生物技术通报 ›› 2024, Vol. 40 ›› Issue (12): 113-123.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0325
收稿日期:
2024-04-06
出版日期:
2024-12-26
发布日期:
2025-01-15
通讯作者:
黄河,男,博士,教授,研究方向:观赏植物种质资源与遗传育种;E-mail: 101navy@163.com作者简介:
孙丹旎,女,硕士研究生,研究方向:花卉种质资源与遗传育种;E-mail: sundanni@bjfu.edu.cn
基金资助:
SUN Dan-ni(), LI Hao, CUI Yu-meng, HUANG He(
)
Received:
2024-04-06
Published:
2024-12-26
Online:
2025-01-15
摘要:
【目的】瓜叶菊(Pericallis hybrida)是重要的盆栽观赏花卉,具有多种花色和花青素代谢支路,是研究花色调控分子机制的理想材料。miR156-PhSPL3模块在瓜叶菊不同花色品种中差异表达,探究该模块在花色形成中的作用机制,为花卉花青素代谢调控机制提供理论依据。【方法】从瓜叶菊中克隆获得一个PhSPL3基因和两个Ph-miR156前体基因(Ph-MIR156a和Ph-MIR156b),对其进行生物信息学分析及表达模式分析,利用VIGS、酵母杂交实验和双荧光素酶实验等方法研究miR156-PhSPL3参与花青素代谢的功能和调控机制。【结果】PhSPL3基因开放阅读框长1 119 bp,编码372个氨基酸,属于SPL家族的Clade VII分支。Ph-MIR156a和Ph-MIR156b前体茎环序列长度分别为108 bp和104 bp,均含miR156成熟序列。表达分析显示PhSPL3在玫色和蓝色品种的瓜叶菊舌状花中高表达,与Ph-miR156表达呈负相关。双荧光素酶实验表明,Ph-miR156可靶向PhSPL3。PhSPL3的VIGS沉默株系中花青素含量降低,花青素代谢结构基因PhCHS2、PhF3H1、PhANS及调节基因PhbHLH17的表达下调。酵母杂交结果显示,PhSPL3可与PhMYB5和PhMYB7互作,并特异性结合PhCHS2和PhbHLH17的启动子,从而调控其表达。【结论】瓜叶菊PhSPL3可通过直接调控花青素代谢分支上结构基因,或间接调控花青素代谢调节基因的方式,在瓜叶菊花青素物质的生物合成中发挥作用。
孙丹旎, 李好, 崔宇萌, 黄河. 瓜叶菊miR156-PhSPL3调控花青素代谢的研究[J]. 生物技术通报, 2024, 40(12): 113-123.
SUN Dan-ni, LI Hao, CUI Yu-meng, HUANG He. Study on the Regulation of Anthocyanin Metabolism by miR156-PhSPL3 in Pericallis hybrida[J]. Biotechnology Bulletin, 2024, 40(12): 113-123.
图1 PhSPL3基因克隆以及与其他物种SPL氨基酸序列比对 A:PhSPL3基因克隆;M:DL2000 DNA Marker;1:以PeC舌状花cDNA为模板扩增;2:以PeB舌状花cDNA为模板扩增。B:PhSPL3氨基酸序列比对;PhSPL3:瓜叶菊;CcSPL13:朝鲜蓟(XP_024977060.1);CmSPL3:菊花(ALF46633.1);HaSPL3:向日葵(XP_021978557.1);AtSPL13:拟南芥(AT5G50570)。图B中红线部分为SBP结构域位置
Fig. 1 Cloning of PhSPL3 gene and alignment of SPL amino acid sequences with those from other species A: Cloning of PhSPL3 gene; M: DL2000 DNA Marker; 1: amplification using cDNA from PeC ray florets as template; 2: amplification using cDNA from PeB ray florets as template. B: Amino acid sequence alignment of PhSPL3 protein; PhSPL3: Pericallis hybrida(Unigene0015241); CcSPL13: Cynara cardunculus var. scolymus(XP_024977060.1); CmSPL3: Chrysanthemum ×morifolium(ALF46633.1); HaSPL3: Helianthus annuus(XP_021978557.1); AtSPL13: Arabidopsis thaliana(AT5G50570). The red lines in the figure B indicate the positions of the SBP domain
图2 Ph-miR156前体基因克隆与基因序列比对 A:Ph-miR156前体基因克隆;M:DL2000 DNA Marker;1:Ph-MIR156a基因克隆;2:Ph-MIR156b基因克隆。B: Ph-MIR156a和Ph-MIR156b序列比对,红线部分为成熟的miR156序列
