生物技术通报 ›› 2024, Vol. 40 ›› Issue (5): 23-37.doi: 10.13560/j.cnki.biotech.bull.1985.2023-1154
收稿日期:
2023-12-08
出版日期:
2024-05-26
发布日期:
2024-06-13
通讯作者:
王健,男,博士,高级工程师,研究方向:动物健康营养;E-mail: wangj24@haid.com.cn作者简介:
武威,男,博士,工程师,研究方向:动物营养与饲料科学(家禽营养);E-mail: wuw10105@haid.com.cn
基金资助:
WU Wei1,2(), MA Qiu-gang2, ZHU Xuan1, WANG Jian1()
Received:
2023-12-08
Published:
2024-05-26
Online:
2024-06-13
摘要:
木质纤维素生物质是一种量大面广且廉价易得的可再生资源,已逐步实现由生物质向生物燃料、饲料原料和其他附加值产品的开发及应用,这样的高值转化与综合利用成为“走绿色发展道路、构建绿色生产体系”的重要部分。然而,木质纤维素的天然抗降解屏障及其独特的理化性质,纤维素-半纤维素-木质素三大组分的刚性网络一直是高效转化的瓶颈所在,合理有效的预处理技术则是资源化进程的关键步骤。本文落脚于木质纤维素生物质的基本组成和结构特性分析,在总结物理法、化学法、生物法等传统预处理方法优劣势的基础上,着重阐述了蒸汽爆破的发展历程、加工类型、适用范围、工作原理、反应阶段、技术特点、影响因素、主要参数和可能的副产物效应等,以及在生物质的纤维改性、结构变化、溶解特性、低聚糖制备、活性成分提取与反刍饲料化利用层面的研究进展。此外,还指出蒸汽爆破辅以真菌、细菌为主的微生物发酵,以及糖酶外源添加的后处理流程的发展趋势。最后,归纳了蒸汽爆破在未来商业化、工业化和规模化生产推广中可能面临的困难和挑战,分析提出相应的突破点和解决策略。并就蒸汽爆破技术对常见副产物类型饲料原料的降解效果,及其在单胃动物日粮中的合理应用进行展望,以期为该技术对生物质资源的开发、增值、饲料化应用的诸多潜能提供新思路和技术指导。
武威, 马秋刚, 朱选, 王健. 蒸汽爆破对木质纤维素高值化利用的研究进展[J]. 生物技术通报, 2024, 40(5): 23-37.
WU Wei, MA Qiu-gang, ZHU Xuan, WANG Jian. Research Progress in the High-value Utilization of Lignocellulose Biomass by Steam Explosion[J]. Biotechnology Bulletin, 2024, 40(5): 23-37.
图1 蒸汽爆破预处理对木质纤维素生物质的作用效果及高值化应用 A:LB中各主要组分之间的复杂关联示意图;B:SE预处理的主要阶段及作用示意图;C:SE过程发生的组分变化及作用效果;D:SE对LB的增值化利用及其后处理流程的新趋向
Fig. 1 Effects and high-value application of steam explosion pretreatment on lignocellulosic biomass A: Schematic diagram of complex correlations among major components in LB. B: Schematic diagram of the main stages and mechanisms of SE preprocessing. C: The changes in components and their performance during the SE process. D: The manifestation of SE in the value-added utilization of LB and the new trend of supporting post-processing
LB原料类型 LB substrate type | 蒸汽爆破参数 Steam explosion parameter | 纤维改性表现 Performance of fiber modification | 参考文献 Reference |
---|---|---|---|
麦麸Wheat bran | 0.8 MPa,3 min | SE处理后麦麸中可溶性纤维总量由18.88%提高到40.32%,纤维表面崩解 | [ |
麦麸Wheat bran | 不同压力梯度,3 min | 可溶性戊聚糖含量及可消化碳水化合物与可溶性蛋白的比值随蒸汽压力增大呈现先增后减的趋势,在1.5 MPa达到峰值,约为未汽爆处理的12倍 | [ |
高粱Sorghum | 0.5、1.0、1.5、2.0 MPa,5 min | SE预处理提高了高粱中还原糖产量,2.0 MPa条件下其含量提高了19倍 以上 | [ |
豆渣Okara | 1.5 MPa,30 s | 可溶性纤维含量增加到36.28%,提高了26倍;随着SE强度的增加,低分子量多糖的比例增加 | [ |
小麦秸秆Wheat straw | 170℃,0.79 MPa,5 min | 纤维素保留率91.3%,半纤维素脱除率达83.4%,水解液糖得率为80.1% | [ |
青稞麸皮Highland barley bran | 1.5 MPa,90 s | SE预处理后,不溶性纤维总量降低了接近4%,同时可溶性纤维的产率从3.54%提高到6.96% | [ |
小麦麦胚Wheat germ | 0.4、0.6、0.8、1.0 MPa,5 min | 可溶性多糖的平均提取得率达18.72%,其表面结构呈片状不规则破碎结构 | [ |
表1 蒸汽爆破预处理过程中LB原料纤维组分的变化情况
Table 1 Changes in fiber composition of LB raw materials during steam explosion pretreatment process
LB原料类型 LB substrate type | 蒸汽爆破参数 Steam explosion parameter | 纤维改性表现 Performance of fiber modification | 参考文献 Reference |
---|---|---|---|
麦麸Wheat bran | 0.8 MPa,3 min | SE处理后麦麸中可溶性纤维总量由18.88%提高到40.32%,纤维表面崩解 | [ |
麦麸Wheat bran | 不同压力梯度,3 min | 可溶性戊聚糖含量及可消化碳水化合物与可溶性蛋白的比值随蒸汽压力增大呈现先增后减的趋势,在1.5 MPa达到峰值,约为未汽爆处理的12倍 | [ |
