生物技术通报 ›› 2024, Vol. 40 ›› Issue (10): 19-29.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0857
赵建华1,2(), 高峰1,2, 刘清艳1,2, 郭惠珊1,2()
收稿日期:
2024-09-03
出版日期:
2024-10-26
发布日期:
2024-11-20
通讯作者:
郭惠珊,女,博士,研究员,研究方向:RNA沉默及植物抗病机制;E-mail: guohs@im.ac.cn作者简介:
赵建华,男,博士,研究员,研究方向:RNA沉默及植物抗病机制;E-mail: zhaojh@im.ac.cn
基金资助:
ZHAO Jian-hua1,2(), GAO Feng1,2, LIU Qing-yan1,2, GUO Hui-shan1,2()
Received:
2024-09-03
Published:
2024-10-26
Online:
2024-11-20
摘要:
小RNA(small RNA,sRNA)介导的RNA沉默或RNA干扰(RNA silencing or RNA interference,RNAi)是真核生物基因表达调控的保守机制。内源或外源双链RNA(double-stranded RNA,dsRNA)被加工成sRNA,sRNA通过碱基互补配对识别靶标基因mRNA或DNA,通过降解mRNA、抑制翻译或者DNA甲基化在转录后或者转录水平调控基因表达。由于sRNA作用靶标特异性,RNAi技术被广泛地应用于基因功能研究、生物医药、作物分子设计育种以及开发新型农药等领域。自然界中sRNA能够在不同物种间传递并发挥作用,这一现象为RNAi应用技术的开发提供了理论基础。研究发现,dsRNA诱导RNAi的效率受多种因素影响,例如长度、剂量以及施用方式等。在细胞中,RNA结构的复杂性决定了其功能的多样性。本文概述了基于RNAi的作物病害防控技术的原理,包括宿主诱导的基因沉默(host-induced gene silencing,HIGS)技术、喷施诱导的基因沉默(spray-induced gene silencing,SIGS)技术和微生物诱导的基因沉默(microbe-induced gene silencing,MIGS)技术;总结了靶标RNA和sRNA结构影响RNAi效率的实验证据,以期加深对RNA结构影响RNAi效率地理解,为靶标筛选以及dsRNA设计提供经验,为开发高效RNAi技术提供参考;最后归纳了RNA结构检测和预测的代表性方法,为辅助设计高效诱导RNAi的dsRNA提供方法。
赵建华, 高峰, 刘清艳, 郭惠珊. RNA结构对RNA沉默效率的影响[J]. 生物技术通报, 2024, 40(10): 19-29.
ZHAO Jian-hua, GAO Feng, LIU Qing-yan, GUO Hui-shan. RNA Silencing Efficiency Affected by RNA Structure[J]. Biotechnology Bulletin, 2024, 40(10): 19-29.
[1] |
Zhao JH, Guo HS. RNA silencing: From discovery and elucidation to application and perspectives[J]. J Integr Plant Biol, 2022, 64(2): 476-498.
doi: 10.1111/jipb.13213 |
[2] |
Setten RL, Rossi JJ, Han SP. The current state and future directions of RNAi-based therapeutics[J]. Nat Rev Drug Discov, 2019, 18(6): 421-446.
doi: 10.1038/s41573-019-0017-4 pmid: 30846871 |
[3] |
Wang F, Zuroske T, Watts JK. RNA therapeutics on the rise[J]. Nat Rev Drug Discov, 2020, 19(7): 441-442.
doi: 10.1038/d41573-020-00078-0 pmid: 32341501 |
[4] |
Weng YH, Xiao HH, Zhang JC, et al. RNAi therapeutic and its innovative biotechnological evolution[J]. Biotechnol Adv, 2019, 37(5): 801-825.
doi: S0734-9750(19)30071-0 pmid: 31034960 |
[5] |
宋华丽, 孙效迎, 孔祥会, 等. RNA干扰技术在水产动物抗病毒和抗寄生虫研究中的应用研究进展[J]. 生物技术通报, 2020, 36(2): 193-205.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0908 |
Song HL, Sun XY, Kong XH, et al. Application of RNA interference technology in antiviral and antiparasitic research of aquatic animals[J]. Biotechnol Bull, 2020, 36(2): 193-205. | |
[6] | Nowara D, Gay A, Lacomme C, et al. HIGS host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis[J]. Plant Cell, 2010, 22(9): 3130-3141. |
[7] |
Zhang T, Zhao YL, Zhao JH, et al. Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen[J]. Nat Plants, 2016, 2(10): 16153.
