生物技术通报 ›› 2024, Vol. 40 ›› Issue (12): 102-112.doi: 10.13560/j.cnki.biotech.bull.1985.2024-0418
收稿日期:
2024-05-04
出版日期:
2024-12-26
发布日期:
2025-01-15
通讯作者:
李猛,男,博士,讲师,研究方向:设施蔬菜栽培生理;E-mail: limengscience@163.com;作者简介:
张帅博,男,研究方向:设施蔬菜栽培生理;E-mail: shuaibozhang2023@163.com
基金资助:
ZHANG Shuai-bo(), YIN Jin-peng, WANG Ji-qing, XIAO Huai-juan(
), LI Meng(
)
Received:
2024-05-04
Published:
2024-12-26
Online:
2025-01-15
摘要:
【目的】明确甜瓜己糖激酶(hexokinase)家族的基因特征和潜在功能。【方法】从全基因组水平鉴定甜瓜HXK基因家族,分析其蛋白质理化性质、亚细胞定位、系统进化、基因结构、染色体定位、保守基序、蛋白结构、启动子顺式作用元件等,同时,基于转录组数据挖掘CmHXK基因在雄花、雌花、根、叶、果实及果实发育过程中的表达模式,通过RT-qPCR检测CmHXK基因在脱落酸、干旱、盐、低温胁迫下的表达模式。【结果】共鉴定到6个CmHXK基因家族成员,分别分布在第2、4、5和8染色体上,含有6-9个外显子,5-8个内含子,平均氨基酸个数为462,平均分子量为50.2 kD,等电点为4.99-6.34。系统进化分析表明,甜瓜HXK基因家族成员与黄瓜的亲缘关系最近。甜瓜CmHXK启动子中主要顺式作用元件为光响应元件、激素响应元件和胁迫响应元件。CmHXKs在甜瓜不同器官中的表达具有特异性,其中,CmHXK1、CmHXK2和CmHXK5在雄花、雌花、根、叶、果实等组织和果实发育成熟过程中均处于较高表达水平,而CmHXK3、CmHXK4和CmHXK6的表达随着果实的发育和成熟呈现降低趋势。CmHXKs不同程度地响应4种非生物胁迫(脱落酸、干旱、盐、低温),其中,CmHXK1、CmHXK3和CmHXK4受ABA强烈诱导,CmHXK1、CmHXK3和CmHXK6受盐胁迫强烈诱导,CmHXK1、CmHXK2和CmHXK3受干旱胁迫强烈诱导;CmHXK1和CmHXK6受低温强烈诱导。【结论】CmHXK家族成员高度保守,在甜瓜生长发育及响应非生物胁迫过程中扮演着重要角色。其中,CmHXK1对4种非生物胁迫最为敏感。
张帅博, 尹金鹏, 王吉庆, 肖怀娟, 李猛. 甜瓜CmHXK基因家族的鉴定及响应非生物胁迫的表达分析[J]. 生物技术通报, 2024, 40(12): 102-112.
ZHANG Shuai-bo, YIN Jin-peng, WANG Ji-qing, XIAO Huai-juan, LI Meng. Identification of the HXK Gene Family in Cucumis melo and Their Expression Analysis under Abiotic Stresses[J]. Biotechnology Bulletin, 2024, 40(12): 102-112.
