[1] |
Zhu JW. Mammalian cell protein expression for biopharmaceutical production[J]. Biotechnol Adv, 2012, 30(5): 1158-1170.
doi: 10.1016/j.biotechadv.2011.08.022
pmid: 21968146
|
[2] |
Godbey WT, Wu KK, Mikos AG. Poly(ethylenimine)and its role in gene delivery[J]. J Control Release, 1999, 60(2/3): 149-160.
doi: 10.1016/S0168-3659(99)00090-5
URL
|
[3] |
Coll JL, Chollet P, Brambilla E, et al. In vivo delivery to tumors of DNA complexed with linear polyethylenimine[J]. Hum Gene Ther, 1999, 10(10): 1659-1666.
pmid: 10428211
|
[4] |
Wurm FM. Production of recombinant protein therapeutics in cultivated mammalian cells[J]. Nat Biotechnol, 2004, 22(11): 1393-1398.
doi: 10.1038/nbt1026
pmid: 15529164
|
[5] |
Kim TK, Eberwine JH. Mammalian cell transfection: the present and the future[J]. Anal Bioanal Chem, 2010, 397(8): 3173-3178.
doi: 10.1007/s00216-010-3821-6
pmid: 20549496
|
[6] |
Lai WF. In vivo nucleic acid delivery with PEI and its derivatives: current status and perspectives[J]. Expert Rev Med Devices, 2011, 8(2): 173-185.
doi: 10.1586/erd.10.83
URL
|
[7] |
Tan E, Chin CSH, Lim ZFS, et al. HEK293 cell line as a platform to produce recombinant proteins and viral vectors[J]. Front Bioeng Biotechnol, 2021, 9: 796991.
doi: 10.3389/fbioe.2021.796991
URL
|
[8] |
Gutiérrez-Granados S, Cervera L, Kamen AA, et al. Advancements in mammalian cell transient gene expression(TGE)technology for accelerated production of biologics[J]. Crit Rev Biotechnol, 2018, 38(6): 918-940.
doi: 10.1080/07388551.2017.1419459
pmid: 29295632
|
[9] |
Torabfam GC, Yetisgin AA, Erdem C, et al. A feasibility study of different commercially available serum-free mediums to enhance lentivirus and adeno-associated virus production in HEK 293 suspension cells[J]. Cytotechnology, 2022, 74(6): 635-655.
doi: 10.1007/s10616-022-00551-1
pmid: 36389283
|
[10] |
Cervera L, Gutiérrez-Granados S, Berrow NS, et al. Extended gene expression by medium exchange and repeated transient transfection for recombinant protein production enhancement[J]. Biotechnol Bioeng, 2015, 112(5): 934-946.
doi: 10.1002/bit.25503
pmid: 25421734
|
[11] |
Dekevic G, Tasto L, Czermak P, et al. Statistical experimental designs to optimize the transient transfection of HEK 293T cells and determine a transfer criterion from adherent cells to larger-scale cell suspension cultures[J]. J Biotechnol, 2022, 346: 23-34.
doi: 10.1016/j.jbiotec.2022.01.004
URL
|
[12] |
Park JY, Lim BP, Lee K, et al. Scalable production of adeno-associated virus type 2 vectors via suspension transfection[J]. Biotechnol Bioeng, 2006, 94(3): 416-430.
pmid: 16622883
|
[13] |
Abbott WM, Middleton B, Kartberg F, et al. Optimisation of a simple method to transiently transfect a CHO cell line in high-throughput and at large scale[J]. Protein Expr Purif, 2015, 116: 113-119.
doi: 10.1016/j.pep.2015.08.016
URL
|
[14] |
Mercedes SM, Alain G, Yves D, et al. Production of lentiviral vectors by large-scale transient transfection of suspension cultures and affinity chromatography purification[J]. Biotechnol Bioeng, 2007, 98(4): 789-99.
pmid: 17461423
|
[15] |
Haldankar R, Li DQ, Saremi Z, et al. Serum-free suspensin large-scale transient transfection of CHO cells in WAVE bioreactors[J]. Mol Biotechnol, 2006, 34(2): 191-199.
pmid: 17172664
|
[16] |
van Gaal EVB, van Eijk R, Oosting RS, et al. How to screen non-viral gene delivery systems in vitro?[J]. J Control Release, 2011, 154(3): 218-232.
doi: 10.1016/j.jconrel.2011.05.001
URL
|
[17] |
Pham PL, Perret S, Doan HC, et al. Large-scale transient transfection of serum-free suspension-growing HEK293 EBNA1 cells: peptone additives improve cell growth and transfection efficiency[J]. Biotechnol Bioeng, 2003, 84(3): 332-342.
pmid: 12968287
|
[18] |
Vega MC. Advanced technologies for protein complex production and characterization[J]. Anticancer Research, 2016, 36(8): 4375.
pmid: 27466587
|
[19] |
Eberhardy SR, Radzniak L, Liu Z. Iron(III)citrate inhibits polyethylenimine-mediated transient transfection of Chinese hamster ovary cells in serum-free medium[J]. Cytotechnology, 2009, 60(1): 1-9.
doi: 10.1007/s10616-009-9198-8
URL
|
[20] |
Yu Y, Kovacevic Z, Richardson DR. Tuning cell cycle regulation with an iron key[J]. Cell Cycle, 2007, 6(16): 1982-1994.
pmid: 17721086
|
[21] |
Bai YL, Wu CJ, Zhao J, et al. Role of iron and sodium citrate in animal protein-free CHO cell culture medium on cell growth and monoclonal antibody production[J]. Biotechnol Prog, 2011, 27(1): 209-219.
doi: 10.1002/btpr.v27.1
URL
|
[22] |
Capella Roca B, Lao NT, Clynes M, et al. Investigation and circumvention of transfection inhibition by ferric ammonium citrate in serum-free media for Chinese hamster ovary cells[J]. Biotechnol Prog, 2020, 36(3): e2954.
doi: 10.1002/btpr.2954
URL
|
[23] |
Jorge AF, Röder R, Kos P, et al. Combining polyethylenimine and Fe(III)for mediating pDNA transfection[J]. Biochim Biophys Acta Gen Subj, 2015, 1850(6): 1325-1335.
doi: 10.1016/j.bbagen.2015.02.007
URL
|
[24] |
Hentze MW, Muckenthaler MU, Andrews NC. Balancing acts: molecular control of mammalian iron metabolism[J]. Cell, 2004, 117(3): 285-297.
doi: 10.1016/s0092-8674(04)00343-5
pmid: 15109490
|
[25] |
Prabha S, Zhou WZ, Panyam J, et al. Size-dependency of nanoparticle-mediated gene transfection: studies with fractionated nanoparticles[J]. Int J Pharm, 2002, 244(1/2): 105-115.
doi: 10.1016/S0378-5173(02)00315-0
URL
|
[26] |
van Asbeck AH, Beyerle A, McNeill H, et al. Molecular parameters of siRNA-cell penetrating peptide nano complexes for efficient cellular delivery[J]. ACS Nano, 2013, 7(5): 3797-3807.
doi: 10.1021/nn305754c
URL
|