doi: 10.1038/nplants.2016.153 pmid: 27668926 |
[8] | 田文, 谌婷, 刘清艳, 等. 植物RNA沉默抗病机制与应用研究进展[J]. 遗传, 2024, 46(4): 266-278. |
Tian W, Chen T, Liu QY, et al. Advances in the mechanisms and applications of RNA silencing in crop protection[J]. Hereditas: Beijing, 2024, 46(4): 266-278. | |
[9] | Koch A, Biedenkopf D, Furch A, et al. An RNAi-based control of Fusarium graminearum infections through spraying of long dsRNAs involves a plant passage and is controlled by the fungal silencing machinery[J]. PLoS Pathog, 2016, 12(10): e1005901. |
[10] | Wen HG, Zhao JH, Zhang BS, et al. Microbe-induced gene silencing boosts crop protection against soil-borne fungal pathogens[J]. Nat Plants, 2023, 9(9): 1409-1418. |
[11] | Fang RX. Microbe-induced gene silencing explores interspecies RNAi and opens up possibilities of crop protection[J]. Sci China Life Sci, 2024, 67(3): 626-628. |
[12] |
Das PR, Sherif SM. Application of exogenous dsRNAs-induced RNAi in agriculture: challenges and triumphs[J]. Front Plant Sci, 2020, 11: 946.
doi: 10.3389/fpls.2020.00946 pmid: 32670336 |
[13] |
Akbarimotlagh M, Azizi A, Shams-Bakhsh M, et al. Critical points for the design and application of RNA silencing constructs for plant virus resistance[J]. Adv Virus Res, 2023, 115: 159-203.
doi: 10.1016/bs.aivir.2023.02.001 pmid: 37173065 |
[14] |
Dalakouras A, Wassenegger M, McMillan JN, et al. Induction of silencing in plants by high-pressure spraying of in vitro-synthesized small RNAs[J]. Front Plant Sci, 2016, 7: 1327.
doi: 10.3389/fpls.2016.01327 pmid: 27625678 |
[15] | Dubrovina AS, Aleynova OA, Kalachev AV, et al. Induction of transgene suppression in plants via external application of synthetic dsRNA[J]. Int J Mol Sci, 2019, 20(7): 1585. |
[16] |
Tenllado F, Díaz-Ruíz JR. Double-stranded RNA-mediated interference with plant virus infection[J]. J Virol, 2001, 75(24): 12288-12297.
pmid: 11711619 |
[17] |
Dalakouras A, Wassenegger M, Dadami E, et al. Genetically modified organism-free RNA interference: exogenous application of RNA molecules in plants[J]. Plant Physiol, 2020, 182(1): 38-50.
doi: 10.1104/pp.19.00570 pmid: 31285292 |
[18] | Deng J, Fang XY, Huang L, et al. RNA structure determination: From 2D to 3D[J]. Fundam Res, 2023, 3(5): 727-737. |
[19] |
Zhang JS, Fei YH, Sun L, et al. Advances and opportunities in RNA structure experimental determination and computational modeling[J]. Nat Methods, 2022, 19(10): 1193-1207.
doi: 10.1038/s41592-022-01623-y pmid: 36203019 |
[20] |
Mortimer SA, Kidwell MA, Doudna JA. Insights into RNA structure and function from genome-wide studies[J]. Nat Rev Genet, 2014, 15(7): 469-479.
doi: 10.1038/nrg3681 pmid: 24821474 |
[21] | Ganser LR, Kelly ML, Herschlag D, et al. The roles of structural dynamics in the cellular functions of RNAs[J]. Nat Rev Mol Cell Biol, 2019, 20(8): 474-489. |
[22] | Zhao JH, Liu QY, Xie ZM, et al. Exploring the challenges of RNAi-based strategies for crop protection[J]. Adv Biotechnol, 2024, 2(3): 23. |
[23] |
周晞雯, 成柯, 朱鸿亮. 植物体内RNA二级结构探测方法的研究进展[J]. 生物技术通报, 2023, 39(2): 51-62.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-0518 |
Zhou XW, Cheng K, Zhu HL. Research progress in the approaches to in vivo RNA secondary structure profiling in plants[J]. Biotechnol Bull, 2023, 39(2): 51-62. | |
[24] |
Ameres SL, Martinez J, Schroeder R. Molecular basis for target RNA recognition and cleavage by human RISC[J]. Cell, 2007, 130(1): 101-112.