基因Gene | 正向引物序列Forward primer sequence(5'-3') | 反向引物序列Reverse primer sequence(5'-3') |
---|---|---|
CmHXK1 | GTTGGACAAGATGTGGTAGG | CCAGTTCCTAGAATCACAGC |
CmHXK2 CmHXK3 CmHXK4 CmHXK5 CmHXK6 | CAGGTGGTTGATGCTATGG GACAGATTCCACCTTTCTCC ATGGAGGAGAGTAGTTAGGG TTGCTGCTGTGATATTAGGC ATGGTTGATGATACTGTTGGG | CTTCAAAGTAAGAGACCTCTGG CAAGCAACAACATCTTTCCC CAGGGAGATTATCAACGTAGG CTTCTTCAGCCATCTTGACC GACTCTATATAGGCAGCATTGG |
CmActin7 | GTGATGGTGTGAGTCACACTGTTC | ACGACCAGCAAGGTCCAAAC |
表1 本研究所用RT-qPCR引物序列
Table 1 Sequences of primers used for RT-qPCR in this study
基因Gene | 正向引物序列Forward primer sequence(5'-3') | 反向引物序列Reverse primer sequence(5'-3') |
---|---|---|
CmHXK1 | GTTGGACAAGATGTGGTAGG | CCAGTTCCTAGAATCACAGC |
CmHXK2 CmHXK3 CmHXK4 CmHXK5 CmHXK6 | CAGGTGGTTGATGCTATGG GACAGATTCCACCTTTCTCC ATGGAGGAGAGTAGTTAGGG TTGCTGCTGTGATATTAGGC ATGGTTGATGATACTGTTGGG | CTTCAAAGTAAGAGACCTCTGG CAAGCAACAACATCTTTCCC CAGGGAGATTATCAACGTAGG CTTCTTCAGCCATCTTGACC GACTCTATATAGGCAGCATTGG |
CmActin7 | GTGATGGTGTGAGTCACACTGTTC | ACGACCAGCAAGGTCCAAAC |
图3 甜瓜CmHXK基因家族氨基酸序列多重比对结果 不同阴影显示不同的同源性,黑色:100%;粉色:≥75%;蓝色:≥50%
Fig. 3 Amino acid sequence multiple alignment of the CmHXK gene family in C. melo Different shadows show different homology, black:100%; pink: ≥75%; blue: ≥50%
功能Function | 元件Element | CmHXK1 | CmHXK2 | CmHXK3 | CmHXK4 | CmHXK5 | CmHXK6 |
---|---|---|---|---|---|---|---|
脱落酸ABA | ABRE | 0 | 0 | 0 | 3 | 0 | 3 |
生长素Auxin | TGA-element | 1 | 1 | 0 | 0 | 1 | 0 |
乙烯ETH | ERE | 1 | 0 | 2 | 6 | 6 | 3 |
赤霉素GA | P-box | 0 | 1 | 1 | 0 | 0 | 1 |
w box | 1 | 0 | 0 | 2 | 1 | 0 | |
茉莉酸甲酯MeJa | CGTCA-motif | 1 | 2 | 0 | 0 | 1 | 2 |
TGACG-motif | 1 | 2 | 0 | 0 | 2 | 2 | |
水杨酸SA | As-1 | 1 | 1 | 0 | 1 | 1 | 0 |
TCA | 1 | 0 | 1 | 0 | 0 | 1 | |
TCA-element | 2 | 0 | 1 | 0 | 0 | 0 | |
DRE | 0 | 0 | 0 | 3 | 1 | 0 | |
非生物胁迫Abiotic stresses | LTR | 0 | 0 | 0 | 0 | 1 | 0 |
STRE | 2 | 1 | 0 | 3 | 1 | 2 | |
WRE3 | 1 | 0 | 1 | 1 | 0 | 0 | |
WUN-motif | 2 | 2 | 0 | 0 | 0 | 0 | |
TC-rich repeats | 0 | 0 | 0 | 0 | 1 | 0 | |
光响应Light | 3-AFlbinding site | 0 | 0 | 0 | 1 | 0 | 1 |
AE-box | 0 | 0 | 0 | 0 | 1 | 2 | |
ATCT-motif | 1 | 0 | 0 | 0 | 0 | 0 | |
Box 4 | 3 | 3 | 2 | 3 | 2 | 2 | |
Box II | 0 | 1 | 0 | 0 | 0 | 0 | |
chs-CMAla | 0 | 0 | 0 | 1 | 0 | 0 | |
GA-motif | 0 | 0 | 0 | 0 | 0 | 1 | |
GATA-motif | 1 | 1 | 0 | 2 | 1 | 1 | |
G-Box | 0 | 0 | 0 | 1 | 0 | 2 | |
G-box | 0 | 1 | 0 | 2 | 1 | 2 | |
GT1-motif | 2 | 0 | 0 | 2 | 1 | 0 | |
I-box | 1 | 0 | 0 | 0 | 2 | 0 | |
Sp1 | 0 | 0 | 1 | 0 | 0 | 0 | |
TCCC-motif | 0 | 3 | 0 | 0 | 0 | 0 | |
TCT-motif | 1 | 1 | 3 | 0 | 1 | 0 |
