生物技术通报 ›› 2024, Vol. 40 ›› Issue (10): 30-40.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0959
收稿日期:
2024-09-30
出版日期:
2024-10-26
发布日期:
2024-11-20
通讯作者:
何跃辉,博士,教授,研究方向:植物开花时间调控的分子与表观遗传机理;E-mail: yhhe@pku.edu.cn作者简介:
牛德,博士,副研究员,研究方向:春化调控小麦开花的机制;E-mail: de.niu@pku-iaas.edu.cn
基金资助:
Received:
2024-09-30
Published:
2024-10-26
Online:
2024-11-20
摘要:
小麦(Triticum aestivum, AABBDD)是全球范围内重要的粮食作物之一,也是我国仅次于水稻的第二大粮食作物。小麦的广适性和生态类型多样性与其开花时间密切相关,而开花时间也是决定小麦产量及品质的一个重要的农艺性状。冬季的持续低温和春夏的长日照是确保冬小麦适时开花结实的两个关键季节性因素,小麦分别通过春化作用路径和光周期调控路径来感知并响应这两种环境信号,从而适时开花结实。本文分别对小麦春化途径和光周期调控途径进行了概述,对目前研究不足进行了分析,并对今后的研究方向进行了展望。
牛德, 何跃辉. 季节性因素调控小麦开花时间的分子与表观遗传机制[J]. 生物技术通报, 2024, 40(10): 30-40.
NIU De, HE Yue-hui. Molecular Epigenetic Understanding of Seasonal Regulation of Flowering Time in Wheat[J]. Biotechnology Bulletin, 2024, 40(10): 30-40.
图1 小麦光周期信号调控成花转变的分子途径 长日照条件下,光敏素感受光信号后,抑制晚间复合体(Evening Complex,EC)的功能,从而解除其对PPD1表达的抑制,PPD1促进VRN3表达,进而促进成花转变
Fig. 1 Molecular pathway for photoperiodic regulation of flowering in wheat In long days, phytochromes senses light signals and further inhibits the function of the Evening Complex(EC), which in turn relieves the repression of PPD1 expression by EC. PPD1 further promotes VRN3 expression, thereby promoting the transition to flowering
图2 季节因素与小麦开花调控示意图 图示冬小麦生长周期与一年四季(秋季9-11月、冬季12-翌年2月、春季3-5月及夏季6-8月)温度及日照长度的对应关系。我国冬小麦主产区一般于每年10-11月播种,翌年5-6月成熟收获。日照时长显示我国北方主要地区(北纬30°-北纬50°)一年中的白天时长变化趋势。温度所示1960-2016年我国北方冬小麦主产区一年中的平均气温变化趋势[103]。小麦萌发后,VRN2被光激活表达并且表达模式受生物钟调控,VRN2抑制VRN3表达;随着冬季低温,VRN1被逐渐诱导表达,从而逐渐抑制VRN2的表达;随着春季日照时间变长及温度升高,VRN3在多种因素作用下逐渐被诱导表达,VRN1-VRN3形成正反馈调控,继续抑制VRN2的表达并促使小麦逐渐从营养生长期向生殖生长期转变;随着小麦开花结实,小麦胚中VRN1、VRN2及 VRN3的表达陆续被抑制,以便开始新的生命周期
Fig. 2 Seasonal factors and flowering regulation of wheat This schematic drawing shows the relationship between the growth cycle of winter wheat and seasons(autumn, September-November; winter, December-February; spring, March-May; summer, June-August). Winter wheat in China is typically sown in October and November, and harvested in May or June of the coming year. The daylength curve shows the variation trend of daytime in northern regions of China(30°N-50°N)during the seasons. The temperature curve shows the average temperature variation trend in the main winter-wheat production areas in China from 1960 to 2016[103]. After wheat germination, VRN2 expression was activated by light and regulated by circadian clock, VRN2 inhibited VRN3 expression. With the decrease of temperature in winter, the expression of VRN1 was gradually induced and the expression of VRN2 was gradually inhibited. With the increase of daylength and temperature in spring, VRN3 expression was gradually induced by various factors. VRN1-VRN3 constitutes a positive feedback regulation loop, which represses VRN2 expression and promotes the switch from the vegetative phase to reproduction gradually. After the fertilization following flowering, the expression of VRN1 in embryogenesis was turned off in order to start a new life cycle of winter wheat
[1] | He YH, Chen T, Zeng XL. Genetic and epigenetic understanding of the seasonal timing of flowering[J]. Plant Commun, 2019, 1(1): 100008. |
[2] |
Luo X, He YH. Experiencing winter for spring flowering: a molecular epigenetic perspective on vernalization[J]. J Integr Plant Biol, 2020, 62(1): 104-117.