pmid: 17632058 |
[25] | Luo KQ, Chang DC. The gene-silencing efficiency of siRNA is strongly dependent on the local structure of mRNA at the targeted region[J]. Biochem Biophys Res Commun, 2004, 318(1): 303-310. |
[26] |
Overhoff M, Alken M, Far RKK, et al. Local RNA target structure influences siRNA efficacy: a systematic global analysis[J]. J Mol Biol, 2005, 348(4): 871-881.
pmid: 15843019 |
[27] |
Brown KM, Chu CY, Rana TM. Target accessibility dictates the potency of human RISC[J]. Nat Struct Mol Biol, 2005, 12(5): 469-470.
pmid: 15852021 |
[28] |
Ruijtenberg S, Sonneveld S, Cui TJ, et al. mRNA structural dynamics shape Argonaute-target interactions[J]. Nat Struct Mol Biol, 2020, 27: 790-801.
doi: 10.1038/s41594-020-0461-1 pmid: 32661421 |
[29] |
Mizrahi O, Nachshon A, Shitrit A, et al. Virus-induced changes in mRNA secondary structure uncover Cis-Regulatory elements that directly control gene expression[J]. Mol Cell, 2018, 72(5): 862-874.e5.
doi: S1097-2765(18)30750-0 pmid: 30318442 |
[30] |
Adivarahan S, Livingston N, Nicholson B, et al. Spatial organization of single mRNPs at different stages of the gene expression pathway[J]. Mol Cell, 2018, 72(4): 727-738.e5.
doi: S1097-2765(18)30842-6 pmid: 30415950 |
[31] |
Mustoe AM, Busan S, Rice GM, et al. Pervasive regulatory functions of mRNA structure revealed by high-resolution SHAPE probing[J]. Cell, 2018, 173(1): 181-195.e18.
doi: S0092-8674(18)30211-3 pmid: 29551268 |
[32] | Beaudoin JD, Novoa EM, Vejnar CE, et al. Analyses of mRNA structure dynamics identify embryonic gene regulatory programs[J]. Nat Struct Mol Biol, 2018, 25(8): 677-686. |
[33] | Yan XW, Hoek TA, Vale RD, et al. Dynamics of translation of single mRNA molecules in vivo[J]. Cell, 2016, 165(4): 976-989. |
[34] |
Morisaki T, Lyon K, DeLuca KF, et al. Real-time quantification of single RNA translation dynamics in living cells[J]. Science, 2016, 352(6292): 1425-1429.
doi: 10.1126/science.aaf0899 pmid: 27313040 |
[35] |
Wu B, Eliscovich C, Yoon YJ, et al. Translation dynamics of single mRNAs in live cells and neurons[J]. Science, 2016, 352(6292): 1430-1435.
doi: 10.1126/science.aaf1084 pmid: 27313041 |
[36] |
Wang C, Han BR, Zhou RB, et al. Real-time imaging of translation on single mRNA transcripts in live cells[J]. Cell, 2016, 165(4): 990-1001.
doi: 10.1016/j.cell.2016.04.040 pmid: 27153499 |
[37] |
Horvathova I, Voigt F, Kotrys AV, et al. The dynamics of mRNA turnover revealed by single-molecule imaging in single cells[J]. Mol Cell, 2017, 68(3): 615-625.e9.
doi: S1097-2765(17)30708-6 pmid: 29056324 |
[38] |
Pichon X, Bastide A, Safieddine A, et al. Visualization of single endogenous polysomes reveals the dynamics of translation in live human cells[J]. J Cell Biol, 2016, 214(6): 769-781.
doi: 10.1083/jcb.201605024 pmid: 27597760 |
[39] |
Bartel DP. MicroRNAs: target recognition and regulatory functions[J]. Cell, 2009, 136(2): 215-233.
doi: 10.1016/j.cell.2009.01.002 pmid: 19167326 |
[40] |
Grimson A, Farh KKH, Johnston WK, et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing[J]. Mol Cell, 2007, 27(1): 91-105.
doi: 10.1016/j.molcel.2007.06.017 pmid: 17612493 |
[41] |
Gu S, Jin L, Zhang FJ, et al. Biological basis for restriction of microRNA targets to the 3' untranslated region in mammalian mRNAs[J]. Nat Struct Mol Biol, 2009, 16(2): 144-150.
doi: 10.1038/nsmb.1552 pmid: 19182800 |
[42] | Zhao JH, Hua CL, Fang YY, et al. The dual edge of RNA silencing suppressors in the virus-host interactions[J]. Curr Opin Virol, 2016, 17: 39-44. |
[43] |
Guo ZX, Li Y, Ding SW. Small RNA-based antimicrobial immunity[J]. Nat Rev Immunol, 2019, 19(1): 31-44.
