生物技术通报 ›› 2025, Vol. 41 ›› Issue (6): 1-11.doi: 10.13560/j.cnki.biotech.bull.1985.2024-1160
• 综述与专论 •
收稿日期:2024-12-02
出版日期:2025-06-26
发布日期:2025-06-30
通讯作者:
李君,女,博士,教授,研究方向 :植物基因组编辑技术;E-mail: junli@hebau.edu.cn作者简介:霍贯中,男,硕士研究生,研究方向 :植物基因组编辑技术;E-mail: hgz13931224557@163.com基金资助:
HUO Guan-zhong1(
), ZHANG Xin-ru1, TIAN Shi-jun2, LI Jun1,3(
)
Received:2024-12-02
Published:2025-06-26
Online:2025-06-30
摘要:
CRISPR/Cas系统是细菌和古生菌长期进化形成的适应性免疫系统,科研人员对其进行开发和优化,建立了CRISPR/Cas9基因编辑技术、CRISPR/Cas12a基因编辑技术、单碱基编辑技术和引导编辑技术,为生命科学研究提供了众多基因编辑工具。这些基因编辑工具能够高效精准地编辑目的基因组,产生各种类型的突变体,在基因功能研究、疾病模型构建、基因治疗以及作物育种等领域展现出巨大的应用潜力。CRISPR/Cas12a作为Ⅱ类Ⅴ型成员,Cas12a(Cpf1)核酸酶分子量较小,识别TTTV PAM序列,仅依赖单个crRNA结构,且无需tracrRNA的加工,操作简单以及具有多基因编辑等优点备受关注。CRISPR/Cas12a基因编辑技术自开发以来,已经成功应用在各种动植物基因组编辑中,为基因治疗及作物育种等提供重要技术支撑。本文详细介绍了CRISPR/Cas12a基因编辑技术的原理及基于CRISPR/Cas12a开发的碱基编辑和引导编辑技术,重点阐述了通过提高基因编辑效率、扩展靶向编辑范围和提高特异性等方面对CRISPR/Cas12a进行优化的策略,着重总结了该技术在植物遗传改良方面的应用,以期为CRISPR/Cas12a在植物中的进一步应用提供参考。
霍贯中, 张欣濡, 田士军, 李君. CRISPR/Cas12a基因编辑技术在植物中的研究进展[J]. 生物技术通报, 2025, 41(6): 1-11.
HUO Guan-zhong, ZHANG Xin-ru, TIAN Shi-jun, LI Jun. Current Progress and Applications of CRISPR/Cas12a Gene Editing Technology in Plants[J]. Biotechnology Bulletin, 2025, 41(6): 1-11.
分类 Type | Cas蛋白 Cas protein | 大小 Size (aa) | PAM类型 PAM type | RNA 组成 RNA requirement | 多基因编辑 Multiple-gene editing | 参考文献 Reference |
|---|---|---|---|---|---|---|
| Ⅱ | SpCas9 | 1 368 | NGG | crRNA+tracrRNA | 是 | [ |
| V-A | LbCas12a | 1 223 | TTTV | crRNA | 是 | [ |
| AsCas12a | 1 307 | TTV | crRNA | 是 | ||
| FnCas12a | 1 300 | TTN | crRNA | 是 | ||
| V-B | AaCas12b | 1 129 | TTN | crRNA+tracrRNA | 否 | [ |
| V-C | Cas12c | 1 218 | TN | crRNA+tracrRNA | 否 | [ |
| V-F | SpCas12f | 497 | TTN | crRNA+tracrRNA | 否 | [ |
| V-I | Cas12i | 1 093 | TTN | crRNA | 否 | [ |
| V-J | Cas12j | 700-800 | TBN | crRNA | 否 | [ |
表1 CRISPR/Cas基因编辑系统的比较
Table 1 Comparison of the CRISPR/Cas gene editing system
分类 Type | Cas蛋白 Cas protein | 大小 Size (aa) | PAM类型 PAM type | RNA 组成 RNA requirement | 多基因编辑 Multiple-gene editing | 参考文献 Reference |
|---|---|---|---|---|---|---|
| Ⅱ | SpCas9 | 1 368 | NGG | crRNA+tracrRNA | 是 | [ |
| V-A | LbCas12a | 1 223 | TTTV | crRNA | 是 | [ |
| AsCas12a | 1 307 | TTV | crRNA | 是 | ||
| FnCas12a | 1 300 | TTN | crRNA | 是 | ||
| V-B | AaCas12b | 1 129 | TTN | crRNA+tracrRNA | 否 | [ |
| V-C | Cas12c | 1 218 | TN | crRNA+tracrRNA | 否 | [ |
| V-F | SpCas12f | 497 | TTN | crRNA+tracrRNA | 否 | [ |
| V-I | Cas12i | 1 093 | TTN | crRNA | 否 | [ |
| V-J | Cas12j | 700-800 | TBN | crRNA | 否 | [ |
图1 CRISPR/Cas12a基因编辑技术原理Cas12a:CRISPR相关蛋白12a;PAM:原型间隔序列毗邻基序