doi: 10.1111/jipb.12896 |
[3] |
He YH, Li ZC. Epigenetic environmental memories in plants: establishment, maintenance, and reprogramming[J]. Trends Genet, 2018, 34(11): 856-866.
doi: S0168-9525(18)30127-6 pmid: 30144941 |
[4] |
Johansson M, Staiger D. Time to flower: interplay between photoperiod and the circadian clock[J]. J Exp Bot, 2015, 66(3): 719-730.
doi: 10.1093/jxb/eru441 pmid: 25371508 |
[5] |
Andrés F, Coupland G. The genetic basis of flowering responses to seasonal cues[J]. Nat Rev Genet, 2012, 13(9): 627-639.
doi: 10.1038/nrg3291 pmid: 22898651 |
[6] |
Fornara F, de Montaigu A, Coupland G. SnapShot: control of flowering in Arabidopsis[J]. Cell, 2010, 141(3): 550, 550.e1-e2.
doi: 10.1016/j.cell.2010.04.024 pmid: 20434991 |
[7] | Kobayashi Y, Weigel D. Move on up, it's time for change—mobile signals controlling photoperiod-dependent flowering[J]. Genes Dev, 2007, 21(19): 2371-2384. |
[8] | Ping Q, Cheng PL, Huang F, et al. The heterologous expression in Arabidopsis thaliana of a Chrysanthemum gene encoding the BBX family transcription factor CmBBX13 delays flowering[J]. Plant Physiol Biochem, 2019, 144: 480-487. |
[9] | Li YP, Li L, Zhao MC, et al. Wheat FRIZZY PANICLE activates VERNALIZATION1-A and HOMEOBOX4-A to regulate spike development in wheat[J]. Plant Biotechnol J, 2021, 19(6): 1141-1154. |
[10] | Plotnikov KO, Klimenko AI, Ovchinnikova ES, et al. Analysis of the effects of the Vrn-1 and Ppd-1 alleles on adaptive and agronomic traits in common wheat(Triticum aestivum L.)[J]. Plants(Basel), 2024, 13(11): 1453. |
[11] |
Haas M, Schreiber M, Mascher M. Domestication and crop evolution of wheat and barley: genes, genomics, and future directions[J]. J Integr Plant Biol, 2019, 61(3): 204-225.
doi: 10.1111/jipb.12737 |
[12] |
Wang ZH, Miao LF, Chen YM, et al. Deciphering the evolution and complexity of wheat germplasm from a genomic perspective[J]. J Genet Genomics, 2023, 50(11): 846-860.
doi: 10.1016/j.jgg.2023.08.002 pmid: 37611848 |
[13] |
Venske E, Dos Santos RS, Busanello C, et al. Bread wheat: a role model for plant domestication and breeding[J]. Hereditas, 2019, 156: 16.
doi: 10.1186/s41065-019-0093-9 pmid: 31160891 |
[14] |
Kinoshita A, Richter R. Genetic and molecular basis of floral induction in Arabidopsis thaliana[J]. J Exp Bot, 2020, 71(9): 2490-2504.
doi: 10.1093/jxb/eraa057 pmid: 32067033 |
[15] |
Langer SM, Würschum T. Flowering time control in European winter wheat[J]. Front Plant Sci, 2014, 5: 537.