doi: 10.1038/s41577-018-0071-x pmid: 30301972 |
[44] |
Westerhout EM, Ooms M, Vink M, et al. HIV-1 can escape from RNA interference by evolving an alternative structure in its RNA genome[J]. Nucleic Acids Res, 2005, 33(2): 796-804.
pmid: 15687388 |
[45] | Duan CG, Wang CH, Fang RX, et al. Artificial microRNAs highly accessible to targets confer efficient virus resistance in plants[J]. J Virol, 2008, 82(22): 11084-11095. |
[46] |
Gago-Zachert S, Schuck J, Weinholdt C, et al. Highly efficacious antiviral protection of plants by small interfering RNAs identified in vitro[J]. Nucleic Acids Res, 2019, 47(17): 9343-9357.
doi: 10.1093/nar/gkz678 pmid: 31433052 |
[47] |
Tafer H, Ameres SL, Obernosterer G, et al. The impact of target site accessibility on the design of effective siRNAs[J]. Nat Biotechnol, 2008, 26(5): 578-583.
doi: 10.1038/nbt1404 pmid: 18438400 |
[48] |
Bernhart SH, Hofacker IL, Stadler PF. Local RNA base pairing probabilities in large sequences[J]. Bioinformatics, 2006, 22(5): 614-615.
doi: 10.1093/bioinformatics/btk014 pmid: 16368769 |
[49] | Rennie W, Kanoria S, Liu CC, et al. Sfold tools for microRNA target prediction[M]// Methods in Molecular Biology. New York: Springer New York, 2019: 31-42. |
[50] |
Kanoria S, Rennie W, Liu CC, et al. STarMir tools for prediction of microRNA binding sites[J]. Methods Mol Biol, 2016, 1490: 73-82.
doi: 10.1007/978-1-4939-6433-8_6 pmid: 27665594 |
[51] | Liu CC, Mallick B, Long D, et al. CLIP-based prediction of mammalian microRNA binding sites[J]. Nucleic Acids Res, 2013, 41(14): e138. |
[52] |
Qureshi A, Thakur N, Kumar M. VIRsiRNApred: a web server for predicting inhibition efficacy of siRNAs targeting human viruses[J]. J Transl Med, 2013, 11: 305.
doi: 10.1186/1479-5876-11-305 pmid: 24330765 |
[53] |
Elbashir SM, Harborth J, Weber K, et al. Analysis of gene function in somatic mammalian cells using small interfering RNAs[J]. Methods, 2002, 26(2): 199-213.
pmid: 12054897 |
[54] |
Köberle C, Kaufmann SHE, Patzel V. Selecting effective siRNAs based on guide RNA structure[J]. Nat Protoc, 2006, 1(4): 1832-1839.
doi: 10.1038/nprot.2006.206 pmid: 17487166 |
[55] |
Schwarz DS, Hutvágner G, Du TT, et al. Asymmetry in the assembly of the RNAi enzyme complex[J]. Cell, 2003, 115(2): 199-208.
doi: 10.1016/s0092-8674(03)00759-1 pmid: 14567917 |
[56] |
Khvorova A, Reynolds A, Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias[J]. Cell, 2003, 115(2): 209-216.
doi: 10.1016/s0092-8674(03)00801-8 pmid: 14567918 |
[57] |
Patzel V, Rutz S, Dietrich I, et al. Design of siRNAs producing unstructured guide-RNAs results in improved RNA interference efficiency[J]. Nat Biotechnol, 2005, 23(11): 1440-1444.
doi: 10.1038/nbt1151 pmid: 16258545 |
[58] |
Kingston ER, Bartel DP. Global analyses of the dynamics of mammalian microRNA metabolism[J]. Genome Res, 2019, 29(11): 1777-1790.
doi: 10.1101/gr.251421.119 pmid: 31519739 |
[59] |
Reichholf B, Herzog VA, Fasching N, et al. Time-resolved small RNA sequencing unravels the molecular principles of microRNA homeostasis[J]. Mol Cell, 2019, 75(4): 756-768.e7.
doi: S1097-2765(19)30474-5 pmid: 31350118 |
[60] |
Cazalla D, Yario T, Steitz JA. Down-regulation of a host microRNA by a Herpesvirus Saimiri noncoding RNA[J]. Science, 2010, 328(5985): 1563-1566.