表2 CmHXKs基因启动子顺式作用调控元件分析
Table 2 Analysis of cis-acting regulatory elements in the promoter of CmHXKs genes
功能Function | 元件Element | CmHXK1 | CmHXK2 | CmHXK3 | CmHXK4 | CmHXK5 | CmHXK6 |
---|---|---|---|---|---|---|---|
脱落酸ABA | ABRE | 0 | 0 | 0 | 3 | 0 | 3 |
生长素Auxin | TGA-element | 1 | 1 | 0 | 0 | 1 | 0 |
乙烯ETH | ERE | 1 | 0 | 2 | 6 | 6 | 3 |
赤霉素GA | P-box | 0 | 1 | 1 | 0 | 0 | 1 |
w box | 1 | 0 | 0 | 2 | 1 | 0 | |
茉莉酸甲酯MeJa | CGTCA-motif | 1 | 2 | 0 | 0 | 1 | 2 |
TGACG-motif | 1 | 2 | 0 | 0 | 2 | 2 | |
水杨酸SA | As-1 | 1 | 1 | 0 | 1 | 1 | 0 |
TCA | 1 | 0 | 1 | 0 | 0 | 1 | |
TCA-element | 2 | 0 | 1 | 0 | 0 | 0 | |
DRE | 0 | 0 | 0 | 3 | 1 | 0 | |
非生物胁迫Abiotic stresses | LTR | 0 | 0 | 0 | 0 | 1 | 0 |
STRE | 2 | 1 | 0 | 3 | 1 | 2 | |
WRE3 | 1 | 0 | 1 | 1 | 0 | 0 | |
WUN-motif | 2 | 2 | 0 | 0 | 0 | 0 | |
TC-rich repeats | 0 | 0 | 0 | 0 | 1 | 0 | |
光响应Light | 3-AFlbinding site | 0 | 0 | 0 | 1 | 0 | 1 |
AE-box | 0 | 0 | 0 | 0 | 1 | 2 | |
ATCT-motif | 1 | 0 | 0 | 0 | 0 | 0 | |
Box 4 | 3 | 3 | 2 | 3 | 2 | 2 | |
Box II | 0 | 1 | 0 | 0 | 0 | 0 | |
chs-CMAla | 0 | 0 | 0 | 1 | 0 | 0 | |
GA-motif | 0 | 0 | 0 | 0 | 0 | 1 | |
GATA-motif | 1 | 1 | 0 | 2 | 1 | 1 | |
G-Box | 0 | 0 | 0 | 1 | 0 | 2 | |
G-box | 0 | 1 | 0 | 2 | 1 | 2 | |
GT1-motif | 2 | 0 | 0 | 2 | 1 | 0 | |
I-box | 1 | 0 | 0 | 0 | 2 | 0 | |
Sp1 | 0 | 0 | 1 | 0 | 0 | 0 | |
TCCC-motif | 0 | 3 | 0 | 0 | 0 | 0 | |
TCT-motif | 1 | 1 | 3 | 0 | 1 | 0 |
蛋白名称 Protein name | α-螺旋 α-helix/% | 延伸链 Extended strand/% | β转角 β-turn/% | 无规卷曲 Random/% |
---|---|---|---|---|
CmHXK1 | 47.39 | 14.06 | 5.22 | 33.33 |
CmHXK2 | 43.00 | 15.78 | 5.52 | 35.70 |
CmHXK3 | 44.51 | 13.57 | 4.79 | 37.13 |
CmHXK4 | 43.46 | 13.29 | 5.49 | 37.76 |
CmHXK5 | 47.59 | 12.85 | 5.62 | 33.94 |
CmHXK6 | 51.52 | 12.12 | 6.4 | 29.97 |
表3 CmHXKs蛋白二级结构组成
Table 3 Secondary structure composition of CmHXKs proteins
蛋白名称 Protein name | α-螺旋 α-helix/% | 延伸链 Extended strand/% | β转角 β-turn/% | 无规卷曲 Random/% |
---|---|---|---|---|
CmHXK1 | 47.39 | 14.06 | 5.22 | 33.33 |
CmHXK2 | 43.00 | 15.78 | 5.52 | 35.70 |
CmHXK3 | 44.51 | 13.57 | 4.79 | 37.13 |
CmHXK4 | 43.46 | 13.29 | 5.49 | 37.76 |
CmHXK5 | 47.59 | 12.85 | 5.62 | 33.94 |
CmHXK6 | 51.52 | 12.12 | 6.4 | 29.97 |
图7 甜瓜CmHXKs基因家族的组织表达模式分析 Green:绿色果肉的甜瓜;Orange:橙色果肉的甜瓜;DAA:授粉后天数;Mature:成熟期
Fig. 7 Analysis of tissue expression pattern of CmHXKs family in C. melo Green: Melons with green flesh. Orange: Melons with orange flesh. DAA: Day after anthesis. Mature: Mature period
[1] |
洪天澍, 海英, 恩和巴雅尔, 等. 甜瓜CmABCG8基因的表达特性分析[J]. 生物技术通报, 2022, 38(7): 178-185.
