生物技术通报 ›› 2024, Vol. 40 ›› Issue (10): 19-29.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0857

• 综述与专论 • 上一篇    下一篇

RNA结构对RNA沉默效率的影响

赵建华1,2(), 高峰1,2, 刘清艳1,2, 郭惠珊1,2()   

  1. 1.中国科学院微生物研究所 植物基因组学国家重点实验室,北京 100101
    2.中国科学院大学 中国科学院生物互作卓越创新中心,北京 100049
  • 收稿日期:2024-09-03 出版日期:2024-10-26 发布日期:2024-11-20
  • 通讯作者: 郭惠珊,女,博士,研究员,研究方向:RNA沉默及植物抗病机制;E-mail: guohs@im.ac.cn
  • 作者简介:赵建华,男,博士,研究员,研究方向:RNA沉默及植物抗病机制;E-mail: zhaojh@im.ac.cn
  • 基金资助:
    中国科学院战略性先导科技专项(A类)(XDA0450304)

RNA Silencing Efficiency Affected by RNA Structure

ZHAO Jian-hua1,2(), GAO Feng1,2, LIU Qing-yan1,2, GUO Hui-shan1,2()   

  1. 1. State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101
    2. CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing 100049
  • Received:2024-09-03 Published:2024-10-26 Online:2024-11-20

摘要:

小RNA(small RNA,sRNA)介导的RNA沉默或RNA干扰(RNA silencing or RNA interference,RNAi)是真核生物基因表达调控的保守机制。内源或外源双链RNA(double-stranded RNA,dsRNA)被加工成sRNA,sRNA通过碱基互补配对识别靶标基因mRNA或DNA,通过降解mRNA、抑制翻译或者DNA甲基化在转录后或者转录水平调控基因表达。由于sRNA作用靶标特异性,RNAi技术被广泛地应用于基因功能研究、生物医药、作物分子设计育种以及开发新型农药等领域。自然界中sRNA能够在不同物种间传递并发挥作用,这一现象为RNAi应用技术的开发提供了理论基础。研究发现,dsRNA诱导RNAi的效率受多种因素影响,例如长度、剂量以及施用方式等。在细胞中,RNA结构的复杂性决定了其功能的多样性。本文概述了基于RNAi的作物病害防控技术的原理,包括宿主诱导的基因沉默(host-induced gene silencing,HIGS)技术、喷施诱导的基因沉默(spray-induced gene silencing,SIGS)技术和微生物诱导的基因沉默(microbe-induced gene silencing,MIGS)技术;总结了靶标RNA和sRNA结构影响RNAi效率的实验证据,以期加深对RNA结构影响RNAi效率地理解,为靶标筛选以及dsRNA设计提供经验,为开发高效RNAi技术提供参考;最后归纳了RNA结构检测和预测的代表性方法,为辅助设计高效诱导RNAi的dsRNA提供方法。

关键词: 小RNA, RNA沉默, 双链RNA, RNA结构

Abstract:

Small RNA(sRNA)-mediated RNA silencing(or RNA interference)is a conserved mechanism for regulating gene expression in eukaryotes. Endogenous or exogenous double-stranded RNAs(dsRNAs)are processed into sRNAs, which recognize complementary mRNAs or DNAs in a sequence-specific manner, and regulate gene expression at either the posttranscriptional level or the transcriptional level by degrading mRNAs, inhibiting translation and DNA methylation. Owing to the target-specific actions of dsRNAs, RNAi-based strategies have become ubiquitous tools in the study of gene function, the development of RNA drugs, the design of molecular breeding methods, and the exploitation of biopesticides. The discovery of the bidirectional transfer among species and function of sRNAs provides a theoretical basis for exploiting RNAi-based technologies. Previous studies have shown that several factors affect the efficiency of dsRNA-induced RNAi, such as the size and dose of dsRNAs, as well as the application method. The complex structure of RNA leads to its functional diversity in vivo. Here, we described the principles of RNAi-based strategies for crop protection, including host-induced gene silencing(HIGS), spray-induced gene silencing(SIGS)and microbe-induced gene silencing(MIGS). We summarized the experimental evidence that the structures of target mRNAs and sRNAs affect RNAi efficiency, aiming to deepen the understanding of the RNA structure affecting RNAi efficiency, to provide experience for target screening and dsRNA design, and provide reference for the development of efficient RNAi technology. We also reviewed the representative methods and computational tools for detecting and predicting RNA structures, thereby providing approaches in establishing efficient RNAi-based techniques.

Key words: small RNA, RNA silencing, double-stranded RNA, RNA structure