doi: 10.1126/science.1187197 pmid: 20558719 |
[61] | Shi CY, Kingston ER, Kleaveland B, et al. The ZSWIM8 ubiquitin ligase mediates target-directed microRNA degradation[J]. Science, 2020, 370(6523): eabc9359. |
[62] |
Ameres SL, Horwich MD, Hung JH, et al. Target RNA-directed trimming and tailing of small silencing RNAs[J]. Science, 2010, 328(5985): 1534-1539.
doi: 10.1126/science.1187058 pmid: 20558712 |
[63] | Wu PH, Zamore PD. To degrade a microRNA, destroy its argonaute protein[J]. Mol Cell, 2021, 81(2): 223-225. |
[64] |
Sheu-Gruttadauria J, Pawlica P, Klum SM, et al. Structural basis for target-directed microRNA degradation[J]. Mol Cell, 2019, 75(6): 1243-1255.e7.
doi: S1097-2765(19)30475-7 pmid: 31353209 |
[65] | Clark BFC, Doctor BP, Holmes KC, et al. Crystallization of transfer RNA[J]. Nature, 1968, 219: 1222-1224. |
[66] |
Kim SH, Rich A. Single crystals of transfer RNA: an X-ray diffraction study[J]. Science, 1968, 162(3860): 1381-1384.
pmid: 4880852 |
[67] |
Hampel A, Labanauskas M, Connors PG, et al. Single crystals of transfer RNA from formylmethionine and phenylalanine transfer RNA's[J]. Science, 1968, 162(3860): 1384-1387.
pmid: 4880853 |
[68] |
Kim SH, Quigley GJ, Suddath FL, et al. Three-dimensional structure of yeast phenylalanine transfer RNA: folding of the polynucleotide chain[J]. Science, 1973, 179(4070): 285-288.
pmid: 4566654 |
[69] | Robertus JD, Ladner JE, Finch JT, et al. Structure of yeast phenylalanine tRNA at 3 A resolution[J]. Nature, 1974, 250(467): 546-551. |
[70] |
Kotar A, Foley HN, Baughman KM, et al. Advanced approaches for elucidating structures of large RNAs using NMR spectroscopy and complementary methods[J]. Methods, 2020, 183: 93-107.
doi: 10.1016/j.ymeth.2020.01.009 pmid: 31972224 |
[71] |
Barnwal RP, Yang F, Varani G. Applications of NMR to structure determination of RNAs large and small[J]. Arch Biochem Biophys, 2017, 628: 42-56.
doi: S0003-9861(17)30357-0 pmid: 28600200 |
[72] | Miller SB, Yildiz FZ, Lo JA, et al. A structure-based mechanism for tRNA and retroviral RNA remodelling during primer annealing[J]. Nature, 2014, 515(7528): 591-595. |
[73] | Longhini AP, LeBlanc RM, Becette O, et al. Chemo-enzymatic synthesis of site-specific isotopically labeled nucleotides for use in NMR resonance assignment, dynamics and structural characterizations[J]. Nucleic Acids Res, 2016, 44(6): e52. |
[74] |
D'Souza V, Dey A, Habib D, et al. NMR structure of the 101-nucleotide core encapsidation signal of the Moloney murine leukemia virus[J]. J Mol Biol, 2004, 337(2): 427-442.
pmid: 15003457 |
[75] |
Keane SC, Heng X, Lu K, et al. RNA structure. Structure of the HIV-1 RNA packaging signal[J]. Science, 2015, 348(6237): 917-921.
doi: 10.1126/science.aaa9266 pmid: 25999508 |
[76] | Spitale RC, Incarnato D. Probing the dynamic RNA structurome and its functions[J]. Nat Rev Genet, 2023, 24(3): 178-196. |
[77] | Cao XN, Zhang YY, Ding YL, et al. Identification of RNA structures and their roles in RNA functions[J]. Nat Rev Mol Cell Biol, 2024, 25: 784-801. |
[78] |
Strobel EJ, Yu AM, Lucks JB. High-throughput determination of RNA structures[J]. Nat Rev Genet, 2018, 19(10): 615-634.
doi: 10.1038/s41576-018-0034-x pmid: 30054568 |
[79] |
Kwok CK, Tang Y, Assmann SM, et al. The RNA structurome: transcriptome-wide structure probing with next-generation sequencing[J]. Trends Biochem Sci, 2015, 40(4): 221-232.
doi: 10.1016/j.tibs.2015.02.005 pmid: 25797096 |
[80] |
Kubota M, Tran C, Spitale RC. Progress and challenges for chemical probing of RNA structure inside living cells[J]. Nat Chem Biol, 2015, 11(12): 933-941.