doi: 10.13560/j.cnki.biotech.bull.1985.2021-1117 |
Hong TS, Hai Y, En H, et al. Analysis of expression characteristics of CmABCG8 gene in Cucumis melo L.[J]. Biotechnol Bull, 2022, 38(7): 178-185. | |
[2] |
李猛, 吕亭辉, 邢巧娟, 等. 瓜类蔬菜耐低温性评价与调控研究进展[J]. 园艺学报, 2018, 45(9): 1761-1777.
doi: 10.16420/j.issn.0513-353x.2018-0028 |
Li M, Lü TH, Xing QJ, et al. Research progress on evaluation and regulation of chilling tolerance in cucurbitaceous vegetables[J]. Acta Hortic Sin, 2018, 45(9): 1761-1777.
doi: 10.16420/j.issn.0513-353x.2018-0028 |
|
[3] |
熊韬, 闫淼, 王豪杰, 等. 盐碱胁迫对甜瓜种子萌发及幼苗生长发育的影响[J]. 新疆农业科学, 2022, 59(8): 1965-1974.
doi: 10.6048/j.issn.1001-4330.2022.08.017 |
Xiong T, Yan M, Wang HJ, et al. Effects of saline-alkali stress on seed germination and seedling growth of muskmelon[J]. Xinjiang Agric Sci, 2022, 59(8): 1965-1974.
doi: 10.6048/j.issn.1001-4330.2022.08.017 |
|
[4] | Jiao F, Chen Y, Zhang DD, et al. Genome-wide characterization of soybean hexokinase genes reveals a positive role of GmHXK15 in alkali stress response[J]. Plants, 2023, 12(17): 3121. |
[5] | 张超, 王彦杰, 付建新, 等. 高等植物己糖激酶基因研究进展[J]. 生物技术通报, 2012(4): 19-26. |
Zhang C, Wang YJ, Fu JX, et al. Research advances in the hexokinase gene family in higher plant[J]. Biotechnol Bull, 2012(4): 19-26. | |
[6] |
Granot D. Role of tomato hexose kinases[J]. Funct Plant Biol, 2007, 34(6): 564-570.