doi: 10.3389/fpls.2014.00537 pmid: 25346745 |
[16] | Zikhali M, Wingen LU, Griffiths S. Delimitation of the Earliness per se D1(Eps-D1)flowering gene to a subtelomeric chromosomal deletion in bread wheat(Triticum aestivum)[J]. J Exp Bot, 2016, 67(1): 287-299. |
[17] | Slafer GA, Casas AM, Igartua E. Sense in sensitivity: difference in the meaning of photoperiod insensitivity between wheat and barley[J]. J Exp Bot, 2023, 74(14): 3923-3932. |
[18] | Grogan SM, Brown-Guedira G, Haley SD, et al. Allelic variation in developmental genes and effects on winter wheat heading date in the U.S. great Plains[J]. PLoS One, 2016, 11(4): e0152852. |
[19] |
Bouché F, Woods DP, Amasino RM. Winter memory throughout the plant Kingdom: different paths to flowering[J]. Plant Physiol, 2017, 173(1): 27-35.
doi: 10.1104/pp.16.01322 pmid: 27756819 |
[20] |
Distelfeld A, Li C, Dubcovsky J. Regulation of flowering in temperate cereals[J]. Curr Opin Plant Biol, 2009, 12(2): 178-184.
doi: 10.1016/j.pbi.2008.12.010 pmid: 19195924 |
[21] | Shaw LM, Li CX, Woods DP, et al. Epistatic interactions between PHOTOPERIOD1, CONSTANS1 and CONSTANS2 modulate the photoperiodic response in wheat[J]. PLoS Genet, 2020, 16(7): e1008812. |
[22] | Farrona S, Hurtado L, March-Díaz R, et al. Brahma is required for proper expression of the floral repressor FLC in Arabidopsis[J]. PLoS One, 2011, 6(3): e17997. |
[23] |
Kippes N, VanGessel C, Hamilton J, et al. Effect of phyB and phyC loss-of-function mutations on the wheat transcriptome under short and long day photoperiods[J]. BMC Plant Biol, 2020, 20(1): 297.
doi: 10.1186/s12870-020-02506-0 pmid: 32600268 |
[24] |
Li L, Li X, Liu YW, et al. Flowering responses to light and temperature[J]. Sci China Life Sci, 2016, 59(4): 403-408.
doi: 10.1007/s11427-015-4910-8 pmid: 26687726 |
[25] |
Garner WW, Allard HA. Photoperiodism, the response of the plant to relative length of day and night[J]. Science, 1922, 55(1431): 582-583.
pmid: 17792188 |
[26] | Whitelam GC, Patel S, Devlin PF. Phytochromes and photomorphogenesis in Arabidopsis[J]. Philos Trans R Soc Lond B Biol Sci, 1998, 353(1374): 1445-1453. |
[27] |
Lin C, Yang H, Guo H, et al. Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2[J]. Proc Natl Acad Sci USA, 1998, 95(5): 2686-2690.
doi: 10.1073/pnas.95.5.2686 pmid: 9482948 |
[28] |
Huq E, Lin CT, Quail PH. Light signaling in plants-a selective history[J]. Plant Physiol, 2024, 195(1): 213-231.
doi: 10.1093/plphys/kiae110 pmid: 38431282 |
[29] |
Christie JM. Phototropin blue-light receptors[J]. Annu Rev Plant Biol, 2007, 58: 21-45.
pmid: 17067285 |
[30] | Zhang EE, Kay SA. Clocks not winding down: unravelling circadian networks[J]. Nat Rev Mol Cell Biol, 2010, 11(11): 764-776. |
[31] | Sun H, Zhang WP, Wu YZ, et al. The circadian clock gene, TaPRR1, is associated with yield-related traits in wheat(Triticum aestivum L.)[J]. Front Plant Sci, 2020, 11: 285. |
[32] |
Nohales MA, Kay SA. Molecular mechanisms at the core of the plant circadian oscillator[J]. Nat Struct Mol Biol, 2016, 23(12): 1061-1069.
doi: 10.1038/nsmb.3327 pmid: 27922614 |
[33] | Gil KE, Park CM. Thermal adaptation and plasticity of the plant circadian clock[J]. New Phytol, 2019, 221(3): 1215-1229. |
[34] |
Searle I, Coupland G. Induction of flowering by seasonal changes in photoperiod[J]. EMBO J, 2004, 23(6): 1217-1222.