doi: 10.1038/nchembio.1958 pmid: 26575240 |
[81] | Kertesz M, Wan Y, Mazor E, et al. Genome-wide measurement of RNA secondary structure in yeast[J]. Nature, 2010, 467(7311): 103-107. |
[82] |
Wells SE, Hughes JM, Igel AH, et al. Use of dimethyl sulfate to probe RNA structure in vivo[J]. Methods Enzymol, 2000, 318: 479-493.
pmid: 10890007 |
[83] |
Mitchell D III, Ritchey LE, Park H, et al. Glyoxals as in vivo RNA structural probes of guanine base-pairing[J]. RNA, 2018, 24(1): 114-124.
doi: 10.1261/rna.064014.117 pmid: 29030489 |
[84] |
Mustoe AM, Lama NN, Irving PS, et al. RNA base-pairing complexity in living cells visualized by correlated chemical probing[J]. Proc Natl Acad Sci USA, 2019, 116(49): 24574-24582.
doi: 10.1073/pnas.1905491116 pmid: 31744869 |
[85] | Merino EJ, Wilkinson KA, Coughlan JL, et al. RNA structure analysis at single nucleotide resolution by selective 2'-hydroxyl acylation and primer extension(SHAPE)[J]. J Am Chem Soc, 2005, 127(12): 4223-4231. |
[86] | Rouskin S, Zubradt M, Washietl S, et al. Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo[J]. Nature, 2014, 505(7485): 701-705. |
[87] | Ding YL, Tang Y, Kwok CK, et al. In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features[J]. Nature, 2014, 505(7485): 696-700. |
[88] | Spitale RC, Flynn RA, Zhang QC, et al. Structural imprints in vivo decode RNA regulatory mechanisms[J]. Nature, 2015, 519(7544): 486-490. |
[89] |
Siegfried NA, Busan S, Rice GM, et al. RNA motif discovery by SHAPE and mutational profiling(SHAPE-MaP)[J]. Nat Methods, 2014, 11(9): 959-965.
doi: 10.1038/nmeth.3029 pmid: 25028896 |
[90] | Lucks JB, Mortimer SA, Trapnell C, et al. Multiplexed RNA structure characterization with selective 2'-hydroxyl acylation analyzed by primer extension sequencing(SHAPE-Seq)[J]. Proc Natl Acad Sci USA, 2011, 108(27): 11063-11068. |
[91] | Aw JGA, Lim SW, Wang JX, et al. Determination of isoform-specific RNA structure with nanopore long reads[J]. Nat Biotechnol, 2021, 39(3): 336-346. |
[92] | Stephenson W, Razaghi R, Busan S, et al. Direct detection of RNA modifications and structure using single-molecule nanopore sequencing[J]. Cell Genom, 2022, 2(2): 100097. |
[93] |
Lu ZP, Zhang QC, Lee B, et al. RNA duplex map in living cells reveals higher-order transcriptome structure[J]. Cell, 2016, 165(5): 1267-1279.
doi: S0092-8674(16)30422-6 pmid: 27180905 |
[94] | Aw JGA, Shen Y, Wilm A, et al. In vivo mapping of eukaryotic RNA interactomes reveals principles of higher-order organization and regulation[J]. Mol Cell, 2016, 62(4): 603-617. |
[95] |
Sharma E, Sterne-Weiler T, O'Hanlon D, et al. Global mapping of human RNA-RNA interactions[J]. Mol Cell, 2016, 62(4): 618-626.
doi: 10.1016/j.molcel.2016.04.030 pmid: 27184080 |
[96] | Ziv O, Gabryelska MM, Lun ATL, et al. COMRADES determines in vivo RNA structures and interactions[J]. Nat Methods, 2018, 15(10): 785-788. |
[97] |
Christy TW, Giannetti CA, Houlihan G, et al. Direct mapping of higher-order RNA interactions by SHAPE-JuMP[J]. Biochemistry, 2021, 60(25): 1971-1982.
doi: 10.1021/acs.biochem.1c00270 pmid: 34121404 |
[98] |
Van Damme R, Li KP, Zhang MJ, et al. Chemical reversible crosslinking enables measurement of RNA 3D distances and alternative conformations in cells[J]. Nat Commun, 2022, 13(1): 911.