高粱Sorghum | 0.5、1.0、1.5、2.0 MPa,5 min | SE预处理提高了高粱中还原糖产量,2.0 MPa条件下其含量提高了19倍 以上 | [ |
豆渣Okara | 1.5 MPa,30 s | 可溶性纤维含量增加到36.28%,提高了26倍;随着SE强度的增加,低分子量多糖的比例增加 | [ |
小麦秸秆Wheat straw | 170℃,0.79 MPa,5 min | 纤维素保留率91.3%,半纤维素脱除率达83.4%,水解液糖得率为80.1% | [ |
青稞麸皮Highland barley bran | 1.5 MPa,90 s | SE预处理后,不溶性纤维总量降低了接近4%,同时可溶性纤维的产率从3.54%提高到6.96% | [ |
小麦麦胚Wheat germ | 0.4、0.6、0.8、1.0 MPa,5 min | 可溶性多糖的平均提取得率达18.72%,其表面结构呈片状不规则破碎结构 | [ |
LB原料类型 Substrate type | SE参数设置 Parameters of SE | 预处理联用 Preprocessing combination | 研究阶段(规模) Research stage(scale) | 转化产出情况 Conversion and output situation | 参考文献 Reference |
---|---|---|---|---|---|
甘蔗渣 Bagasse | 190℃,5 min;其他22种优化条件 | SO2/H2SO4辅助催化 | 实验室研究 Laboratory study | 以XOS的形式回收约40%的木聚糖,且水解产物在聚合度上具有多样性 | [ |
甘蔗渣 Bagasse | 自动水解体系(控制面板参数;未写明) | H2SO4辅助催化+后续酶解 | 中试工厂 Pilot-plant | 单独SE处理后木糖量为15 g/L,低聚木糖和纤维低聚糖量达60 g/L;辅助催化后低聚糖含量反而显著降低(14 g/L) | [ |
大麦秸秆 Barley straw | 180℃,30 min | 内切型木聚糖酶与多种脱支酶的组合 | 中试工厂 Pilot-plant | 在该综合工艺中,折算为从100 g 秸秆中获得13.0 g XOS(聚合度为2-6)、12.6 g乙醇和16.6 g木质素 | [ |
芒属植物 Miscanthus specie | 200℃,15 bar, 10 min | SE后辅以内切木聚糖酶 | 中试工厂 Pilot-plant | SE预处理后整体XOS产率高达52%,再经酶解4 h后,其中约74%-90%的XOS基本转化为木二糖 | [ |
表2 蒸汽爆破预处理对LB原料中低聚糖产出情况的影响
Table 2 Effects of steam explosion pretreatment on the oligosaccharide production in LB raw materials
LB原料类型 Substrate type | SE参数设置 Parameters of SE | 预处理联用 Preprocessing combination | 研究阶段(规模) Research stage(scale) | 转化产出情况 Conversion and output situation | 参考文献 Reference |
---|---|---|---|---|---|
甘蔗渣 Bagasse | 190℃,5 min;其他22种优化条件 | SO2/H2SO4辅助催化 | 实验室研究 Laboratory study | 以XOS的形式回收约40%的木聚糖,且水解产物在聚合度上具有多样性 | [ |
甘蔗渣 Bagasse | 自动水解体系(控制面板参数;未写明) | H2SO4辅助催化+后续酶解 | 中试工厂 Pilot-plant | 单独SE处理后木糖量为15 g/L,低聚木糖和纤维低聚糖量达60 g/L;辅助催化后低聚糖含量反而显著降低(14 g/L) | [ |
大麦秸秆 Barley straw | 180℃,30 min | 内切型木聚糖酶与多种脱支酶的组合 | 中试工厂 Pilot-plant | 在该综合工艺中,折算为从100 g 秸秆中获得13.0 g XOS(聚合度为2-6)、12.6 g乙醇和16.6 g木质素 | [ |
芒属植物 Miscanthus specie | 200℃,15 bar, 10 min | SE后辅以内切木聚糖酶 | 中试工厂 Pilot-plant | SE预处理后整体XOS产率高达52%,再经酶解4 h后,其中约74%-90%的XOS基本转化为木二糖 | [ |
LB原料类型 Substrate type | SE条件 SE conditions | 酚类变化 Changes in phenolic substances | 功能活性表现 Performance of functional activities | 参考文献 Reference |
---|---|---|---|---|
苦荞麸皮 Tartary buckwheat bran | 1.5 MPa,60 s | SE促进了结合型焦没食子酸、原儿茶酸和咖啡酸的释放,其含量几乎增加了两倍 | 结合酚提取物的体外氧自由基吸收能力提高270%,游离酚提取物的体外细胞抗氧化活性提高了215% | [ |
红豆 Adzuki | 0.25-1.0 MPa,30、90 s | SE有助于多酚的释放,游离多酚中原儿茶素、儿茶素和表儿茶素含量增加 | 酚类化合物的产率和抗氧化能力在0.75 MPa压强、保压90 s时达到最高 | [ |
绿豆 Mung bean | 0.25-1.0 MPa,30、90 s | SE增加了原儿茶酸、对香豆酸、阿魏酸、儿茶素和表儿茶素的含量,但咖啡酸含量有所下降 | 与未处理的样品相比,SE也提高了游离酚和酯化酚的抗氧化活性 | [ |
表3 蒸汽爆破预处理对LB原料中酚类物质释放的主要影响
Table 3 Effect of steam explosion pretreatment on the release of phenolic substances in LB raw materials
LB原料类型 Substrate type | SE条件 SE conditions | 酚类变化 Changes in phenolic substances | 功能活性表现 Performance of functional activities | 参考文献 Reference |
---|---|---|---|---|
苦荞麸皮 Tartary buckwheat bran | 1.5 MPa,60 s | SE促进了结合型焦没食子酸、原儿茶酸和咖啡酸的释放,其含量几乎增加了两倍 | 结合酚提取物的体外氧自由基吸收能力提高270%,游离酚提取物的体外细胞抗氧化活性提高了215% | [ |
红豆 Adzuki | 0.25-1.0 MPa,30、90 s | SE有助于多酚的释放,游离多酚中原儿茶素、儿茶素和表儿茶素含量增加 | 酚类化合物的产率和抗氧化能力在0.75 MPa压强、保压90 s时达到最高 | [ |
绿豆 Mung bean | 0.25-1.0 MPa,30、90 s | SE增加了原儿茶酸、对香豆酸、阿魏酸、儿茶素和表儿茶素的含量,但咖啡酸含量有所下降 | 与未处理的样品相比,SE也提高了游离酚和酯化酚的抗氧化活性 | [ |
LB底物类型 Substrate type | SE及辅助处理 SE and auxiliary processing | 饲料化转化效果 Feed conversion effects | 参考文献 Reference |
---|---|---|---|
玉米秸秆 Corn stover | 0.8、1.0、1.25 MPa 秸秆水分梯度范围 | SE处理后中性洗涤纤维、酸性洗涤纤维和木质素含量显著下降;秸秆的相对饲喂价值、干物质自由采食量、可消化干物质、总可消化养分提高 | [ |
干黄玉米秸秆 Corn stover | 1.8 MPa,200 s;接种乳酸菌微贮 | 相较对照而言,经预处理的微贮饲料的品质显著提高,其中粗蛋白质含量为10.85%,奶牛瘤胃干物质消失率最高可达77.36% | [ |
玉米秸秆 Corn stover | 1.5 MPa,180 s;纤维素酶/乳酸菌辅助青贮 | SE与后续青贮处理具有协同效应:半纤维素在SE处理(70%)或青贮贮存(20%-40%)过程中部分降解;纤维素活性增加2倍左右,秸秆有效降解率由39.25%显著提高至54.07% | [ |
玉米棒等5种 Five types including corn cobs | 1.5 MPa,90 s等5种参数条件 | 玉米棒、稻草、花生壳、小米秆和甘蔗尖这五种副产物的理化结构和瘤胃发酵特性,均可通过SE处理来改善;其干物质消化率提高约11.38%-14.74%,有效能量增加约42.13% | [ |
玉米秸秆 Corn stover | 1.6 MPa,115 s等9种参数条件 | SE处理能加快瘤胃微生物对秸秆的黏附,促进生物被膜形成,以提高秸秆纤维素的瘤胃降解率 | [ |
表4 蒸汽爆破预处理对秸秆饲料化利用的影响
Table 4 Effects of steam explosion pretreatment on the utilization of straw feed
LB底物类型 Substrate type | SE及辅助处理 SE and auxiliary processing | 饲料化转化效果 Feed conversion effects | 参考文献 Reference |
---|---|---|---|
玉米秸秆 Corn stover | 0.8、1.0、1.25 MPa 秸秆水分梯度范围 | SE处理后中性洗涤纤维、酸性洗涤纤维和木质素含量显著下降;秸秆的相对饲喂价值、干物质自由采食量、可消化干物质、总可消化养分提高 | [ |
干黄玉米秸秆 Corn stover | 1.8 MPa,200 s;接种乳酸菌微贮 | 相较对照而言,经预处理的微贮饲料的品质显著提高,其中粗蛋白质含量为10.85%,奶牛瘤胃干物质消失率最高可达77.36% | [ |
玉米秸秆 Corn stover | 1.5 MPa,180 s;纤维素酶/乳酸菌辅助青贮 | SE与后续青贮处理具有协同效应:半纤维素在SE处理(70%)或青贮贮存(20%-40%)过程中部分降解;纤维素活性增加2倍左右,秸秆有效降解率由39.25%显著提高至54.07% | [ |
玉米棒等5种 Five types including corn cobs | 1.5 MPa,90 s等5种参数条件 | 玉米棒、稻草、花生壳、小米秆和甘蔗尖这五种副产物的理化结构和瘤胃发酵特性,均可通过SE处理来改善;其干物质消化率提高约11.38%-14.74%,有效能量增加约42.13% | [ |
玉米秸秆 Corn stover | 1.6 MPa,115 s等9种参数条件 | SE处理能加快瘤胃微生物对秸秆的黏附,促进生物被膜形成,以提高秸秆纤维素的瘤胃降解率 | [ |
[1] | Bajwa DS, Peterson T, Sharma N, et al. A review of densified solid biomass for energy production[J]. Renew Sustain Energy Rev, 2018, 96: 296-305. |
[2] | Velvizhi G, Balakumar K, Shetti NP, et al. Integrated biorefinery processes for conversion of lignocellulosic biomass to value added materials: paving a path towards circular economy[J]. Bioresour Technol, 2022, 343: 126151. |
[3] |
Liu YR, Nie Y, Lu XM, et al. Cascade utilization of lignocellulosic biomass to high-value products[J]. Green Chem, 2019, 21(13): 3499-3535.
doi: 10.1039/c9gc00473d |
[4] | Mosier N, Wyman C, Dale B, et al. Features of promising technologies for pretreatment of lignocellulosic biomass[J]. Bioresour Technol, 2005, 96(6): 673-686. |
[5] | Hoang AT, Nguyen XP, Duong XQ, et al. Steam explosion as sustainable biomass pretreatment technique for biofuel production: characteristics and challenges[J]. Bioresour Technol, 2023, 385: 129398. |
[6] |
陈晓思, 贺稚非, 王泽富, 等. 蒸汽爆破技术的应用现状与发展前景[J]. 食品与发酵工业, 2021, 47(7): 322-328.
doi: 10.13995/j.cnki.11-1802/ts.024756 |
Chen XS, He ZF, Wang ZF, et al. Application and development of steam explosion technology[J]. Food Ferment Ind, 2021, 47(7): 322-328. | |
[7] | Harindintwali JD, Zhou JL, Yu XB. Lignocellulosic crop residue composting by cellulolytic nitrogen-fixing bacteria: a novel tool for environmental sustainability[J]. Sci Total Environ, 2020, 715: 136912. |
[8] |
Zoghlami A, Paës G. Lignocellulosic biomass: understanding recalcitrance and predicting hydrolysis[J]. Front Chem, 2019, 7: 874.
doi: 10.3389/fchem.2019.00874 pmid: 31921787 |
[9] | Zeng YN, Zhao S, Yang SH, et al. Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels[J]. Curr Opin Biotechnol, 2014, 27: 38-45. |
[10] | Huang CX, Jiang X, Shen XJ, et al. Lignin-enzyme interaction: a roadblock for efficient enzymatic hydrolysis of lignocellulosics[J]. Renew Sustain Energy Rev, 2022, 154: 111822. |
[11] |
Yang Q, Pan XJ. Correlation between lignin physicochemical properties and inhibition to enzymatic hydrolysis of cellulose[J]. Biotechnol Bioeng, 2016, 113(6): 1213-1224.
doi: 10.1002/bit.25903 pmid: 26666388 |
[12] |
Yao L, Yoo CG, Meng XZ, et al. A structured understanding of cellobiohydrolase I binding to poplar lignin fractions after dilute acid pretreatment[J]. Biotechnol Biofuels, 2018, 11: 96.
doi: 10.1186/s13068-018-1087-y pmid: 29632555 |
[13] |
Meng XZ, Pu YQ, Yoo CG, et al. An In-depth understanding of biomass recalcitrance using natural poplar variants as the feedstock[J]. ChemSusChem, 2017, 10(1): 139-150.
doi: 10.1002/cssc.201601303 pmid: 27882723 |
[14] |
Herbaut M, Zoghlami A, Habrant A, et al. Multimodal analysis of pretreated biomass species highlights generic markers of lignocellulose recalcitrance[J]. Biotechnol Biofuels, 2018, 11: 52.
doi: 10.1186/s13068-018-1053-8 pmid: 29492107 |
[15] | Kruyeniski J, Ferreira PJT, da Graça Videira Sousa Carvalho M, et al. Physical and chemical characteristics of pretreated slash pine sawdust influence its enzymatic hydrolysis[J]. Ind Crops Prod, 2019, 130: 528-536. |
[16] | Vu HP, Nguyen LN, Vu MT, et al. A comprehensive review on the framework to valorise lignocellulosic biomass as biorefinery feedstocks[J]. Sci Total Environ, 2020, 743: 140630. |
[17] |
翟旭航, 李霞, 元英进. 木质纤维素预处理及高值化技术研究进展[J]. 生物技术通报, 2021, 37(3): 162-174.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0892 |
Zhai XH, Li X, Yuan YJ. Research progress of lignocellulose pretreatment and valorization method[J]. Biotechnol Bull, 2021, 37(3): 162-174. | |
[18] | Yue PP, Hu YJ, Tian R, et al. Hydrothermal pretreatment for the production of oligosaccharides: a review[J]. Bioresour Technol, 2022, 343: 126075. |
[19] | Gonçalves MCP, Romanelli JP, Cansian ABM, et al. A review on the production and recovery of sugars from lignocellulosics for use in the synthesis of bioproducts[J]. Ind Crops Prod, 2022, 186: 115213. |
[20] | Lu X, Zheng ZC, Li H, et al. Optimization of ultrasonic-microwave assisted extraction of oligosaccharides from lotus(Nelumbo nucifera Gaertn.) seeds[J]. Ind Crops Prod, 2017, 107: 546-557. |
[21] | Lorenci Woiciechowski A, Dalmas Neto CJ, Porto de Souza Vandenberghe L, et al. Lignocellulosic biomass: acid and alkaline pretreatments and their effects on biomass recalcitrance - Conventional processing and recent advances[J]. Bioresour Technol, 2020, 304: 122848. |
[22] | Ho MC, Ong VZ, Wu TY. Potential use of alkaline hydrogen peroxide in lignocellulosic biomass pretreatment and valorization-A review[J]. Renew Sustain Energy Rev, 2019, 112: 75-86. |
[23] | Sindhu R, Binod P, Pandey A. Biological pretreatment of lignocellulosic biomass—an overview[J]. Bioresour Technol, 2016, 199: 76-82. |
[24] | 孙金淏, 焦文雅, 吴超, 等. 蒸汽爆破对膳食纤维的影响及应用研究进展[J]. 食品工业科技, 2023, 44(20): 449-457. |
Sun JH, Jiao WY, Wu C, et al. Research progress in the effect of steam explosion on dietary fiber and its application[J]. Sci Technol Food Ind, 2023, 44(20): 449-457. | |
[25] | Xi HH, Wang AX, Qin WY, et al. The structural and functional properties of dietary fibre extracts obtained from highland barley bran through different steam explosion-assisted treatments[J]. Food Chem, 2023, 406: 135025. |
[26] | Schultz TP, Templeton MC, Biermann CJ, et al. Steam explosion of mixed hardwood chips, rice hulls, corn stalks, and sugar cane bagasse[J]. J Agric Food Chem, 1984, 32(5): 1166-1172. |
[27] | Ruiz HA, Conrad M, Sun SN, et al. Engineering aspects of hydrothermal pretreatment: from batch to continuous operation, scale-up and pilot reactor under biorefinery concept[J]. Bioresour Technol, 2020, 299: 122685. |
[28] | Moukagni EM, Ziegler-Devin I, Safou-Tchima R, et al. Steam explosion of Aucoumea klaineana sapwood: membrane separation of acetylated hemicelluloses[J]. Carbohydr Res, 2022, 519: 108622. |
[29] |
何晓琴, 李苇舟, 李富华, 等. 蒸汽爆破预处理在农产品加工副产物综合利用中的应用[J]. 食品与发酵工业, 2019, 45(8): 252-257.
doi: 10.13995/j.cnki.11-1802/ts.018764 |
He XQ, Li WZ, Li FH, et al. Application of steam-explosion pretreatment in utilizing agricultural by-products[J]. Food Ferment Ind, 2019, 45(8): 252-257. | |
[30] | Mougnala Moukagni E, Ziegler-Devin I, Safou-Tchima R, et al. Extraction of acetylated glucuronoxylans and glucomannans from Okoume(Aucoumea klaineana Pierre)sapwood and heartwood by steam explosion[J]. Ind Crops Prod, 2021, 166: 113466. |
[31] | Yu Y, Wu J, Ren XY, et al. Steam explosion of lignocellulosic biomass for multiple advanced bioenergy processes: a review[J]. Renew Sustain Energy Rev, 2022, 154: 111871. |
[32] | Sui WJ, Chen HZ. Effects of water states on steam explosion of lignocellulosic biomass[J]. Bioresour Technol, 2016, 199: 155-163. |
[33] | Chen XJ, Lin QM, Rizwan M, et al. Steam explosion of crop straws improves the characteristics of biochar as a soil amendment[J]. J Integr Agric, 2019, 18(7): 1486-1495. |
[34] | Mihiretu GT, Chimphango AF, Görgens JF. Steam explosion pre-treatment of alkali-impregnated lignocelluloses for hemicelluloses extraction and improved digestibility[J]. Bioresour Technol, 2019, 294: 122121. |
[35] | Shen M, Ge YF, Kang ZY, et al. Yield and physicochemical properties of soluble dietary fiber extracted from untreated and steam explosion-treated black soybean hull[J]. J Chem, 2019, 2019: 9736479. |
[36] | Sui WJ, Chen HZ. Study on loading coefficient in steam explosion process of corn stalk[J]. Bioresour Technol, 2015, 179: 534-542. |
[37] | 王风芹, 尹双耀, 谢慧, 等. 前处理对玉米秸秆蒸汽爆破效果的影响[J]. 农业工程学报, 2012, 28(12): 273-280. |
Wang FQ, Yin SY, Xie H, et al. Effects of pretreatments on steam exposition efficiency of corn stalk[J]. Trans Chin Soc Agric Eng, 2012, 28(12): 273-280. | |
[38] | Xu JF, Han YT, Zhu WB, et al. Multivariable analysis of the effects of factors in the pretreatment and enzymolysis processes on saccharification efficiency[J]. Ind Crops Prod, 2019, 142: 111824. |
[39] | Fan XG, Cheng G, Zhang HJ, et al. Effects of acid impregnated steam explosion process on xylose recovery and enzymatic conversion of cellulose in corncob[J]. Carbohydr Polym, 2014, 114: 21-26. |
[40] | Chum HL, Johnson DK, Black SK, et al. Pretreatment-Catalyst effects and the combined severity parameter[J]. Appl Biochem Biotechnol, 1990, 24(1): 1-14. |
[41] | Xie H, Li ZM, Wang ZM, et al. Instant catapult steam explosion: a rapid technique for detoxification of aflatoxin-contaminated biomass for sustainable utilization as animal feed[J]. J Clean Prod, 2020, 255: 120010. |
[42] | Wood IP, Elliston A, Collins SRA, et al. Steam explosion of oilseed rape straw: establishing key determinants of saccharification efficiency[J]. Bioresour Technol, 2014, 162: 175-183. |
[43] | Chandra RP, Arantes V, Saddler J. Steam pretreatment of agricultural residues facilitates hemicellulose recovery while enhancing enzyme accessibility to cellulose[J]. Bioresour Technol, 2015, 185: 302-307. |
[44] | Shi QC, Li YQ, Li YF, et al. Effects of steam explosion on lignocellulosic degradation of, and methane production from, corn stover by a co-cultured anaerobic fungus and methanogen[J]. Bioresour Technol, 2019, 290: 121796. |
[45] | 谢慧, 李志敏, 于政道, 等. 3种预处理对青贮玉米秸秆理化特性的比较研究[J]. 河南农业大学学报, 2018, 52(2): 238-243. |
Xie H, Li ZM, Yu ZD, et al. Comparative study on physical and chemical properties of silage corn straw by three pretreatment methods[J]. J Henan Agric Univ, 2018, 52(2): 238-243. | |
[46] |
Wang K, Nan XM, Tong JJ, et al. Steam explosion pretreatment changes ruminal fermentation in vitro of corn stover by shifting archaeal and bacterial community structure[J]. Front Microbiol, 2020, 11: 2027.
doi: 10.3389/fmicb.2020.02027 pmid: 32983029 |
[47] |
何晓琴, 李苇舟, 夏晓霞, 等. 蒸汽爆破预处理的苦荞麸皮不溶性膳食纤维理化特性及结构研究[J]. 食品与发酵工业, 2020, 46(18): 47-53.