doi: 10.1071/FP06207 pmid: 32689384 |
[7] | Feng J, Zhao S, Chen XM, et al. Biochemical and structural study of Arabidopsis hexokinase 1[J]. Acta Crystallogr D Biol Crystallogr, 2015, 71(Pt 2): 367-375. |
[8] | Zhang ZB, Zhang JW, Chen YJ, et al. Isolation, structural analysis, and expression characteristics of the maize(Zea mays L.) hexokinase gene family[J]. Mol Biol Rep, 2014, 41(9): 6157-6166. |
[9] | Cho JI, Ryoo N, Ko S, et al. Structure, expression, and functional analysis of the hexokinase gene family in rice(Oryza sativa L.)[J]. Planta, 2006, 224(3): 598-611. |
[10] | Li J, Liu Y, Zhang JL, et al. Suppression of a hexokinase gene SlHXK1 in tomato affects fruit setting and seed quality[J]. Plant Physiol Biochem, 2023, 205: 108160. |
[11] | Li J, Chen GP, Zhang JL, et al. Suppression of a hexokinase gene, SlHXK1, leads to accelerated leaf senescence and stunted plant growth in tomato[J]. Plant Sci, 2020, 298: 110544. |
[12] | Zhu LC, Su J, Jin YR, et al. Genome-wide identification, molecular evolution, and expression divergence of the hexokinase gene family in apple[J]. J Integr Agric, 2021, 20(8): 2112-2125. |
[13] |
Zhou L, Jang JC, Jones TL, et al. Glucose and ethylene signal transduction crosstalk revealed by an Arabidopsis glucose-insensitive mutant[J]. Proc Natl Acad Sci USA, 1998, 95(17): 10294-10299.
doi: 10.1073/pnas.95.17.10294 pmid: 9707641 |
[14] |
Pego JV, Weisbeek PJ, Smeekens SC. Mannose inhibits Arabidopsis germination via a hexokinase-mediated step[J]. Plant Physiol, 1999, 119(3): 1017-1023.
pmid: 10069839 |
[15] | Zheng YJ, Tian L, Liu HT, et al. Sugars induce anthocyanin accumulation and flavanone 3-hydroxylase expression in grape berries[J]. Plant Growth Regul, 2009, 58(3): 251-260. |
[16] |
Miao HY, Wei J, Zhao YT, et al. Glucose signalling positively regulates aliphatic glucosinolate biosynthesis[J]. J Exp Bot, 2013, 64(4): 1097-1109.
doi: 10.1093/jxb/ers399 pmid: 23329848 |
[17] |
Moore B, Zhou L, Rolland F, et al. Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling[J]. Science, 2003, 300(5617): 332-336.
doi: 10.1126/science.1080585 pmid: 12690200 |
[18] | 晁江涛, 孔英珍, 王倩, 等. MapGene2Chrom基于Perl和SVG语言绘制基因物理图谱[J]. 遗传, 2015, 37(1): 91-97. |
Chao JT, Kong YZ, Wang Q, et al. MapGene2Chrom, a tool to draw gene physical map based on Perl and SVG languages[J]. Hereditas, 2015, 37(1): 91-97. | |
[19] |
Wilkins MR, Gasteiger E, Bairoch A, et al. Protein identification and analysis tools in the ExPASy server[J]. Methods Mol Biol, 1999, 112: 531-552.
pmid: 10027275 |
[20] |
Kumar S, Stecher G, Li M, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms[J]. Mol Biol Evol, 2018, 35(6): 1547-1549.
doi: 10.1093/molbev/msy096 pmid: 29722887 |
[21] |
Hu B, Jin JP, Guo AY, et al. GSDS 2.0: an upgraded gene feature visualization server[J]. Bioinformatics, 2015, 31(8): 1296-1297.
doi: 10.1093/bioinformatics/btu817 pmid: 25504850 |
[22] | Bailey TL. Discovering novel sequence motifs with MEME[J]. Curr Protoc Bioinformatics, 2002, Chapter 2: Unit 2.4. |
[23] | Waterhouse A, Bertoni M, Bienert S, et al. SWISS-MODEL: homology modelling of protein structures and complexes[J]. Nucleic Acids Res, 2018, 46(W1): W296-W303. |
[24] |
Lescot M, Déhais P, Thijs G, et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Res, 2002, 30(1): 325-327.
doi: 10.1093/nar/30.1.325 pmid: 11752327 |
[25] | Szklarczyk D, Gable AL, Nastou KC, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets[J]. Nucleic Acids Res, 2021, 49(D1): D605-D612. |
[26] | Meyrhof O. Uber die enzymatische milchsaurebildung im muskelextrakt. III. Mitteilung: die milchsaurebildung aus den gfirfahigen hexosen[J]. Biochem. Z. 1927,(183): 176-215. |
[27] |
Karve A, Rauh BL, Xia XX, et al. Expression and evolutionary features of the hexokinase gene family in Arabidopsis[J]. Planta, 2008, 228(3): 411-425.