Fig. 1 Schematic diagram of CRISPR/Cas12a gene editing technologyCas12a: CRISPR-related protein 12a. PAM: Protospacer adjacent motif
图2 CRISPR/Cas12a介导的精准编辑技术A:CRISPR/Cas12a介导的胞嘧啶碱基编辑器;dCas12a:无催化活性的Cas12a;UGI:尿嘧啶糖苷酶抑制剂;B:CRISPR/Cas12a介导的腺嘌呤碱基编辑器;C:CRISPR/Cas12a介导的引导编辑。nCas12a:Cas12a切口酶
Fig. 2 Precise genome editing techniques mediated by CRISPR/Cas12aA: CRISPR/Cas12a-mediated cytosine base editor; dCas12a: dead Cas12a; UGI: uracil DNA glycosylase inhibitor. B: CRISPR/Cas12a-mediated adenine base editor. C: CRISPR/Cas12a-mediated prime editing. nCas12a: Cas12a nickase
物种 Species | Cas12a种类 Cas12a type | PAM 类型 PAM type | 靶基因 Target gene | 编辑类型 Editing type | 表型 Phenotype | 参考文献 References |
|---|---|---|---|---|---|---|
水稻 Oryza sativa | Mb3Cas12a | TTTV TTV | OsGBSS1 OsD18 | 多基因敲除 Multiple knockout | 直链淀粉减少; 株高连续变异 | [ |
| FnCas12a | TTN | OsDL | 敲除Knockout | 叶片下垂 | [ | |
| LbCas12a | TTTV | OsEPFL9 | 敲除Knockout | 叶表面气孔 密度降低 | [ | |
| LbCas12a | TTTV | OsROC5 | 插入Insertion | 叶片卷曲 | [ | |
| LbCas12a | TTTV | OsALS | 定点替换Replacement | 抗除草剂 | [ | |
| LbCas12a | TTTV | OsD18 | 多基因敲除 Multiple knockout | 株高连续变异 | [ | |
| LbCas12a | TTTV | OsMIR394 | 敲除Knockout | 千粒重增加 | [ | |
玉米 Zea mays | LbCas12a | TTTV | ZmGl2 | 敲除Knockout | 叶片表皮无蜡质 | [ |
棉花 Gossypium hirsutum | LbCas12a | TTTV | GhCLA | 敲除Knockout | 植株白化 | [ |
| LbCas12a | TTTV | GhPGF | 敲除Knockout | 种子不含棉酚 | [ | |
番茄 Solanum lycopersicum | Mb3Cas12a | TTV TTTV | SlMYBATV, SlGGP1,SlCYCB | 多基因敲除 Multiple knockout | 番茄红素含量增加 | [ |
| LbCas12a | TTTV | SlHKT1;2 | 基因定点敲入 GT | 提高耐盐性 | [ | |
柑橘 Citrus reticulata | LbCas12a | TTTV | CsLOB1 | 敲除Knockout | 抗柑橘溃疡病 | [ |
| LbCas12a | TTTV | CsLOBP | 敲除Knockout | 抗柑橘溃疡病 | [ | |
小麦 Triticum aestivum | LbCas12a | TTTV | TaGW7-B1 | 多基因敲除 Multiple knockout | 增加籽粒大小和重量 | [ |
| LbCas12a | TTTV | TaMTL | 敲除Knockout | 结实率降低 | [ | |
杨树 Populus | LbCas12a | TTTV | Pt4CL1, PtPII, PtSVP | 多基因敲除 Multiple knockout | - | [ |
大豆 Glycine max | LbCas12a | TTTV | GmFAD2 | 大片段删除 Segment deletions | - | [ |
| LbCas12a | TTTV | GmFAD2 | 敲除Knockout | - | [ | |
葡萄 Vitis vinifera L. | LbCas12a | TTTV | TMT1 DFR1 | 多基因敲除 Multiple knockout | 糖积累减少; 改变类黄酮积累 | [ |
高羊茅 Festuca arundinacea | LbCas12a | TTTV | FaPDS | 敲除Knockout | 植株白化 | [ |
芥菜 Brassica juncea | LbCas12a | TTTV | I型黑芥子酶基因家族 | 敲除Knockout | 降低新鲜叶片刺激性气味 | [ |
表2 利用CRISPR/Cas12a基因编辑技术进行植物遗传改良中的部分实例
Table 2 Examples of plant genetic improvement using CRISPR/Cas12a gene editing technology
物种 Species | Cas12a种类 Cas12a type | PAM 类型 PAM type | 靶基因 Target gene | 编辑类型 Editing type | 表型 Phenotype | 参考文献 References |
|---|---|---|---|---|---|---|
水稻 Oryza sativa | Mb3Cas12a | TTTV TTV | OsGBSS1 OsD18 | 多基因敲除 Multiple knockout | 直链淀粉减少; 株高连续变异 | [ |