doi: 10.1038/sj.emboj.7600117 pmid: 15014450 |
[35] | Cao SH, Luo XM, Xu DA, et al. Genetic architecture underlying light and temperature mediated flowering in Arabidopsis, rice, and temperate cereals[J]. New Phytol, 2021, 230(5): 1731-1745. |
[36] |
Beales J, Turner A, Griffiths S, et al. A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat(Triticum aestivum L.)[J]. Theor Appl Genet, 2007, 115(5): 721-733.
doi: 10.1007/s00122-007-0603-4 pmid: 17634915 |
[37] |
Wilhelm EP, Turner AS, Laurie DA. Photoperiod insensitive Ppd-A1a mutations in tetraploid wheat(Triticum durum Desf.)[J]. Theor Appl Genet, 2009, 118(2): 285-294.
doi: 10.1007/s00122-008-0898-9 pmid: 18839130 |
[38] | Guo ZA, Song YX, Zhou RH, et al. Discovery, evaluation and distribution of haplotypes of the wheat Ppd-D1 gene[J]. New Phytol, 2010, 185(3): 841-851. |
[39] | Zhang WP, Zhao GY, Gao LF, et al. Functional studies of heading date-related gene TaPRR73, a paralog of Ppd1 in common wheat[J]. Front Plant Sci, 2016, 7: 772. |
[40] | Wu YZ, Liu JH, Hu GM, et al. Functional analysis of the “green revolution” gene Photoperiod-1 and its selection trends during bread wheat breeding[J]. Front Plant Sci, 2021, 12: 745411. |
[41] |
Makino S, Kiba T, Imamura A, et al. Genes encoding pseudo-response regulators: insight into his-to-asp phosphorelay and circadian rhythm in Arabidopsis thaliana[J]. Plant Cell Physiol, 2000, 41(6): 791-803.
doi: 10.1093/pcp/41.6.791 pmid: 10945350 |
[42] | Turner A, Beales J, Faure S, et al. The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley[J]. Science, 2005, 310(5750): 1031-1034. |
[43] |
Matsushika A, Makino S, Kojima M, et al. Circadian waves of expression of the APRR1/TOC1 family of pseudo-response regulators in Arabidopsis thaliana: insight into the plant circadian clock[J]. Plant Cell Physiol, 2000, 41(9): 1002-1012.
doi: 10.1093/pcp/pcd043 pmid: 11100772 |
[44] |
Murakami M, Ashikari M, Miura K, et al. The evolutionarily conserved OsPRR quintet: rice pseudo-response regulators implicated in circadian rhythm[J]. Plant Cell Physiol, 2003, 44(11): 1229-1236.
doi: 10.1093/pcp/pcg135 pmid: 14634161 |
[45] | Palomino C, Cabrera A. Evaluation of the allelic variations in vernalisation(VRN1)and photoperiod(PPD1)genes and genetic diversity in a Spanish spelt wheat collection[J]. Int J Mol Sci, 2023, 24(22): 16041. |
[46] | Shaw LM, Turner AS, Laurie DA. The impact of photoperiod insensitive Ppd-1a mutations on the photoperiod pathway across the three genomes of hexaploid wheat(Triticum aestivum)[J]. Plant J, 2012, 71(1): 71-84. |
[47] |
Fernández-Calleja M, Casas AM, Igartua E. Major flowering time genes of barley: allelic diversity, effects, and comparison with wheat[J]. Theor Appl Genet, 2021, 134(7): 1867-1897.