Fig. 2 Cloning and sequence alignment of Ph-miR156 precursor genes A: Cloning of Ph-miR156 precursor gene; M: DL2000 DNA Marker; 1: cloning of Ph-MIR156a gene; 2: cloning of Ph-MIR156b gene. B: Sequence alignment of Ph-MIR156a and Ph-MIR156b. The red lines in the figure B indicate mature miR156 sequences
图3 PhSPL3与拟南芥和菊花的SPL系统进化分析 At:拟南芥;Cm:菊花;Ph:瓜叶菊
Fig. 3 Phylogenetic analysis of PhSPL3 protein family in comparison with SPL protein from A. thaliana and C. ×morifolium At: Arabidopsis thaliana; Cm: Chrysanthemum ×morifolium; Ph: Pericallis hybrida
图4 S1-S3阶段PeW、PeC和PeB舌状花PhSPL3和Ph-miR156的RT-qPCR表达分析 PeW:白色瓜叶菊,PeC:洋红色瓜叶菊,PeB:蓝色瓜叶菊。*表示在0.05水平上差异显著,**表示在0.01水平上差异显著
Fig. 4 RT-qPCR expression analysis of PhSPL3 and Ph-miR156 in ray florets of PeW, PeC and PeB at stage S1-S3 PeW: White Pericallis hybrida, PeC: Carmine Pericallis hybrida, PeB: Blue Pericallis hybrida. * and ** indicate significant differences at 0.05 and 0.01 levels
图6 用VIGS技术在PeC叶片中短暂沉默PhSPL3 A:CK和PhSPL3沉默后的瓜叶菊叶片的表型;B:沉默组织中pTRV1和pTRV2-PhSPL3的确认;C:CK和PhPL3沉默的瓜叶菊花青素提取及含量检测;D:CK和PhSPL3沉默的瓜叶菊中类黄酮生物合成相关基因(PhSPL3、PhCHS2、PhF3H1、PhDFR3、PhANS和PhbHLH17)的RT-qPCR表达分析。CK:只注射了pTRV1和pTRV2空载的瓜叶菊叶片;PhPSL3-SL:PhSPL3沉默后的瓜叶菊叶片。*表示在0.05水平上差异显著,**表示在0.01水平上差异显著
Fig. 6 Transient silencing of PhSPL3 by VIGS in the leaves of PeC A: Phenotypes of CK and PhPSL3-silenced Pericallis hybrida leaves. B:Detection of pTRV1 and pTRV2-PhSPL3 in the silenced tissue. C: Quantitative analysis of anthocyanins in PhSPL3-silenced leaves and the control. D: Expressions of genes in the anthocyanin biosynthesis pathway in PhSPL3-silenced and the control. CK: Leaf samples infiltrated with pTRV1 and pTRV2::00. PhSPL3-SL: Leaf samples infiltrated with pTRV1 and pTRV2::PhSPL3. * and ** indicate significant differences at 0.05 and 0.01 levels respectively
[1] | 赵启明, 李范, 李萍. 花青素生物合成关键酶的研究进展[J]. 生物技术通报, 2012(12): 25-32. |
Zhao QM, Li F, Li P. Research advances on core enzymes of anthocyanidin biosynthesis[J]. Biotechnol Bull, 2012(12): 25-32. | |
[2] | Gould K, Davies KM, Winefield C. Anthocyanins: biosynthesis, functions, and applications[M]. New York: Springer, 2009. |
[3] |
刘恺媛, 王茂良, 辛海波, 等. 植物花青素合成与调控研究进展[J]. 中国农学通报, 2021, 37(14): 41-51.
doi: 10.11924/j.issn.1000-6850.casb2020-0390 |
Liu KY, Wang ML, Xin HB, et al. Anthocyanin biosynthesis and regulate mechanisms in plants: a review[J]. Chin Agric Sci Bull, 2021, 37(14): 41-51.
