生物技术通报 ›› 2023, Vol. 39 ›› Issue (7): 105-112.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1475
收稿日期:
2022-12-02
出版日期:
2023-07-26
发布日期:
2023-08-17
通讯作者:
封佳丽,女,博士,讲师,研究方向:微生物发酵、废弃物资源化;E-mail: fengjl@wfu.edu.cn作者简介:
李焕敏,女,研究方向:生物技术;E-mail: 18263521579@163.com
基金资助:
LI Huan-min(), GAO Feng-tao, LI Wei-zhong, WANG Jin-qing, FENG Jia-li()
Received:
2022-12-02
Published:
2023-07-26
Online:
2023-08-17
摘要:
微生物在实际应用中表现出巨大的功能潜力,但游离的微生物生产成本较高、作用效率较低、环境耐受性较差及可回收率较低,而固定化技术可以提高微生物上述性质且已在多个领域得到应用。固定化方法有多种,以吸附为基础的联合固定取得较显著成果,提高载体材料对微生物的吸附量及吸附力具有重要意义,开发高效、耐用、低廉的载体材料是微生物固定化技术得以推广应用的关键。综述了天然生物质材料固定微生物并用于环境治理的应用现状。对基于生物质材料的载体改性优化及菌丝球替代载体的相关研究进行了总结及展望,强调未来通过化学工程与基因工程相结合的策略调控微生物固定化应用效率。
李焕敏, 高峰涛, 李伟忠, 王金庆, 封佳丽. 天然生物质材料作为固定化载体的研究应用进展[J]. 生物技术通报, 2023, 39(7): 105-112.
LI Huan-min, GAO Feng-tao, LI Wei-zhong, WANG Jin-qing, FENG Jia-li. Progress in Research and Application of Natural Bio-materials as Immobilized Carriers[J]. Biotechnology Bulletin, 2023, 39(7): 105-112.
固定化方法Immobilization method | 优点Advantage | 缺点Disadvantage | 载体材料举例Examples of carriers |
---|---|---|---|
吸附法 Adsorption | 制备简单、条件温和、传质性能好、良好保留微生物/酶活性、成本低廉 | 结合力弱、抗冲击载荷能力弱、附着不牢 | 活性炭、高岭土、蛭石、硅藻土、其他多孔材料 |
包埋法 Embedding | 制备比较简单、对微生物活性影响不大、性质稳定、强度高、微生物流失少、成本低廉 | 空间位阻大,传质阻力大、载体不可再生、不适合固定好氧微生物 | 琼脂、海藻酸钠、聚乙烯醇等 |
交联法 Crosslinking | 结合力强、稳定性好 | 过程复杂、反应条件苛刻且难以控制、不可逆、细胞毒性、一般用于酶固定而不是全细胞固定 | 戊二醛等 |
表1 常见固定化方法的优缺点及载体材料
Table 1 Advantages, disadvantages and carriers of common immobilization methods
固定化方法Immobilization method | 优点Advantage | 缺点Disadvantage | 载体材料举例Examples of carriers |
---|---|---|---|
吸附法 Adsorption | 制备简单、条件温和、传质性能好、良好保留微生物/酶活性、成本低廉 | 结合力弱、抗冲击载荷能力弱、附着不牢 | 活性炭、高岭土、蛭石、硅藻土、其他多孔材料 |
包埋法 Embedding | 制备比较简单、对微生物活性影响不大、性质稳定、强度高、微生物流失少、成本低廉 | 空间位阻大,传质阻力大、载体不可再生、不适合固定好氧微生物 | 琼脂、海藻酸钠、聚乙烯醇等 |
交联法 Crosslinking | 结合力强、稳定性好 | 过程复杂、反应条件苛刻且难以控制、不可逆、细胞毒性、一般用于酶固定而不是全细胞固定 | 戊二醛等 |
[1] | 张立秋. 微生物制剂在养殖业中的应用[J]. 吉林畜牧兽医, 2020, 41(10): 104-105. |
Zhang LQ. Application of microbial preparation in aquaculture[J]. Jilin Animal Husb Vet Med, 2020, 41(10): 104-105. | |
[2] | 于振莲. 微生物菌肥在农业生产中的价值和应用策略探究[J]. 南方农业, 2020, 14(8): 189-190. |
Yu ZL. Study on the value and application strategy of microbial bacterial fertilizer in agricultural production[J]. South China Agric, 2020, 14(8): 189-190. | |
[3] | 杨雯雯, 郭志芳. 微生物在食品加工中的应用探析[J]. 现代食品, 2020(18): 68-69, 76. |
Yang WW, Guo ZF. Application of microorganism in food processing[J]. Mod Food, 2020(18): 68-69, 76. | |
[4] |
Nie HY, Nie MQ, Diwu ZJ, et al. Biological treatment of high salinity and low pH produced water in oilfield with immobilized cells of P. aeruginosa NY3 in a pilot-scale[J]. J Hazard Mater, 2020, 381: 121232.