doi: 10.13995/j.cnki.11-1802/ts.024224 |
He XQ, Li WZ, Xia XX, et al. Study on physicochemical properties and structure of insoluble dietary fiber from Tartary buckwheat bran pretreated by steam explosion[J]. Food Ferment Ind, 2020, 46(18): 47-53. | |
[48] | Kong F, Wang L, Chen HZ, et al. Improving storage property of wheat bran by steam explosion[J]. Int J Food Sci Technol, 2021, 56(1): 287-292. |
[49] | Chen YS, Shan SR, Cao DM, et al. Steam flash explosion pretreatment enhances soybean seed coat phenolic profiles and antioxidant activity[J]. Food Chem, 2020, 319: 126552. |
[50] | 乔汉桢, 刘佳琪, 许雯雯, 等. 甘薯渣膳食纤维的制备及改性工艺研究进展[J]. 饲料研究, 2019, 42(7): 89-94. |
Qiao HZ, Liu JQ, Xu WW, et al. Preparation and modification of dietary fiber from sweet potato residues[J]. Feed Res, 2019, 42(7): 89-94. | |
[51] | Hongrattanavichit I, Aht-Ong D. Nanofibrillation and characterization of sugarcane bagasse agro-waste using water-based steam explosion and high-pressure homogenization[J]. J Clean Prod, 2020, 277: 123471. |
[52] | Zhai XY, Ao HP, Liu WH, et al. Physicochemical and structural properties of dietary fiber from Rosa roxburghii pomace by steam explosion[J]. J Food Sci Technol, 2022, 59(6): 2381-2391. |
[53] | 孙心怡. 蒸汽爆破预处理对黑小麦麦麸的品质改良及其应用研究[D]. 邯郸: 河北工程大学, 2023. |
Sun XY. Study on the quality improvement of black wheat bran by steam explosion pretreatment and its application[D]. Handan: Hebei University of Engineering, 2023. | |
[54] | 田晓红, 谭斌, 翟小童, 等. 蒸汽爆破技术在全谷物食品加工中的应用[J]. 中国粮油学报, 2022, 37(5): 16-23. |
Tian XH, Tan B, Zhai XT, et al. Application of steam explosion technology in whole grain food processing[J]. J Chin Cereals Oils Assoc, 2022, 37(5): 16-23. | |
[55] |
Deehan EC, Yang C, Perez-Muñoz ME, et al. Precision microbiome modulation with discrete dietary fiber structures directs short-chain fatty acid production[J]. Cell Host Microbe, 2020, 27(3): 389-404.e6.
doi: S1931-3128(20)30045-7 pmid: 32004499 |
[56] | Haghighi Mood S, Hossein Golfeshan A, Tabatabaei M, et al. Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment[J]. Renew Sustain Energy Rev, 2013, 27: 77-93. |
[57] | Ma C, Ni LY, Guo ZB, et al. Principle and application of steam explosion technology in modification of food fiber[J]. Foods, 2022, 11(21): 3370. |
[58] | Ma QW, Yu Y, Zhou ZK, et al. Effects of different treatments on composition, physicochemical and biological properties of soluble dietary fiber in buckwheat bran[J]. Food Biosci, 2023, 53: 102517. |
[59] | He XQ, Li WZ, Chen YY, et al. Dietary fiber of Tartary buckwheat bran modified by steam explosion alleviates hyperglycemia and modulates gut microbiota in db/db mice[J]. Food Res Int, 2022, 157: 111386. |
[60] | Wang TL, Xiao ZS, Li TG, et al. Improving the quality of soluble dietary fiber from Poria cocos peel residue following steam explosion[J]. Food Chem X, 2023, 19: 100829. |
[61] | Ma JH, Yuan M, Liu Y, et al. Effects of steam explosion on yield and properties of soluble dietary fiber from wheat bran[J]. Food Sci Technol Res, 2021, 27(1): 35-42. |
[62] | 高珊, 祝梓淳, 徐学兵, 等. 蒸汽爆破对麦麸组分及微观形貌的影响[J]. 食品研究与开发, 2021, 42(20): 8-13. |
Gao S, Zhu ZC, Xu XB, et al. Effects of steam explosion treatment on the composition and microstructure of wheat bran[J]. Food Res Dev, 2021, 42(20): 8-13. | |
[63] | Zhao GZ, Kuang GL, Wang YR, et al. Effect of steam explosion on physicochemical properties and fermentation characteristics of sorghum(Sorghum bicolor(L.)Moench)[J]. LWT, 2020, 129: 109579. |
[64] | Li B, Yang W, Nie YY, et al. Effect of steam explosion on dietary fiber, polysaccharide, protein and physicochemical properties of okara[J]. Food Hydrocoll, 2019, 94: 48-56. |
[65] | 钟禹, 李由, 吴越, 等. 低酸喷雾协同蒸汽爆破预处理对小麦秸秆结构及酶水解的影响[J]. 中国造纸学报, 2022, 37(4): 16-24. |
Zhong Y, Li Y, Wu Y, et al. Effects of low-acid spraying combined with steam explosion pretreatment on structure and enzyme hydrolysis of wheat straw[J]. Trans China Pulp Pap, 2022, 37(4): 16-24. | |
[66] | 胡蕾, 叶鹏, 彭子木, 等. 蒸汽爆破麦胚多糖提取工艺优化及其理化性质研究[J]. 食品工业科技, 2021, 42(1): 149-155. |
Hu L, Ye P, Peng ZM, et al. Extraction process optimization and physicochemical properties of polysaccharide from wheat germ modified by steam explosion[J]. Sci Technol Food Ind, 2021, 42(1): 149-155. | |