doi: 10.11924/j.issn.1000-6850.casb2020-0390 |
|
[4] |
曾鑫海, 陈锐, 师宇, 等. 植物SPL转录因子的生物功能研究进展[J]. 植物学报, 2023, 58(6):982-997.
doi: 10.11983/CBB22216 |
Zeng XH, Chen R, Shi Y, et al. Research advances in biological functions of plant SPL transcription factors[J]. Chinese Bulletin of Botany, 2023, 58(6):982-997. | |
[5] | Gou JY, Felippes FF, Liu CJ, et al. Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor[J]. Plant Cell, 2011, 23(4): 1512-1522. |
[6] | Su ZW, Wang XC, Xuan XX, et al. Characterization and action mechanism analysis of VvmiR156b/c/d-VvSPL9 module responding to multiple-hormone signals in the modulation of grape berry color formation[J]. Foods, 2021, 10(4): 896. |
[7] | Liu HN, Shu Q, Kui LW, et al. The PyPIF5-PymiR156a-PySPL9-PyMYB114/MYB10 module regulates light-induced anthocyanin biosynthesis in red pear[J]. Mol Hortic, 2021, 1(1): 14. |
[8] | 王璐. 瓜叶菊花青素苷合成分支途径的调控机制[D]. 北京: 北京林业大学, 2015. |
Wang L. Regulation mechanism of anthocyanin synthesis branching pathway in chrysanthemum morifolium[D]. Beijing: Beijing Forestry University, 2015. | |
[9] | 金雪花. 基于高通量测序的瓜叶菊花青素苷合成途径研究[D]. 北京: 北京林业大学, 2013. |
Jin XH. Study on the synthetic pathway of anthocyanin glycosides from Chrysanthemum morifolium based on high-throughput sequencing[D]. Beijing: Beijing Forestry University, 2013. | |
[10] | 李亚军. 蓝色瓜叶菊聚酰化花青素生物合成相关基因分离和功能分析[D]. 北京: 北京林业大学, 2020. |
Li YJ. Isolation and functional analysis of genes related to biosynthesis of polyacylanthocyanidins from Chrysanthemum morifolium[D]. Beijing: Beijing Forestry University, 2020. | |
[11] | Li YJ, Liu YT, Qi FT, et al. Establishment of virus-induced gene silencing system and functional analysis of ScbHLH17 in Senecio cruentus[J]. Plant Physiol Biochem, 2020, 147: 272-279. |
[12] | Cui YM, Fan JW, Lu CF, et al. ScGST3 and multiple R2R3-MYB transcription factors function in anthocyanin accumulation in Senecio cruentus[J]. Plant Sci, 2021, 313: 111094. |
[13] | Cui YM, Fan JW, Liu FY, et al. R2R3-MYB transcription factor PhMYB2 positively regulates anthocyanin biosynthesis in Pericallis hybrida[J]. Sci Hortic, 2023, 322: 112446. |
[14] | Li H, Qi FT, Sun DN, et al. Integrated transcriptome and small RNA sequencing revealing miRNA-mediated regulatory network of bicolour pattern formation in Pericallis hybrida ray florets[J]. Sci Hortic, 2024, 326: 112765. |
[15] | Qi FT, Liu YT, Luo YL, et al. Functional analysis of the ScAG and ScAGL11 MADS-box transcription factors for anthocyanin biosynthesis and bicolour pattern formation in Senecio cruentus ray florets[J]. Hortic Res, 2022, 9: uhac071. |
[16] | Lu CF, Li YJ, Cui YM, et al. Isolation and functional analysis of genes involved in polyacylated anthocyanin biosynthesis in blue Senecio cruentus[J]. Front Plant Sci, 2021, 12: 640746. |
[17] |
Cardon G, Höhmann S, Klein J, et al. Molecular characterisation of the Arabidopsis SBP-box genes[J]. Gene, 1999, 237(1): 91-104.
doi: 10.1016/s0378-1119(99)00308-x pmid: 10524240 |
[18] | Song AP, Gao TW, Wu D, et al. Transcriptome-wide identification and expression analysis of chrysanthemum SBP-like transcription factors[J]. Plant Physiol Biochem, 2016, 102: 10-16. |
[19] |
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔt Method[J]. Methods, 2001, 25(4): 402-408.
doi: 10.1006/meth.2001.1262 pmid: 11846609 |
[20] | 陈文文, 吴怀通, 陈赢男. SPL家族基因复制及功能分化分析[J]. 南京林业大学学报: 自然科学版, 2020, 44(5): 55-66. |
Chen WW, Wu HT, Chen YN. Gene duplications and functional divergence analyses of the SPL gene family[J]. J Nanjing For Univ Nat Sci Ed, 2020, 44(5): 55-66. | |
[21] |
Birkenbihl RP, Jach G, Saedler H, et al. Functional dissection of the plant-specific SBP-domain: overlap of the DNA-binding and nuclear localization domains[J]. J Mol Biol, 2005, 352(3): 585-596.
doi: 10.1016/j.jmb.2005.07.013 pmid: 16095614 |
[22] | Xu ML, Hu TQ, Zhao JF, et al. Developmental functions of mir156-regulated squamosa promoter binding protein-like(spl)genes in Arabidopsis thaliana[J]. PLoS Genet, 2016, 12(8): e1006263. |
[23] | Martin RC, Asahina M, Liu PP, et al. The regulation of post-germinative transition from the cotyledon- to vegetative-leaf stages by microRNA-targeted SQUAMOSA PROMOTER-BINDING PROTEIN LIKE13 in Arabidopsis[J]. Seed Sci Res, 2010, 20(2): 89-96. |
[24] |
Hu TQ, Manuela D, Xu ML. Squamosa promoter binding protein-like 9 and 13 repress blade-on-petiole 1 and 2 directly to promote adult leaf morphology in Arabidopsis[J]. J Exp Bot, 2023, 74(6): 1926-1939.
doi: 10.1093/jxb/erad017 pmid: 36629519 |
[25] | Feyissa BA, Arshad M, Gruber MY, et al. The interplay between miR156/SPL13 and DFR/WD40-1 regulate drought tolerance in alfalfa[J]. BMC Plant Biol, 2019, 19(1): 434. |
[26] |
Yang T, Li KT, Hao SX, et al. The use of RNA sequencing and correlation network analysis to study potential regulators of crabapple leaf color transformation[J]. Plant Cell Physiol, 2018, 59(5): 1027-1042.
doi: 10.1093/pcp/pcy044 pmid: 29474693 |
[27] | Yu N, Cai WJ, Wang SC, et al. Temporal control of trichome distribution by microRNA156-targeted SPL genes in Arabidopsis thaliana[J]. Plant Cell, 2010, 22(7): 2322-2335. |
[28] | 魏梦苒. 芍药花色形成相关miRNA的挖掘及功能分析研究[D]. 扬州: 扬州大学, 2017. |
Wei MR. Mining and functional analysis of miRNA related to flower color formation in Paeonia lactiflora[D]. Yangzhou: Yangzhou University, 2017. | |
[29] | Li HS, Ma B, Luo YW, et al. The mulberry SPL gene family and the response of MnSPL7 to silkworm herbivory through activating the transcription of MnTT2L2 in the catechin biosynthesis pathway[J]. Int J Mol Sci, 2022, 23(3): 1141. |
[30] | Guo SH, Zhang M, Feng MX, et al. miR156b-targeted VvSBP8/13 functions downstream of the abscisic acid signal to regulate anthocyanins biosynthesis in grapevine fruit under drought[J]. Hortic Res, 2024, 11(2): uhad293. |
[31] |
Yang T, Ma HY, Zhang J, et al. Systematic identification of long noncoding RNAs expressed during light-induced anthocyanin accumulation in apple fruit[J]. Plant J, 2019, 100(3): 572-590.
doi: 10.1111/tpj.14470 |
[1] | 于秋琳, 马婧怡, 赵盼, 孙鹏芳, 何玉美, 刘世彪, 郭惠红. 绞股蓝GpMIR156a和GpMIR166b的克隆与功能分析[J]. 生物技术通报, 2022, 38(7): 186-193. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 379
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1800
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||