doi: 10.1016/j.jhazmat.2019.121232 URL |
[5] |
Feng JL, Yang HH, Guo LJ. The photosynthetic hydrogen production performance of a newly isolated Rhodobacter capsulatus JL1 with various carbon sources[J]. Int J Hydrog Energy, 2018, 43(30): 13860-13868.
doi: 10.1016/j.ijhydene.2018.03.144 URL |
[6] |
Tiang MF, Alif Fitri Hanipa M, Abdul PM, et al. Recent advanced biotechnological strategies to enhance photo-fermentative biohydrogen production by purple non-sulphur bacteria: an overview[J]. Int J Hydrog Energy, 2020, 45(24): 13211-13230.
doi: 10.1016/j.ijhydene.2020.03.033 URL |
[7] |
Zhang BH, Weng YQ, Xu H, et al. Enzyme immobilization for biodiesel production[J]. Appl Microbiol Biotechnol, 2012, 93(1): 61-70.
doi: 10.1007/s00253-011-3672-x pmid: 22083277 |
[8] | 刘雪凌, 林贝. 载体固定化酶的应用及前景展望[J]. 广州化工, 2020, 48(9): 22-24. |
Liu XL, Lin B. Application and prospect of carrier immobilized enzyme[J]. Guangzhou Chem Ind, 2020, 48(9): 22-24. | |
[9] |
Zhou YZ, Yang J, Wang XL, et al. Bio-beads with immobilized anaerobic bacteria, zero-valent iron, and active carbon for the removal of trichloroethane from groundwater[J]. Environ Sci Pollut Res, 2014, 21(19): 11500-11509.
doi: 10.1007/s11356-014-3110-6 URL |
[10] | 魏大鹏, 单洪伟, 马甡. 复合载体固定化细菌降解养殖水体中氨氮和亚硝酸盐氮的研究[J]. 渔业现代化, 2014, 41(3): 11-14, 42. |
Wei DP, Shan HW, Ma S. Study on removing ammonia nitrogen and nitrite nitrogen from aquaculture wastewater by immobilized microorganisms with composite carrier[J]. Fish Mod, 2014, 41(3): 11-14, 42. | |
[11] | 康丽峰, 相欣然, 薛誉, 等. 有机-无机纳米复合材料固定化猪胰脂肪酶催化消旋α-苯乙醇转酯化拆分反应[J]. 南京工业大学学报: 自然科学版, 2020, 42(2): 262-268. |
Kang LF, Xiang XR, Xue Y, et al. Transesterification resolution of racemic α-phenylethanol catalyzed by porcine pancreatic lipase immobilized on organic-inorganic nanocomposite[J]. J Nanjing Tech Univ Nat Sci Ed, 2020, 42(2): 262-268. | |
[12] | 张桂芝, 廖强, 王永忠. 微生物固定化载体材料研究进展[J]. 材料导报, 2011, 25(17): 105-109. |
Zhang GZ, Liao Q, Wang YZ. Research progress in immobilized microorganisms carrier material[J]. Mater Rev, 2011, 25(17): 105-109. | |
[13] |
Verma DK, Hasan SH, Ranjan D, et al. Modified biomass of Phan-erochaete chrysosporium immobilized on luffa sponge for biosorption of hexavalent chromium[J]. Int J Environ Sci Technol, 2014, 11(7): 1927-1938.
doi: 10.1007/s13762-013-0345-6 URL |
[14] | 李婷, 任源, 韦朝海. 固定化Lysinibacillus cresolivorans的PVA-SA-PHB-AC复合载体制备及间甲酚的降解[J]. 环境科学, 2013, 34(7): 2899-2905. |
Li T, Ren Y, Wei CH. Preparation of PVA-SA-PHB-AC composite carrier and m-cresol biodegradation by immobilized Lysinibacillus cresolivorans[J]. Environ Sci, 2013, 34(7): 2899-2905. | |
[15] | Bao MT, Chen QG, Gong YJ, et al. Removal efficiency of heavy oil by free and immobilised microorganisms on laboratory-scale[J]. Can J Chem Eng, 2013, 91(1): 1-8. |
[16] |
Maleki M, Motamedi M, Sedighi M, et al. Experimental study and kinetic modeling of cometabolic degradation of phenol and p-nitrophenol by loofa-immobilized Ralstonia eutropha[J]. Biotechnol Bioproc E, 2015, 20(1): 124-130.