doi: 10.1038/s41467-022-28602-3 pmid: 35177610 |
[99] | Gong J, Shao D, Xu K, et al. RISE: a database of RNA interactome from sequencing experiments[J]. Nucleic Acids Res, 2018, 46(D1): D194-D201. |
[100] | Lu ZP, Chang HY. The RNA base-pairing problem and base-pairing solutions[J]. Cold Spring Harb Perspect Biol, 2018, 10(12): a034926. |
[101] | Sugimoto Y, Vigilante A, Darbo E, et al. hiCLIP reveals the in vivo atlas of mRNA secondary structures recognized by Staufen 1[J]. Nature, 2015, 519(7544): 491-494. |
[102] |
Metkar M, Ozadam H, Lajoie BR, et al. Higher-order organization principles of pre-translational mRNPs[J]. Mol Cell, 2018, 72(4): 715-726.e3.
doi: S1097-2765(18)30783-4 pmid: 30415953 |
[103] |
Helwak A, Kudla G, Dudnakova T, et al. Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding[J]. Cell, 2013, 153(3): 654-665.
doi: 10.1016/j.cell.2013.03.043 pmid: 23622248 |
[104] |
Ramani V, Qiu RL, Shendure J. High-throughput determination of RNA structure by proximity ligation[J]. Nat Biotechnol, 2015, 33(9): 980-984.
doi: 10.1038/nbt.3289 pmid: 26237516 |
[105] |
Nguyen TC, Cao XY, Yu PF, et al. Mapping RNA-RNA interactome and RNA structure in vivo by MARIO[J]. Nat Commun, 2016, 7: 12023.
doi: 10.1038/ncomms12023 pmid: 27338251 |
[106] | Cai ZK, Cao CC, Ji L, et al. RIC-seq for global in situ profiling of RNA-RNA spatial interactions[J]. Nature, 2020, 582(7812): 432-437. |
[107] | Bellaousov S, Reuter JS, Seetin MG, et al. RNAstructure: Web servers for RNA secondary structure prediction and analysis[J]. Nucleic Acids Res, 2013, 41(Web Server issue): W471-W474. |
[108] | Parisien M, Major F. The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data[J]. Nature, 2008, 452(7183): 51-55. |
[109] | Lorenz R, Bernhart SH, Höner Zu Siederdissen C, et al. ViennaRNA package 2.0[J]. Algorithms Mol Biol, 2011, 6: 26. |
[110] |
Zuker M. On finding all suboptimal foldings of an RNA molecule[J]. Science, 1989, 244(4900): 48-52.
pmid: 2468181 |
[111] | Leamy KA, Assmann SM, Mathews DH, et al. Bridging the gap between in vitro and in vivo RNA folding[J]. Q Rev Biophys, 2016, 49: e10. |
[112] |
Rivas E, Clements J, Eddy SR. A statistical test for conserved RNA structure shows lack of evidence for structure in lncRNAs[J]. Nat Methods, 2017, 14(1): 45-48.
doi: 10.1038/nmeth.4066 pmid: 27819659 |
[113] | Fu YH, Sharma G, Mathews DH. Dynalign II: common secondary structure prediction for RNA homologs with domain insertions[J]. Nucleic Acids Res, 2014, 42(22): 13939-13948. |
[114] | Rivas E. RNA structure prediction using positive and negative evolutionary information[J]. PLoS Comput Biol, 2020, 16(10): e1008387. |
[115] |
Bernhart SH, Hofacker IL, Will S, et al. RNAalifold: improved consensus structure prediction for RNA alignments[J]. BMC Bioinformatics, 2008, 9: 474.
doi: 10.1186/1471-2105-9-474 pmid: 19014431 |
[116] |
Tan Z, Fu YH, Sharma G, et al. TurboFold II: RNA structural alignment and secondary structure prediction informed by multiple homologs[J]. Nucleic Acids Res, 2017, 45(20): 11570-11581.
doi: 10.1093/nar/gkx815 pmid: 29036420 |
[117] |
Wang LY, Liu YN, Zhong XD, et al. DMfold: a novel method to predict RNA secondary structure with pseudoknots based on deep learning and improved base pair maximization principle[J]. Front Genet, 2019, 10: 143.
doi: 10.3389/fgene.2019.00143 pmid: 30886627 |
[118] | Fu LY, Cao YX, Wu J, et al. UFold: fast and accurate RNA secondary structure prediction with deep learning[J]. Nucleic Acids Res, 2022, 50(3): e14. |
[119] |
Zhang H, Zhang CH, Li Z, et al. A new method of RNA secondary structure prediction based on convolutional neural network and dynamic programming[J]. Front Genet, 2019, 10: 467.
doi: 10.3389/fgene.2019.00467 pmid: 31191603 |
[120] |
Singh J, Hanson J, Paliwal K, et al. RNA secondary structure prediction using an ensemble of two-dimensional deep neural networks and transfer learning[J]. Nat Commun, 2019, 10(1): 5407.