doi: 10.1007/s00122-021-03824-z pmid: 33969431 |
[48] | Sun H, Guo ZA, Gao LF, et al. DNA methylation pattern of Photoperiod-B1 is associated with photoperiod insensitivity in wheat(Triticum aestivum)[J]. New Phytol, 2014, 204(3): 682-692. |
[49] | Würschum T, Langer SM, et al. A three-component system incorporating Ppd-D1, copy number variation at Ppd-B1, and numerous small-effect quantitative trait loci facilitates adaptation of heading time in winter wheat cultivars of worldwide origin[J]. Plant Cell Environ, 2018, 41(6): 1407-1416. |
[50] | Zhao XY, Hong P, Wu JY, et al. The tae-miR408-mediated control of TaTOC1 genes transcription is required for the regulation of heading time in wheat[J]. Plant Physiol, 2016, 170(3): 1578-1594. |
[51] | Pearce S, Kippes N, Chen A, et al. RNA-seq studies using wheat PHYTOCHROME B and PHYTOCHROME C mutants reveal shared and specific functions in the regulation of flowering and shade-avoidance pathways[J]. BMC Plant Biol, 2016, 16(1): 141. |
[52] | Alvarez MA, Li CX, Lin HQ, et al. EARLY FLOWERING 3 interactions with PHYTOCHROME B and PHOTOPERIOD1 are critical for the photoperiodic regulation of wheat heading time[J]. PLoS Genet, 2023, 19(5): e1010655. |
[53] | Legris M, Klose C, Burgie ES, et al. Phytochrome B integrates light and temperature signals in Arabidopsis[J]. Science, 2016, 354(6314): 897-900. |
[54] | Nishida H, Ishihara D, Ishii M, et al. Phytochrome C is a key factor controlling long-day flowering in barley[J]. Plant Physiol, 2013, 163(2): 804-814. |
[55] |
Chen A, Li CX, Hu W, et al. Phytochrome C plays a major role in the acceleration of wheat flowering under long-day photoperiod[J]. Proc Natl Acad Sci USA, 2014, 111(28): 10037-10044.
doi: 10.1073/pnas.1409795111 pmid: 24961368 |
[56] | Andrade L, Lu YL, Cordeiro A, et al. The evening complex integrates photoperiod signals to control flowering in rice[J]. Proc Natl Acad Sci USA, 2022, 119(26): e2122582119. |
[57] |
Gol L, Tomé F, von Korff M. Floral transitions in wheat and barley: interactions between photoperiod, abiotic stresses, and nutrient status[J]. J Exp Bot, 2017, 68(7): 1399-1410.
doi: 10.1093/jxb/erx055 pmid: 28431134 |
[58] | Alvarez MA, Tranquilli G, Lewis S, et al. Genetic and physical mapping of the earliness per se locus Eps-A(m)1 in Triticum monococcum identifies EARLY FLOWERING 3(ELF3)as a candidate gene[J]. Funct Integr Genomics, 2016, 16(4): 365-382. |
[59] | Mizuno N, Nitta M, Sato K, et al. A wheat homologue of PHYTO-CLOCK 1 is a candidate gene conferring the early heading phenotype to einkorn wheat[J]. Genes Genet Syst, 2012, 87(6): 357-367. |
[60] | Komura S, Yoshida K, Jinno H, et al. Identification of the causal mutation in early heading mutant of bread wheat(Triticum aes-tivum L.) using MutMap approach[J]. Mol Breed, 2024, 44(6): 41. |
[61] | Wittern L, Steed G, Taylor LJ, et al. Wheat EARLY FLOWERING 3 affects heading date without disrupting circadian oscillations[J]. Plant Physiol, 2023, 191(2): 1383-1403. |
[62] | Gao MJ, Lu YL, Geng F, et al. Phytochromes transmit photoperiod information via the evening complex in Brachypodium[J]. Genome Biol, 2023, 24(1): 256. |
[63] |
Kitagawa S, Shimada S, Murai K. Effect of Ppd-1 on the expression of flowering-time genes in vegetative and reproductive growth stages of wheat[J]. Genes Genet Syst, 2012, 87(3): 161-168.