doi: 10.1007/s00425-008-0746-9 pmid: 18481082 |
[28] |
Kandel-Kfir M, Damari-Weissler H, German MA, et al. Two newly identified membrane-associated and plastidic tomato HXKs: characteristics, predicted structure and intracellular localization[J]. Planta, 2006, 224(6): 1341-1352.
doi: 10.1007/s00425-006-0318-9 pmid: 16761134 |
[29] | Liu Y, Jiang YL, Liu XL, et al. Identification and expression analysis of hexokinases family in Saccharum spontaneum L. under drought and cold stresses[J]. Plants, 2023, 12(6): 1215. |
[30] | Dou LL, Li ZH, Wang HQ, et al. The hexokinase gene family in cotton: genome-wide characterization and bioinformatics analysis[J]. Front Plant Sci, 2022, 13: 882587. |
[31] | Zheng WQ, Zhang Y, Zhang Q, et al. Genome-wide identification and characterization of hexokinase genes in moso bamboo(Phyllostachys edulis)[J]. Front Plant Sci, 2020, 11: 600. |
[32] | 刘倩倩. 玉米HXK基因家族鉴定及ZmHXK6、ZmHXK7基因提高拟南芥耐盐性的功能解析[D]. 郑州: 郑州大学, 2021. |
Liu QQ. Identification of HXK gene family in Zea mays and functional analysis of ZmHXK6、ZmHXK7 genes to improve salt tolerance in Arabidopsis thaliana[D]. Zhengzhou: Zhengzhou University, 2021. | |
[33] |
Wei XY, Nguyen STT, Collings DA, et al. Sucrose regulates wall ingrowth deposition in phloem parenchyma transfer cells in Arabidopsis via affecting phloem loading activity[J]. J Exp Bot, 2020, 71(16): 4690-4702.
doi: 10.1093/jxb/eraa246 pmid: 32433727 |
[34] | Cheng W, Zhang H, Zhou X, et al. Subcellular localization of rice hexokinase(OsHXK)family members in the mesophyll protoplasts of tobacco[J]. Biol Plant, 2011, 55(1): 173-177. |
[35] | Ding X, Li JH, Pan Y, et al. Genome-wide identification and expression analysis of the UGlcAE gene family in tomato[J]. Int J Mol Sci, 2018, 19(6): 1583. |
[36] |
李英华, 王阔, 郑艳红, 等. 大豆GmGBP1基因启动子的光周期响应元件TCT-motif功能分析[J]. 中国油料作物学报, 2018, 40(4): 592-596.
doi: 10.7505/j.issn.1007-9084.2018.04.018 |
Li YH, Wang K, Zheng YH, et al. TCT-motif function of photoperiod response element of soybean GmGBP1 gene promoter[J]. Chin J Oil Crop Sci, 2018, 40(4): 592-596. | |
[37] | Saidi A, Hajibarat Z. Characterization of cis-elements in hormonal stress-responsive genes in Oryza sativa[J]. Asia Pac J Mol Biol Biotechnol, 2019: 95-102. |
[38] |
肖玉洁, 李泽明, 易鹏飞, 等. 转录因子参与植物低温胁迫响应调控机理的研究进展[J]. 生物技术通报, 2018, 34(12):1-9.
doi: 10.13560/j.cnki.biotech.bull.1985.2018-0240 |
Xiao YJ, Li ZM, Yi PF, et al. Research progress on response mechanism of transcription factors involved in plant cold stress[J]. Biotechnol Bull, 2018, 34(12): 1-9. | |
[39] | 孙耀国, 蔡天润, 姬行舟, 等. 西洋梨全基因组bZIP基因家族生物信息学分析[J]. 林业与生态科学, 2021, 36(1): 24-34. |
Sun YG, Cai TR, Ji XZ, et al. Genome-wide bioinformatics analysis of bZIP gene family in Pyrus communis[J]. For Ecol Sci, 2021, 36(1): 24-34. | |
[40] |
Wang JF, Wang YP, Yu YT, et al. ClSnRK2.3 negatively regulates watermelon fruit ripening and sugar accumulation[J]. J Integr Plant Biol, 2023, 65(10): 2336-2348.