doi: 10.1038/s41467-019-13395-9 pmid: 31776342 |
[121] |
Ding F, Sharma S, Chalasani P, et al. Ab initio RNA folding by discrete molecular dynamics: from structure prediction to folding mechanisms[J]. RNA, 2008, 14(6): 1164-1173.
doi: 10.1261/rna.894608 pmid: 18456842 |
[122] | Boniecki MJ, Lach G, Dawson WK, et al. SimRNA: a coarse-grained method for RNA folding simulations and 3D structure prediction[J]. Nucleic Acids Res, 2016, 44(7): e63. |
[123] |
Biesiada M, Pachulska-Wieczorek K, Adamiak RW, et al. RNAComposer and RNA 3D structure prediction for nanotechnology[J]. Methods, 2016, 103: 120-127.
doi: 10.1016/j.ymeth.2016.03.010 pmid: 27016145 |
[124] |
Watkins AM, Rangan R, Das R. FARFAR2: improved de novo Rosetta prediction of complex global RNA folds[J]. Structure, 2020, 28(8): 963-976.e6.
doi: S0969-2126(20)30180-5 pmid: 32531203 |
[125] | Das R, Baker D. Automatedde novoprediction of native-like RNA tertiary structures[J]. Proc Natl Acad Sci U S A, 2007, 104(37): 14664-14669. |
[1] | 周晞雯, 成柯, 朱鸿亮. 植物体内RNA二级结构探测方法的研究进展[J]. 生物技术通报, 2023, 39(2): 51-62. |
[2] | 黄佳艳, 冯小艳, 沈林波, 王文治, 胡海燕, 张树珍. 甘蔗ShPR10基因的克隆及其编码蛋白与甘蔗线条花叶病毒P1蛋白的互作研究[J]. 生物技术通报, 2023, 39(10): 163-174. |
[3] | 朴君, 张璐婕, 朴敬爱, 周益军, 李硕. 利用小RNA深度测序技术检测灰飞虱病毒种类[J]. 生物技术通报, 2022, 38(2): 281-288. |
[4] | 王建勇, 邹永梅, 葛言彬, 王凯, 席梦利. 植物愈伤组织诱导过程中的表观遗传修饰研究进展[J]. 生物技术通报, 2021, 37(8): 253-262. |
[5] | 邓普荣, 刘勇波. RNAi与转Bt基因技术协同抗虫研究进展[J]. 生物技术通报, 2021, 37(10): 216-224. |
[6] | 李真真, 赵佳晨, 马昱澍. 基于sRNA的氧化葡萄糖酸杆菌基因调控的研究[J]. 生物技术通报, 2018, 34(3): 59-66. |
[7] | 严玉萍, 钟晰, 王雪峰. 黄单胞菌属细菌非编码小RNA的研究进展[J]. 生物技术通报, 2017, 33(3): 22-28. |
[8] | 杨亚蓝, 郭志云, 丁若凡, 茆灿泉, 郭建秀, 熊莉丽. 阿霉素诱导下的肝癌细胞HepG2中微小RNA差异表达分析[J]. 生物技术通报, 2016, 32(6): 244-249. |
[9] | 付竹青,喻云梅,温小军,袁伟曦,赵祖国. 细菌小RNA抗营养应激调控功能的研究进展[J]. 生物技术通报, 2016, 32(3): 12-17. |
[10] | 侯莹, 孙西魁, 唐明青. 从功能部件看小干扰RNA表达载体的发展[J]. 生物技术通报, 2015, 31(3): 64-69. |
[11] | 邓帅,张婷婷,王茹茹,刘宇,张元湖. 植物非细胞自主性小RNA分子研究进展[J]. 生物技术通报, 2015, 31(10): 16-23. |
[12] | 李静,黄英,黄丽梅,杨明华,李琦华,贾俊静,赵素梅. miR-143在脂肪细胞分化和脂类代谢中的作用[J]. 生物技术通报, 2014, 30(9): 34-38. |
[13] | 刘艳, 李冰清, 孟红. 小RNA病毒3C蛋白酶及其裂解底物[J]. 生物技术通报, 2014, 30(8): 46-51. |
[14] | 石萌, 刘小宁, 马纪. 利用细菌表达dsRNA介导黄粉虫抗冻蛋白基因的RNA干扰[J]. 生物技术通报, 2014, 30(8): 113-119. |
[15] | 黄俊骏,王华华,梁卫红. 非编码小RNA的多样性[J]. 生物技术通报, 2014, 30(11): 79-83. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||