doi: 10.1266/ggs.87.161 pmid: 22976391 |
[64] | Zikhali M, Wingen LU, Leverington-Waite M, et al. The identification of new candidate genes Triticum aestivum FLOWERING LOCUS T3-B1(TaFT3-B1)and TARGET OF EAT1(TaTOE1-B1)controlling the short-day photoperiod response in bread wheat[J]. Plant Cell Environ, 2017, 40(11): 2678-2690. |
[65] | Zhao XY, Liu MS, Li JR, et al. The wheat TaGI1, involved in photoperiodic flowering, encodes an Arabidopsis GI ortholog[J]. Plant Mol Biol, 2005, 58(1): 53-64. |
[66] | Li CX, Lin HQ, Debernardi JM, et al. GIGANTEA accelerates wheat heading time through gene interactions converging on FLOWERING LOCUS T1[J]. Plant J, 2024, 118(2): 519-533. |
[67] | Shrestha R, Gómez-Ariza J, Brambilla V, et al. Molecular control of seasonal flowering in rice, Arabidopsis and temperate cereals[J]. Ann Bot, 2014, 114(7): 1445-1458. |
[68] | Shimada S, Ogawa T, Kitagawa S, et al. A genetic network of flowering-time genes in wheat leaves, in which an APETALA1/FRUITFULL-like gene, VRN1 is upstream of FLOWERING LOCUS T[J]. Plant J, 2009, 58(4): 668-681. |
[69] |
Nemoto Y, Kisaka M, Fuse T, et al. Characterization and functional analysis of three wheat genes with homology to the CONSTANS flowering time gene in transgenic rice[J]. Plant J, 2003, 36(1): 82-93.
doi: 10.1046/j.1365-313x.2003.01859.x pmid: 12974813 |
[70] | Yan LL, Loukoianov A, Blechl A, et al. The wheat VRN2 gene is a flowering repressor down-regulated by vernalization[J]. Science, 2004, 303(5664): 1640-1644. |
[71] |
Allard V, Veisz O, Kõszegi B, et al. The quantitative response of wheat vernalization to environmental variables indicates that vernalization is not a response to cold temperature[J]. J Exp Bot, 2012, 63(2): 847-857.
doi: 10.1093/jxb/err316 pmid: 21994169 |
[72] | Greenup A, Peacock WJ, Dennis ES, et al. The molecular biology of seasonal flowering-responses in Arabidopsis and the cereals[J]. Ann Bot, 2009, 103(8): 1165-1172. |
[73] |
Xu SJ, Chong K. Remembering winter through vernalisation[J]. Nat Plants, 2018, 4(12): 997-1009.
doi: 10.1038/s41477-018-0301-z pmid: 30478363 |
[74] |
Yan L, Loukoianov A, Tranquilli G, et al. Positional cloning of the wheat vernalization gene VRN1[J]. Proc Natl Acad Sci USA, 2003, 100(10): 6263-6268.
doi: 10.1073/pnas.0937399100 pmid: 12730378 |
[75] |
Niu D, Gao Z, Cui BW, et al. A molecular mechanism for embryonic resetting of winter memory and restoration of winter annual growth habit in wheat[J]. Nat Plants, 2024, 10(1): 37-52.
doi: 10.1038/s41477-023-01596-6 pmid: 38177663 |
[76] | Nowak M, Leśniowska-Nowak J, Zapalska M, et al. Analysis of VRN1 gene in Triticale and common wheat genetic background[J]. Sci Agric(Piracicaba, Braz), 2014, 71(5): 380-386. |
[77] |
Yan L, Helguera M, Kato K, et al. Allelic variation at the VRN-1 promoter region in polyploid wheat[J]. Theor Appl Genet, 2004, 109(8): 1677-1686.
doi: 10.1007/s00122-004-1796-4 pmid: 15480533 |
[78] |
Fu DL, Szucs P, Yan LL, et al. Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat[J]. Mol Genet Genomics, 2005, 273(1): 54-65.
doi: 10.1007/s00438-004-1095-4 pmid: 15690172 |
[79] |
Dubcovsky J, Loukoianov A, Fu DL, et al. Effect of photoperiod on the regulation of wheat vernalization genes VRN1 and VRN2[J]. Plant Mol Biol, 2006, 60(4): 469-480.
doi: 10.1007/s11103-005-4814-2 pmid: 16525885 |
[80] |
Distelfeld A, Tranquilli G, Li CX, et al. Genetic and molecular characterization of the VRN2 loci in tetraploid wheat[J]. Plant Physiol, 2009, 149(1): 245-257.
doi: 10.1104/pp.108.129353 pmid: 19005084 |
[81] |
Yan L, Fu D, Li C, et al. The wheat and barley vernalization gene VRN3 is an orthologue of FT[J]. Proc Natl Acad Sci USA, 2006, 103(51): 19581-19586.