| FnCas12a | TTN | OsDL | 敲除Knockout | 叶片下垂 | [ | |
| LbCas12a | TTTV | OsEPFL9 | 敲除Knockout | 叶表面气孔 密度降低 | [ | |
| LbCas12a | TTTV | OsROC5 | 插入Insertion | 叶片卷曲 | [ | |
| LbCas12a | TTTV | OsALS | 定点替换Replacement | 抗除草剂 | [ | |
| LbCas12a | TTTV | OsD18 | 多基因敲除 Multiple knockout | 株高连续变异 | [ | |
| LbCas12a | TTTV | OsMIR394 | 敲除Knockout | 千粒重增加 | [ | |
玉米 Zea mays | LbCas12a | TTTV | ZmGl2 | 敲除Knockout | 叶片表皮无蜡质 | [ |
棉花 Gossypium hirsutum | LbCas12a | TTTV | GhCLA | 敲除Knockout | 植株白化 | [ |
| LbCas12a | TTTV | GhPGF | 敲除Knockout | 种子不含棉酚 | [ | |
番茄 Solanum lycopersicum | Mb3Cas12a | TTV TTTV | SlMYBATV, SlGGP1,SlCYCB | 多基因敲除 Multiple knockout | 番茄红素含量增加 | [ |
| LbCas12a | TTTV | SlHKT1;2 | 基因定点敲入 GT | 提高耐盐性 | [ | |
柑橘 Citrus reticulata | LbCas12a | TTTV | CsLOB1 | 敲除Knockout | 抗柑橘溃疡病 | [ |
| LbCas12a | TTTV | CsLOBP | 敲除Knockout | 抗柑橘溃疡病 | [ | |
小麦 Triticum aestivum | LbCas12a | TTTV | TaGW7-B1 | 多基因敲除 Multiple knockout | 增加籽粒大小和重量 | [ |
| LbCas12a | TTTV | TaMTL | 敲除Knockout | 结实率降低 | [ | |
杨树 Populus | LbCas12a | TTTV | Pt4CL1, PtPII, PtSVP | 多基因敲除 Multiple knockout | - | [ |
大豆 Glycine max | LbCas12a | TTTV | GmFAD2 | 大片段删除 Segment deletions | - | [ |
| LbCas12a | TTTV | GmFAD2 | 敲除Knockout | - | [ | |
葡萄 Vitis vinifera L. | LbCas12a | TTTV | TMT1 DFR1 | 多基因敲除 Multiple knockout | 糖积累减少; 改变类黄酮积累 | [ |
高羊茅 Festuca arundinacea | LbCas12a | TTTV | FaPDS | 敲除Knockout | 植株白化 | [ |
芥菜 Brassica juncea | LbCas12a | TTTV | I型黑芥子酶基因家族 | 敲除Knockout | 降低新鲜叶片刺激性气味 | [ |
| 1 | Pacesa M, Pelea O, Jinek M. Past, present, and future of CRISPR genome editing technologies [J]. Cell, 2024, 187(5): 1076-1100. |
| 2 | Li J, Yu X, Zhang C, et al. The application of CRISPR/Cas technologies to Brassica crops: current progress and future perspectives[J]. aBIOTECH, 2022, 3, 146-161. |
| 3 | Mohanraju P, Makarova KS, Zetsche B, et al. Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems [J]. Science, 2016, 353(6299): aad5147. |
| 4 | 李君, 张毅, 陈坤玲, 等. CRISPR/Cas系统: RNA靶向的基因组定向编辑新技术 [J]. 遗传, 2013, 35(11): 1265-1273. |
| Li J, Zhang Y, Chen KL, et al. CRISPR/Cas: a novel way of RNA-guided genome editing [J]. Hereditas, 2013, 35(11): 1265-1273. | |
| 5 | Chen KL, Wang YP, Zhang R, et al. CRISPR/cas genome editing and precision plant breeding in agriculture [J]. Annu Rev Plant Biol, 2019, 70: 667-697. |
| 6 | Li Y, Li WJ, Li J. The CRISPR/Cas9 revolution continues: From base editing to prime editing in plant science [J]. J Genet Genomics, 2021, 48(8): 661-670. |
| 7 | Li BS, Sun C, Li JY, et al. Targeted genome-modification tools and their advanced applications in crop breeding [J]. Nat Rev Genet, 2024, 25: 603-622. |