doi: 10.1007/s12257-014-0593-4 URL |
[17] | 李岩, 李成, 张小雪, 等. 番茄秸秆固定化芽孢杆菌M1对3环PAHs污染老化土壤修复效果[J]. 农业资源与环境学报, 2019, 36(6): 806-813. |
Li Y, Li C, Zhang XX, et al. Remediation effects of 3-ring PAH-contaminated soil by immobilized Bacillus sp. M1 with tomato straw in coal mining area[J]. J Agric Resour Environ, 2019, 36(6): 806-813. | |
[18] | 黄清铧, 王庆福, 杨朴希, 等. 甘蔗纤维固定灵芝菌丝及其在液体发酵中的应用[J]. 菌物学报, 2020, 39(1): 110-119. |
Huang QH, Wang QF, Yang PX, et al. Ganoderma lingzhi mycelia immobilized with sugarcane fiber and its application in liquid fermentation[J]. Mycosystema, 2020, 39(1): 110-119. | |
[19] |
Reddy LV, Reddy LP, Wee YJ, et al. Production and characterization of wine with sugarcane piece immobilized yeast biocatalyst[J]. Food Bioprocess Technol, 2011, 4(1): 142-148.
doi: 10.1007/s11947-009-0321-9 URL |
[20] | 陈辉, 黄惠华. 改性菠萝皮渣纤维素固定化菠萝蛋白酶研究[J]. 食品科学技术学报, 2020, 38(2): 59-65. |
Chen H, Huang HH. Study on immobilization of bromelain by modified pineapple peel residue cellulose[J]. J Food Sci Technol, 2020, 38(2): 59-65. | |
[21] | 王岩, 蒋泽强, 范海琼, 等. 菌种固定化技术生产香芋普洱茶醋的研究[J]. 江苏调味副食品, 2022, 39(3): 13-16. |
Wang Y, Jiang ZQ, Fan HQ, et al. Study on production of taro Pu'er tea vinegar by immobilized strain[J]. Jiangsu Condiment Subsid Food, 2022, 39(3): 13-16. | |
[22] |
Manju NJ, Deepesh V, Achuthan C, et al. Immobilization of nitrifying bacterial consortia on wood particles for bioaugmenting nitrification in shrimp culture systems[J]. Aquaculture, 2009, 294(1/2): 65-75.
doi: 10.1016/j.aquaculture.2009.05.008 URL |
[23] |
Deng M, Zhao XL, Senbati Y, et al. Nitrogen removal by heterotrophic nitrifying and aerobic denitrifying bacterium Pseudomonas sp. DM02: removal performance, mechanism and immobilized application for real aquaculture wastewater treatment[J]. Bioresour Technol, 2021, 322: 124555.
doi: 10.1016/j.biortech.2020.124555 URL |
[24] | 汪涛, 张瑶, 汤众如, 等. 生物质炭的制备、改性及其在固定化中的应用[J]. 黑龙江科学, 2018, 9(9): 22-23. |
Wang T, Zhang Y, Tang ZR, et al. Biomass carbon preparation, modification and its application in immobilization[J]. Heilongjiang Sci, 2018, 9(9): 22-23. | |
[25] | 张宏, 朱振亚, 姜英宇, 等. 壳聚糖和FeS改性生物炭吸附四环素: 吸附机制与位能分布[J]. 环境科学学报, 2020, 40(12): 4306-4317. |
Zhang H, Zhu ZY, Jiang YY, et al. Study on the adsorption of tetracycline by chitosan and FeS modified biochar: Adsorption mechanism and site energy distribution[J]. Acta Sci Circumstantiae, 2020, 40(12): 4306-4317. | |
[26] | 韩本勇, 周志梅, 耿树香, 等. 改性核桃壳固定化脂肪酶研究[J]. 江苏农业科学, 2020, 48(2): 282-286. |
Han BY, Zhou ZM, Geng SX, et al. Immobilization of lipase on modified walnut shell[J]. Jiangsu Agric Sci, 2020, 48(2): 282-286. | |
[27] | 刘宇程, 吕忠祥, 刘骞, 等. 改性秸秆制备固定化微生物及对钻井泥浆的处理[J]. 化工环保, 2018, 38(3): 343-348. |
Liu YC, Lü ZX, Liu Q, et al. Preparation of immobilized microorganisms by modified straw and treatment of drilling mud[J]. Environ Prot Chem Ind, 2018, 38(3): 343-348. | |
[28] |
Lou LP, Huang Q, Lou YL, et al. Adsorption and degradation in the removal of nonylphenol from water by cells immobilized on biochar[J]. Chemosphere, 2019, 228: 676-684.
doi: S0045-6535(19)30805-7 pmid: 31063914 |
[29] | 刘玉玲, 朱虎成, 彭鸥, 等. 玉米秸秆生物炭固化细菌对镉砷吸附[J]. 环境科学, 2020, 41(9): 4322-4332. |
Liu YL, Zhu HC, Peng O, et al. Adsorption of cadmium and arsenic by corn stalk biochar solidified microorganism[J]. Environ Sci, 2020, 41(9): 4322-4332. | |
[30] | 郑华楠, 宋晴, 朱义, 等. 芦苇生物炭复合载体固定化微生物去除水中氨氮[J]. 环境工程学报, 2019, 13(2): 310-318. |
Zheng HN, Song Q, Zhu Y, et al. Removing ammonia nitrogen from wastewater by immobilized microorganism with reed biochar composite carrier[J]. Chin J Environ Eng, 2019, 13(2): 310-318. | |
[31] | 任静, 沈佳敏, 张磊, 等. 生物炭固定化多环芳烃高效降解菌剂的制备及稳定性[J]. 环境科学学报, 2020, 40(12): 4517-4523. |
Ren J, Shen JM, Zhang L, et al. Preparation and stability of biochar for the immobilization of polycyclic aromatic hydrocarbons degradating-bacteria[J]. Acta Sci Circumstantiae, 2020, 40(12): 4517-4523. | |
[32] | 吴诗雪, 王欣, 陈灿, 等. 凤眼莲、稻草和污泥制备生物炭的特性表征与环境影响解析[J]. 环境科学学报, 2015, 35(12): 4021-4032. |
Wu SX, Wang X, Chen C, et al. Characterization of biochar derived from water hyacinth, rice straw and sewage sludge and their environmental implications[J]. Acta Sci Circumstantiae, 2015, 35(12): 4021-4032. | |
[33] |
Wang L, Yu TM, Ma F, et al. Novel self-immobilized biomass mixture based on mycelium pellets for wastewater treatment: a review[J]. Water Environ Res, 2019, 91(2): 93-100.
doi: 10.1002/wer.1026 pmid: 30735302 |
[34] | 董怡华, 李鹏, 何江海, 等. 两种方法形成菌丝球固定2-氯酚降解菌的对比[J]. 微生物学报, 2016, 56(5): 753-764. |
Dong YH, Li P, He JH, et al. Comparison of two mycelial pellets formation methods to immobilize o-chlorophenol degradation bacteria[J]. Acta Microbiol Sin, 2016, 56(5): 753-764. | |
[35] | 陈慧英. 由高产木质纤维素酶的海洋微生物组成的双菌种固定化体系的构建及应用[D]. 杭州: 浙江大学, 2014. |
Chen HY. Construction of a novel two-specie whole-cell immobilization system by marine-derived fungi and its application[D]. Hangzhou: Zhejiang University, 2014. | |
[36] | 陈天鹏, 朱家庆, 柳东, 等. 基于微生物群体感应的固定化研究进展[J]. 生物加工过程, 2020, 18(2): 170-176. |
Chen TP, Zhu JQ, Liu D, et al. Research progress in immobilized fermentation based on quorum sensing[J]. Chin J Bioprocess Eng, 2020, 18(2): 170-176. | |
[37] |
Ling N, Wang X, Liu DY, et al. Role of fliC on biofilm formation, adhesion, and cell motility in Cronobacter malonaticus and regulation of luxS[J]. Food Chem Toxicol, 2021, 149: 111940.
doi: 10.1016/j.fct.2020.111940 pmid: 33417975 |
[38] | 何春霞. 天然生物质吸附剂研究进展[J]. 轻工科技, 2022, 38(5): 53-57. |
He CX. Research progress of natural biomass adsorbent[J]. Light Ind Sci Technol, 2022, 38(5): 53-57. | |
[39] | 杨丹丽, 黎婷婷, 聂亚, 等. 生物质吸附材料在水污染治理中的研究进展[J]. 山东化工, 2022, 51(18): 187-188, 192. |
Yang DL, Li TT, Nie Y, et al. Research progress of biomass adsorption materials in water pollution treatment[J]. Shandong Chem Ind, 2022, 51(18): 187-188, 192. | |
[40] | 张璐, 陈岩, 肖佳楠, 等. 废弃农林生物质及其改性材料去除水中磷酸盐研究进展[J]. 济南大学学报: 自然科学版, 2022, 36(5): 541-548. |
Zhang L, Chen Y, Xiao JN, et al. Research progress on phosphate removal from water by using waste agricultural and forestry biomass and its modified materials[J]. J Univ Jinan Sci Technol, 2022, 36(5): 541-548. |
[1] | 张坤, 闫畅, 田新朋. 微生物单细胞分离方法研究进展[J]. 生物技术通报, 2023, 39(9): 1-11. |
[2] | 赵志祥, 王殿东, 周亚林, 王培, 严婉荣, 严蓓, 罗路云, 张卓. 枯草芽孢杆菌Ya-1对辣椒枯萎病的防治及其对根际真菌群落的影响[J]. 生物技术通报, 2023, 39(9): 213-224. |
[3] | 程亚楠, 张文聪, 周圆, 孙雪, 李玉, 李庆刚. 乳酸乳球菌生产2'-岩藻糖基乳糖的途径构建及发酵培养基优化[J]. 生物技术通报, 2023, 39(9): 84-96. |
[4] | 江润海, 姜冉冉, 朱城强, 侯秀丽. 微生物强化植物修复铅污染土壤的机制研究进展[J]. 生物技术通报, 2023, 39(8): 114-125. |
[5] | 赵林艳, 徐武美, 王豪吉, 王昆艳, 魏富刚, 杨绍周, 官会林. 施用生物炭对连作三七根际真菌群落与存活率的影响[J]. 生物技术通报, 2023, 39(7): 219-227. |
[6] | 徐汝悦, 王子霄, 沈禄, 吴蓉蓉, 姚芳婷, 谭中原, 刘恒蔚, 张文超. Cr(VI)的生物修复技术研究进展[J]. 生物技术通报, 2023, 39(6): 49-60. |
[7] | 张晶, 张浩睿, 曹云, 黄红英, 曲萍, 张志萍. 嗜热纤维素降解菌研究进展[J]. 生物技术通报, 2023, 39(6): 73-87. |
[8] | 余洋, 刘天海, 刘理旭, 唐杰, 彭卫红, 陈阳, 谭昊. 羊肚菌菌种生产车间气溶胶微生物群落研究[J]. 生物技术通报, 2023, 39(5): 267-275. |
[9] | 雷彩荣, 郭晓鹏, 柴冉, 张苗苗, 任军乐, 陆栋. 组学技术在重离子辐射微生物诱变育种中的应用[J]. 生物技术通报, 2023, 39(5): 54-62. |
[10] | 张华香, 徐晓婷, 郑云婷, 肖春桥. 溶磷微生物在钝化和植物修复重金属污染土壤中的作用[J]. 生物技术通报, 2023, 39(3): 52-58. |
[11] | 李凯航, 王浩臣, 程可心, 杨艳, 金一, 何晓青. 全基因组关联分析研究植物与微生物组的互作遗传机制[J]. 生物技术通报, 2023, 39(2): 24-34. |
[12] | 李昕悦, 周明海, 樊亚超, 廖莎, 张风丽, 刘晨光, 孙悦, 张霖, 赵心清. 基于转运蛋白工程提升微生物菌株耐受性和生物制造效率的研究进展[J]. 生物技术通报, 2023, 39(11): 123-136. |
[13] | 胡锦超, 沈文琦, 徐超业, 樊雅祺, 卢浩宇, 蒋雯杰, 李世龙, 晋洪晨, 骆健美, 王敏. 微生物酸胁迫耐受性能强化的研究进展[J]. 生物技术通报, 2023, 39(11): 137-149. |
[14] | 王晨宇, 周楚源, 何堤, 樊梓豪, 王梦梦, 杨柳燕. 多聚磷酸盐在微生物抗环境胁迫中的作用及机制[J]. 生物技术通报, 2023, 39(11): 168-181. |
[15] | 万其武, 包旭东, 丁柯, 牟华明, 罗阳. 微流控技术在病原微生物检测中的研究进展[J]. 生物技术通报, 2023, 39(10): 107-114. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||