doi: 10.1073/pnas.0607142103 pmid: 17158798 |
[82] | Chen A, Dubcovsky J. Wheat TILLING mutants show that the vernalization gene VRN1 down-regulates the flowering repressor VRN2 in leaves but is not essential for flowering[J]. PLoS Genet, 2012, 8(12): e1003134. |
[83] |
Deng WW, Casao MC, Wang PH, et al. Direct links between the vernalization response and other key traits of cereal crops[J]. Nat Commun, 2015, 6: 5882.
doi: 10.1038/ncomms6882 pmid: 25562483 |
[84] | Tanaka C, Itoh T, Iwasaki Y, et al. Direct interaction between VRN1 protein and the promoter region of the wheat FT gene[J]. Genes Genet Syst, 2018, 93(1): 25-29. |
[85] | Li CX, Dubcovsky J. Wheat FT protein regulates VRN1 transcription through interactions with FDL2[J]. Plant J, 2008, 55(4): 543-554. |
[86] | Li CX, Lin HQ, Dubcovsky J. Factorial combinations of protein interactions generate a multiplicity of florigen activation complexes in wheat and barley[J]. Plant J, 2015, 84(1): 70-82. |
[87] | Li CX, Distelfeld A, Comis A, et al. Wheat flowering repressor VRN2 and promoter CO2 compete for interactions with NUCLEAR FACTOR-Y complexes[J]. Plant J, 2011, 67(5): 763-773. |
[88] | Trevaskis B. The central role of the VERNALIZATION1 gene in the vernalization response of cereals[J]. Funct Plant Biol, 2010, 37(6): 479-487. |
[89] | Xie L, Zhang Y, Wang K, et al. TaVrt2, an SVP-like gene, cooperates with TaVrn1 to regulate vernalization-induced flowering in wheat[J]. New Phytol, 2021, 231(2): 834-848. |
[90] | Cao SH, Yan LL. Construction of a high-quality yeast two-hybrid(Y2H)library and its application in identification of interacting proteins with key vernalization regulator TaVRN-A1 in wheat[J]. BMC Res Notes, 2013, 6: 81. |
[91] | Luo XM, Liu BY, Xie L, et al. The TaSOC1-TaVRN1 module integrates photoperiod and vernalization signals to regulate wheat flowering[J]. Plant Biotechnol J, 2024, 22(3): 635-649. |
[92] | Xu SJ, Xiao J, Yin F, et al. The protein modifications of O-GlcNAcylation and phosphorylation mediate vernalization response for flowering in winter wheat[J]. Plant Physiol, 2019, 180(3): 1436-1449. |
[93] |
Xiao J, Xu SJ, Li CH, et al. O-GlcNAc-mediated interaction between VER2 and TaGRP2 elicits TaVRN1 mRNA accumulation during vernalization in winter wheat[J]. Nat Commun, 2014, 5: 4572.
doi: 10.1038/ncomms5572 pmid: 25091017 |
[94] |
Fan M, Miao F, Jia HY, et al. O-linked N-acetylglucosamine transferase is involved in fine regulation of flowering time in winter wheat[J]. Nat Commun, 2021, 12(1): 2303.
doi: 10.1038/s41467-021-22564-8 pmid: 33863881 |
[95] | Kippes N, Debernardi JM, Vasquez-Gross HA, et al. Identification of the VERNALIZATION 4 gene reveals the origin of spring growth habit in ancient wheats from South Asia[J]. Proc Natl Acad Sci USA, 2015, 112(39): E5401-E5410. |
[96] | Xu SJ, Dong Q, Deng M, et al. The vernalization-induced long non-coding RNA VAS functions with the transcription factor TaRF2b to promote TaVRN1 expression for flowering in hexaploid wheat[J]. Mol Plant, 2021, 14(9): 1525-1538. |
[97] | Lomax A, Woods DP, Dong YX, et al. An ortholog of curly leaf/enhancer of zeste like-1 is required for proper flowering in Brachypodium distachyon[J]. Plant J, 2018, 93(5): 871-882. |
[98] | Woods DP, Ream TS, Bouché F, et al. Establishment of a vernalization requirement in Brachypodium distachyon requires REPRESSOR OF VERNALIZATION1[J]. Proc Natl Acad Sci USA, 2017, 114(25): 6623-6628. |
[99] | Liu B, Li CZ, Li X, et al. The H3K4 demethylase JMJ1 is required for proper timing of flowering in Brachypodium distachyon[J]. Plant Cell, 2024, 36(7): 2729-2745. |
[100] |
Oliver SN, Finnegan EJ, Dennis ES, et al. Vernalization-induced flowering in cereals is associated with changes in histone methylation at the VERNALIZATION1 gene[J]. Proc Natl Acad Sci USA, 2009, 106(20): 8386-8391.