| 8 | Walton RT, Christie KA, Whittaker MN, et al. Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants [J]. Science, 2020, 368(6488): 290-296. |
| 9 | Zetsche B, Gootenberg JS, Abudayyeh OO, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system [J]. Cell, 2015, 163(3): 759-771. |
| 10 | Ming ML, Ren QR, Pan CT, et al. CRISPR-Cas12b enables efficient plant genome engineering [J]. Nat Plants, 2020, 6(3): 202-208. |
| 11 | Kurihara N, Nakagawa R, Hirano H, et al. Structure of the type V-C CRISPR-cas effector enzyme [J]. Mol Cell, 2022, 82(10): 1865-1877.e4. |
| 12 | Bigelyte G, Young JK, Karvelis T, et al. Miniature type V-F CRISPR-Cas nucleases enable targeted DNA modification in cells [J]. Nat Commun, 2021, 12(1): 6191. |
| 13 | McGaw C, Garrity AJ, Munoz GZ, et al. Engineered Cas12i2 is a versatile high-efficiency platform for therapeutic genome editing [J]. Nat Commun, 2022, 13(1): 2833. |
| 14 | Sun Y, Hu JJ, Hu ZC, et al. Engineer and split an efficient hypercompact CRISPR-CasΦ genome editor in plants [J]. Plant Commun, 2024, 5(7): 100881. |
| 15 | Swarts DC, van der Oost J, Jinek M. Structural basis for guide RNA processing and seed-dependent DNA targeting by CRISPR-Cas12a [J]. Mol Cell, 2017, 66(2): 221-233.e4. |
| 16 | Fonfara I, Richter H, Bratovič M, et al. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA [J]. Nature, 2016, 532(7600): 517-521. |
| 17 | Zetsche B, Heidenreich M, Mohanraju P, et al. Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array [J]. Nat Biotechnol, 2017, 35(1): 31-34. |
| 18 | Kim D, Kim J, Hur JK, et al. Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells [J]. Nat Biotechnol, 2016, 34(8): 863-868. |
| 19 | Li SY, Zhang YX, Xia LQ, et al. CRISPR-Cas12a enables efficient biallelic gene targeting in rice [J]. Plant Biotechnol J, 2020, 18(6): 1351-1353. |
| 20 | Zhou JP, Liu GQ, Zhao YX, et al. An efficient CRISPR-Cas12a promoter editing system for crop improvement [J]. Nat Plants, 2023, 9(4): 588-604. |
| 21 | Li SY, Li JY, He YB, et al. Precise gene replacement in rice by RNA transcript-templated homologous recombination [J]. Nat Biotechnol, 2019, 37(4): 445-450. |
| 22 | Anzalone AV, Koblan LW, Liu DR. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors [J]. Nat Biotechnol, 2020, 38(7): 824-844. |
| 23 | Li XS, Wang Y, Liu YJ, et al. Base editing with a Cpf1-cytidine deaminase fusion [J]. Nat Biotechnol, 2018, 36(4): 324-327. |
| 24 | Wang X, Ding CF, Yu WX, et al. Cas12a base editors induce efficient and specific editing with low DNA damage response [J]. Cell Rep, 2020, 31(9): 107723. |
| 25 | Chen SY, