spectroscopy to study cell wall composition[J]. BIO-PROTOCOL, 2015, 5(11): e1494. |
[50] |
Wang J, Zhu JM, Huang RZ, et al. Investigation of cell wall composition related to stem lodging resistance in wheat(Triticum aestivum L.) by FTIR spectroscopy[J]. Plant Signal Behav, 2012, 7(7): 856-863.
doi: 10.4161/psb.20468 URL |
[51] |
Zhu JW, Wang HK, Guo F, et al. Cell wall polymer distribution in bamboo visualized with in situ imaging FTIR[J]. Carbohydr Polym, 2021, 274: 118653.
doi: 10.1016/j.carbpol.2021.118653 URL |
[52] |
Xiao NN, Bock P, Antreich SJ, et al. From the soft to the hard: changes in microchemistry during cell wall maturation of walnut shells[J]. Front Plant Sci, 2020, 11: 466.
doi: 10.3389/fpls.2020.00466 pmid: 32431720 |
[53] |
Cuello C, Marchand P, Laurans F, et al. ATR-FTIR microspectroscopy brings a novel insight into the study of cell wall chemistry at the cellular level[J]. Front Plant Sci, 2020, 11: 105.
doi: 10.3389/fpls.2020.00105 pmid: 32153612 |
[54] |
Olsson AM, Bjurhager I, Gerber L, et al. Ultra-structural organisation of cell wall polymers in normal and tension wood of aspen revealed by polarisation FTIR microspectroscopy[J]. Planta, 2011, 233(6): 1277-1286.
doi: 10.1007/s00425-011-1384-1 URL |
[55] |
Liesche J, Ziomkiewicz I, Schulz A. Super-resolution imaging with pontamine fast scarlet 4BS enables direct visualization of cellulose orientation and cell connection architecture in onion epidermis cells[J]. BMC Plant Biol, 2013, 13(1): 226.
doi: 10.1186/1471-2229-13-226 URL |
[56] |
Fahlén J, Salmén L. Cross-sectional structure of the secondary wall of wood fibers as affected by processing[J]. J Mater Sci, 2003, 38(1): 119-126.
doi: 10.1023/A:1021174118468 URL |
[57] |
Zhang Y, Yu JY, Wang X, et al. Molecular insights into the complex mechanics of plant epidermal cell walls[J]. Science, 2021, 372(6543): 706-711.
doi: 10.1126/science.abf2824 pmid: 33986175 |
[58] | 汪清焰, 刘斌美, 杨阳, 等. 水稻脆茎突变体细胞壁组分与茎秆力学性能的研究[J]. 生物学杂志, 2020, 37(1): 26-29. |
Wang QY, Liu BM, Yang Y, et al. Cell wall components and mechanical properties in brittle culm mutants of rice[J]. J Biol, 2020, 37(1): 26-29. | |
[59] | Kokubo A, Kuraishi S, Sakurai N. Culm strength of barley: correlation among maximum bending stress, cell wall dimensions, and cellulose content[J]. Plant Physiol, 1989(91): 876-882. |
[60] | 李帅伟, 郭志明, 尚军军, 等. 毛竹纤维细胞壁的黏弹性力学性能研究[J]. 应用力学学报, 2020, 37(4): 1398-1405, 1850. |
Li SW, Guo ZM, Shang JJ, et al. Study on viscoelastic properties of bamboo fiber cell walls[J]. Chin J Appl Mech, 2020, 37(4): 1398-1405, 1850. | |
[61] | 龙克莹, 王东, 林兰英, 等. 木材多尺度界面结构及其力学性能的研究进展[J]. 中国造纸学报, 2021, 36(1): 88-94. |
Long KY, Wang D, Lin LY, et al. Research progress in multi-scale interface structure and mechanical properties of wood[J]. Trans China Pulp Pap, 2021, 36(1): 88-94. | |
[62] | 刘苍伟, 苏明垒, 王思群, 等. 不同生长期毛竹材细胞壁力学性能与微纤丝角[J]. 林业科学, 2018, 54(1): 174-180. |
Liu CW, Su ML, Wang SQ, et al. Cell wall mechanical properties and microfibril angle of Phyllostachys edulis in different growth period[J]. Sci Silvae Sin, 2018, 54(1): 174-180. | |
[63] |
Bonham VA, Barnett JR. Fibre length and microfibril angle in silver birch(Betula pendula Roth)[J]. Holzforschung, 2001, 55(2): 159-162.
doi: 10.1515/HF.2001.026 URL |
[64] | 李青林, 毛罕平, 李萍萍, 等. 黄瓜叶肉细胞壁的微观力学性能[J]. 江苏大学学报: 自然科学版, 2012, 33(4): 435-439. |
Li QL, Mao HP, Li PP, et al. Micro-mechanics property of cucumber mesophyll cell wall[J]. J Jiangsu Univ Nat Sci Ed, 2012, 33(4): 435-439. | |
[65] |
Navi P, Stanzl-Tschegg S. Micromechanics of creep and relaxation of wood. a review.[J]. Holzforschung, 2009, 63(2): 186-195.
doi: 10.1515/HF.2009.013 URL |
[66] |
Zhang LJ, Gao CX, Mentink-Vigier F, et al. Arabinosyl deacetylase modulates the arabinoxylan acetylation profile and secondary wall formation[J]. Plant Cell, 2019, 31(5): 1113-1126.
doi: 10.1105/tpc.18.00894 URL |
[67] |
Lahaye M, Falourd X, Laillet B, et al. Cellulose, pectin and water in cell walls determine apple flesh viscoelastic mechanical properties[J]. Carbohydr Polym, 2020, 232: 115768.
doi: 10.1016/j.carbpol.2019.115768 URL |
[68] |
Khodayari A, Thielemans W, Hirn U, et al. Cellulose-hemicellulose interactions - A nanoscale view[J]. Carbohydr Polym, 2021, 270: 118364.
doi: 10.1016/j.carbpol.2021.118364 URL |
[1] | 钱虹萍, 陈博, 林金星, 崔亚宁. RNA聚合酶II动态调控及其成像技术的研究进展[J]. 生物技术通报, 2021, 37(4): 293-302. |
[2] | 公维丽,王禄山,张怀强. 植物细胞壁多糖合成酶系及真菌降解酶系[J]. 生物技术通报, 2015, 31(4): 149-165. |
[3] | 李思经;. 植物抗病机理[J]. , 1997, 0(05): 51-52. |
[4] | 陈璋;. 植物—病原真菌相互作用的分子细胞生物学[J]. , 1993, 0(12): 3-6. |
[5] | 李思经;. 从植物组织和细胞培养获得有价值的药物[J]. , 1991, 0(10): 21-22. |
[6] | 李思经;. 血块成像试剂[J]. , 1991, 0(08): 19-20. |
[7] | 朱遐;. 细胞壁碎片对植物体外形态发生的调节[J]. , 1990, 0(09): 5-6. |
[8] | Howard H.Weetall;刘刚;. 固定在无机支持物上的酶[J]. , 1986, 0(12): 1-8. |
[9] | 白田;. 木聚糖的酶解和利用[J]. , 1985, 0(06): 113-114. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||