doi: 10.1073/pnas.0903566106 pmid: 19416817 |
[101] |
Liu XM, Deng M, Shi BX, et al. Distinct roles of H3K27me3 and H3K36me3 in vernalization response, maintenance, and resetting in winter wheat[J]. Sci China Life Sci, 2024, 67(10): 2251-2266.
doi: 10.1007/s11427-024-2664-0 pmid: 38987431 |
[102] |
Cui GQ, Li DP, Zhang LC, et al. GSK3 regulates VRN1 to control flowering time in wheat[J]. J Integr Plant Biol, 2023, 65(7): 1605-1608.
doi: 10.1111/jipb.13507 |
[103] | 赵芮芮. 1960-2016年我国冬小麦主产区二十四节气气候变化研究[D]. 西安: 陕西师范大学, 2018. |
Zhao RR. Study on climate change of twenty-four solar terms in main winter wheat producing areas of China from 1960 to 2016[D]. Xi'an: Shaanxi Normal University, 2018. | |
[104] | Lv B, Nitcher R, Han XL, et al. Characterization of FLOWERING LOCUS T1(FT1)gene in Brachypodium and wheat[J]. PLoS One, 2014, 9(4): e94171. |
[105] | Debernardi JM, Woods DP, Li K, et al. MiR172-APETALA2-like genes integrate vernalization and plant age to control flowering time in wheat[J]. PLoS Genet, 2022, 18(4): e1010157. |
[106] | Huan Q, Mao ZW, Chong K, et al. Global analysis of H3K4me3/H3K27me3 in Brachypodium distachyon reveals VRN3 as critical epigenetic regulation point in vernalization and provides insights into epigenetic memory[J]. New Phytol, 2018, 219(4): 1373-1387. |
[107] | Liu YH, Liu P, Gao LF, et al. Epigenomic identification of vernalization Cis-regulatory elements in winter wheat[J]. Genome Biol, 2024, 25(1): 200. |
[108] | Cha JK, O'Connor K, Alahmad S, et al. Speed vernalization to accelerate generation advance in winter cereal crops[J]. Mol Plant, 2022, 15(8): 1300-1309. |
[1] | 王补全;张峰;. 拟南芥开花过程的表观遗传调节[J]. , 2009, 0(S1): 51-57. |
[2] | 邵宏波. 高等植物开花时程的基因调控(I)[J]. , 2001, 0(06): 12-17. |
[3] | . 植物细胞、组织及原生质体培养[J]. , 1996, 0(04): 46-54. |
[4] | . 植物细胞、组织及原生质体培养[J]. , 1996, 0(03): 44-57. |
[5] | . 植物细胞、组织及原生质体培养[J]. , 1996, 0(02): 46-57. |
[6] | . 植物细胞、组织及原生质体培养[J]. , 1996, 0(01): 52-63. |
[7] | . 植物细胞、组织及原生质体培养[J]. , 1994, 0(05): 46-56. |
[8] | . 植物细胞、组织及原生质体培养[J]. , 1994, 0(03): 53-61. |
[9] | . 植物细胞、组织及原生质体培养[J]. , 1994, 0(02): 52-61. |
[10] | . 组织与原生质体培养[J]. , 1993, 0(09): 60-60. |
[11] | . 组织与原生质体培养[J]. , 1993, 0(08): 58-66. |
[12] | . 组织与原生质体培养[J]. , 1993, 0(07): 63-70. |
[13] | . 组织与原生质体培养[J]. , 1993, 0(05): 64-70. |
[14] | . 农业其它[J]. , 1993, 0(05): 82-84. |
[15] | . 组织与原生质体培养[J]. , 1993, 0(04): 58-68. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||