[67] | Del Río PG, Gullón B, Wu J, et al. Current breakthroughs in the hardwood biorefineries: Hydrothermal processing for the co-production of xylooligosaccharides and bioethanol[J]. Bioresour Technol, 2022, 343: 126100. |
[68] | Brenelli LB, Bhatia R, Djajadi DT, et al. Xylo-oligosaccharides, fermentable sugars, and bioenergy production from sugarcane straw using steam explosion pretreatment at pilot-scale[J]. Bioresour Technol, 2022, 357: 127093. |
[69] | Amorim C, Silvério SC, Prather KLJ, et al. From lignocellulosic residues to market: production and commercial potential of xylooligosaccharides[J]. Biotechnol Adv, 2019, 37(7): 107397. |
[70] | 郭超然, 赵红军, 苏海鹏, 等. 蒸汽爆破预处理联合壳聚糖酶制备壳三糖[J]. 食品研究与开发, 2023, 44(14): 192-197. |
Guo CR, Zhao HJ, Su HP, et al. Chitotriose preparation by steam explosion pretreatment and chitosanase[J]. Food Res Dev, 2023, 44(14): 192-197. | |
[71] | Carvalho AFA, Marcondes WF, de Oliva Neto P, et al. The potential of tailoring the conditions of steam explosion to produce xylo-oligosaccharides from sugarcane bagasse[J]. Bioresour Technol, 2018, 250: 221-229. |
[72] | Silveira MHL, Chandel AK, Vanelli BA, et al. Production of hemicellulosic sugars from sugarcane bagasse via steam explosion employing industrially feasible conditions: pilot scale study[J]. Bioresour Technol Rep, 2018, 3: 138-146. |
[73] | Álvarez C, González A, Ballesteros I, et al. Production of xylooligosaccharides, bioethanol, and lignin from structural components of barley straw pretreated with a steam explosion[J]. Bioresour Technol, 2021, 342: 125953. |
[74] | Bhatia R, Winters A, Bryant DN, et al. Pilot-scale production of xylo-oligosaccharides and fermentable sugars from Miscanthus using steam explosion pretreatment[J]. Bioresour Technol, 2020, 296: 122285. |
[75] |
Hu L, Guo JM, Zhu XW, et al. Effect of steam explosion on nutritional composition and antioxidative activities of okra seed and its application in gluten-free cookies[J]. Food Sci Nutr, 2020, 8(8): 4409-4421.
doi: 10.1002/fsn3.1739 pmid: 32884721 |
[76] | Ferri M, Happel A, Zanaroli G, et al. Advances in combined enzymatic extraction of ferulic acid from wheat bran[J]. N Biotechnol, 2020, 56: 38-45. |
[77] | 易军鹏, 李冰, 张棋, 等. 蒸汽爆破处理对亚麻籽油脂肪酸组成的影响[J]. 中国粮油学报, 2017, 32(9): 88-93. |
Yi JP, Li B, Zhang Q, et al. Effect of steam explosion treatment on fatty acid composition of flax seed oil[J]. J Chin Cereals Oils Assoc, 2017, 32(9): 88-93. | |
[78] |
Chen GZ, Chen HZ. Extraction and deglycosylation of flavonoids from sumac fruits using steam explosion[J]. Food Chem, 2011, 126(4): 1934-1938.
doi: 10.1016/j.foodchem.2010.12.025 pmid: 25213979 |
[79] |
Li WZ, Zhang XL, He XQ, et al. Effects of steam explosion pretreatment on the composition and biological activities of Tartary buckwheat bran phenolics[J]. Food Funct, 2020, 11(5): 4648-4658.
doi: 10.1039/d0fo00493f pmid: 32401260 |
[80] | Cheng AW, Hou CY, Sun JY, et al. Effect of steam explosion on phenolic compounds and antioxidant capacity in adzuki beans[J]. J Sci Food Agric, 2020, 100(12): 4495-4503. |
[81] |
Wan FC, Hou CY, Luo KY, et al. Steam explosion enhances phenolic profiles and antioxidant activity in mung beans[J]. Food Sci Nutr, 2022, 10(4): 1039-1050.
doi: 10.1002/fsn3.2711 pmid: 35432969 |
[82] | 冉福, 焦婷, 雷赵民, 等. 不同蒸汽爆破条件对玉米秸秆饲用价值的影响[J]. 草业科学, 2020, 37(10): 2133-2141. |
Ran F, Jiao T, Lei ZM, et al. Effect of different steam explosion conditions on the feeding value of corn straw[J]. Pratacultural Sci, 2020, 37(10): 2133-2141. | |
[83] | 杨森, 段旭磊, 裴亚欣, 等. 瞬时弹射式蒸汽爆破对玉米秸秆微贮营养成分和牛瘤胃营养物质消失率的影响[J]. 中国农业大学学报, 2021, 26(10): 108-117. |
Yang S, Duan XL, Pei YX, et al. Effect of ICSE on nutritional components of corn stover and rumen reduction rate in cow rumen[J]. J China Agric Univ, 2021, 26(10): 108-117. | |
[84] | Nie DC, Yao LY, Xu XK, et al. Promoting corn stover degradation via sequential processing of steam explosion and cellulase/lactic acid bacteria-assisted ensilage[J]. Bioresour Technol, 2021, 337: 125392. |
[85] | He LW, Huang YC, Shi L, et al. Steam explosion processing intensifies the nutritional values of most crop byproducts: morphological structure, carbohydrate-protein fractions, and rumen fermentation profile[J]. Front Nutr, 2022, 9: 979609. |
[86] | Zhao SG, Li GD, Zheng N, et al. Steam explosion enhances digestibility and fermentation of corn stover by facilitating ruminal microbial colonization[J]. Bioresour Technol, 2018, 253: 244-251. |
[87] | Singh SK. Biological treatment of plant biomass and factors affecting bioactivity[J]. J Clean Prod, 2021, 279: 123546. |
[88] | Zhang HQ, Zhang R, Song YN, et al. Enhanced enzymatic saccharification and ethanol production of corn stover via pretreatment with urea and steam explosion[J]. Bioresour Technol, 2023, 376: 128856. |
[89] | Mohamed Diaby. 不同纤维降解酶作用顺序对玉米秸秆降解的影响[D]. 北京: 中国农业科学院, 2019. |
Mohamed D. Effects of different cellulose degrading enzymes on corn stalk degradation[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. | |
[90] | Zhang Y, Wang RN, Yang JS, et al. Enzymatic formulation strategies unlock highly-efficient saccharification of distinct pretreated corncobs[J]. Ind Crops Prod, 2022, 187: 115320. |
[91] | Guo X, An YJ, Lu FP, et al. Optimization of synergistic degradation of steam exploded corn straw by lytic polysaccharide monooxygenase R17L and cellulase[J]. Ind Crops Prod, 2022, 182: 114924. |
[92] | You S, Li J, Zhang F, et al. Loop engineering of a thermostable GH10 xylanase to improve low-temperature catalytic performance for better synergistic biomass-degrading abilities[J]. Bioresour Technol, 2021, 342: 125962. |
[93] | 尚伟昊. 利用黑曲霉和疏棉状嗜热丝孢菌进行啤酒麦糟生物降解的研究[D]. 济南: 山东大学, 2022. |
Shang WH. Study on biodegradation of beer spent grains by Aspergillus Niger and thermophilic hyphomycetes gossypii[D]. Jinan: Shandong University, 2022. | |
[94] | Zhang Y, Wang RN, Liu L, et al. Distinct lignocellulolytic enzymes produced by Trichoderma harzianum in response to different pretreated substrates[J]. Bioresour Technol, 2023, 378: 128990. |
[95] | Cheng YF, Shi QC, Sun RL, et al. The biotechnological potential of anaerobic fungi on fiber degradation and methane production[J]. World J Microbiol Biotechnol, 2018, 34(10): 155. |
[96] | 田亚东. 秸秆饲料发酵菌剂生产工艺的优化研究[D]. 天津: 天津科技大学, 2020. |
Tian YD. Study on optimization of production technology of straw feed fermentation agent[D]. Tianjin: Tianjin University of Science & Technology, 2020. | |
[97] | 范恩帝, 冯敏雪, 李晨瑶, 等. 蒸汽爆破结合多种微生物改善酒糟饲料品质的研究[J]. 农业生物技术学报, 2022, 30(1): 194-206. |
Fan ED, Feng MX, Li CY, et al. Study on improving the quality of distiller's grains feed by steam explosion combined with various microorganisms[J]. J Agric Biotechnol, 2022, 30(1): 194-206. | |
[98] | 李晓娟, 董红丽, 张宏森, 等. 玉米秸秆水提-甘油协同蒸汽爆破预处理及其丁醇发酵研究[J]. 河南农业大学学报, 2023, 57(6): 1035-1043. |
Li XJ, Dong HL, Zhang HS, et al. Water extraction coupled glycerol-assisted steam explosion pretreatment of corn stover and its butanol fermentation[J]. J Henan Agric Univ, 2023, 57(6): 1035-1043. | |
[99] | 高雪梅. 不同添加剂处理的蒸汽爆破玉米秸秆品质评价及其组合效应研究[D]. 兰州: 甘肃农业大学, 2021. |
Gao XM. Study on quality evaluation and combination effect of steam exploded corn straw treated by different additives[D]. Lanzhou: Gansu Agricultural University, 2021. | |
[100] | Marques FP, Silva LMA, Lomonaco D, et al. Steam explosion pretreatment to obtain eco-friendly building blocks from oil palm mesocarp fiber[J]. Ind Crops Prod, 2020, 143: 111907. |
[1] | 徐发迪, 徐康, 孙东明, 李萌蕾, 赵建志, 鲍晓明. 基于杨木(Populus sp.)的二代燃料乙醇技术研究进展[J]. 生物技术通报, 2023, 39(9): 27-39. |
[2] | 翟旭航, 李霞, 元英进. 木质纤维素预处理及高值化技术研究进展[J]. 生物技术通报, 2021, 37(3): 162-174. |
[3] | 杨晶, 戴求仲, 侯振平, 王延周, 王满生. 基于专利分析的麻类作物饲料化利用技术态势及热点分析[J]. 生物技术通报, 2018, 34(12): 207-214. |
[4] | 王海燕,朱之轩,金晶,丁毅. 莲藕根尖染色体制片与免疫荧光染色技术的优化[J]. 生物技术通报, 2016, 32(4): 74-79. |
[5] | 公维丽,王禄山,张怀强. 植物细胞壁多糖合成酶系及真菌降解酶系[J]. 生物技术通报, 2015, 31(4): 149-165. |
[6] | 姜超, 苏小琴, 张学文, 潘映红. 一种点杂交膜预处理方法的建立及应用[J]. 生物技术通报, 2015, 31(11): 121-124. |
[7] | 白艳波,李娇,张宝龙,辛世刚,卜宁,马莲菊,李雪梅. 干旱胁迫对植物矿质元素影响的研究进展[J]. 生物技术通报, 2013, 0(3): 15-18. |
[8] | 陶冶. 可能某一天能通过婴儿期免疫接种来预防糖尿病[J]. , 1995, 0(02): 29-30. |
[9] | 孙国凤;. 木材饲料化技术的事业化[J]. , 1993, 0(08): 14-15. |
[10] | . 环境保护及农业废物利用[J]. , 1992, 0(12): 80-86. |
[11] | . 环境保护及农业废物利用[J]. , 1992, 0(04): 90-93. |
[12] | 朱遐;. 干燥“人造”苜蓿种子的长期贮存[J]. , 1991, 0(07): 10-11. |
[13] | . 食品上的应用[J]. , 1991, 0(03): 106-109. |
[14] | . 食品上的应用[J]. , 1990, 0(07): 92-96. |
[15] | . 能源上的应用[J]. , 1990, 0(07): 96-98. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||