doi: 10.1111/jipb.13535 |
[41] | Li M, Du QJ, Li JQ, et al. Genome-wide identification and chilling stress analysis of the NF-Y gene family in melon[J]. Int J Mol Sci, 2023, 24(8): 6934. |
[1] | 殷缘, 程爽, 刘定豪, 邓晓霞, 李凯月, 王竞红, 蔺吉祥. 外源过氧化氢(H2O2)影响非生物胁迫下植物生长与生理代谢机制的研究进展[J]. 生物技术通报, 2025, 41(1): 1-13. |
[2] | 杜品廷, 吴国江, 王振国, 李岩, 周伟, 周亚星. 高粱CPP基因家族鉴定及表达分析[J]. 生物技术通报, 2025, 41(1): 132-142. |
[3] | 武志健, 刘广洋, 林志豪, 盛彬, 陈鸽, 许晓敏, 王军伟, 徐东辉. 蔬菜种子萌发的纳米调控及其机制研究进展[J]. 生物技术通报, 2025, 41(1): 14-24. |
[4] | 李禹欣, 李苗, 杜晓芬, 韩康妮, 连世超, 王军. 谷子SiSAP基因家族的鉴定与表达分析[J]. 生物技术通报, 2025, 41(1): 143-156. |
[5] | 王子傲, 田瑞, 崔永梅, 白羿雄, 姚晓华, 安立昆, 吴昆仑. 青稞HvnJAZ4的生物信息学和表达模式分析[J]. 生物技术通报, 2025, 41(1): 173-185. |
[6] | 孔青洋, 张晓龙, 李娜, 张晨洁, 张雪云, 于超, 张启翔, 罗乐. 单叶蔷薇GRAS转录因子家族鉴定及表达分析[J]. 生物技术通报, 2025, 41(1): 210-220. |
[7] | 申鹏, 高雅彬, 丁红. 马铃薯SAT基因家族的鉴定和表达分析[J]. 生物技术通报, 2024, 40(9): 64-73. |
[8] | 宋兵芳, 柳宁, 程新艳, 徐晓斌, 田文茂, 高悦, 毕阳, 王毅. 马铃薯G6PDH基因家族鉴定及其在损伤块茎的表达分析[J]. 生物技术通报, 2024, 40(9): 104-112. |
[9] | 吴慧琴, 王延宏, 刘涵, 司政, 刘雪晴, 王静, 阳宜, 成妍. 辣椒UGT基因家族的鉴定及表达分析[J]. 生物技术通报, 2024, 40(9): 198-211. |
[10] | 谭博文, 张懿, 张鹏, 王振宇, 马秋香. 木薯镁离子转运蛋白家族基因的鉴定及生物信息学分析[J]. 生物技术通报, 2024, 40(9): 20-32. |
[11] | 满全财, 孟姿诺, 李伟, 蔡心汝, 苏润东, 付长青, 高顺娟, 崔江慧. 马铃薯AQP基因家族鉴定及表达分析[J]. 生物技术通报, 2024, 40(9): 51-63. |
[12] | 吴娟, 武小娟, 王沛捷, 谢锐, 聂虎帅, 李楠, 马艳红. 彩色马铃薯花青素合成相关ERF基因筛选及表达分析[J]. 生物技术通报, 2024, 40(9): 82-91. |
[13] | 周冉, 王兴平, 李彦霞, 罗仍卓么. 金黄色葡萄球菌型乳房炎奶牛乳腺组织的lncRNA差异表达分析[J]. 生物技术通报, 2024, 40(8): 320-328. |
[14] | 武帅, 辛燕妮, 买春海, 穆晓娅, 王敏, 岳爱琴, 赵晋忠, 吴慎杰, 杜维俊, 王利祥. 大豆GS基因家族全基因组鉴定及胁迫响应分析[J]. 生物技术通报, 2024, 40(8): 63-73. |
[15] | 李雨晴, 吴楠, 罗建让. 卵叶牡丹花色苷合成相关基因bHLH的克隆与功能分析[J]. 生物技术通报, 2024, 40(8): 174-185. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 61
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 104
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||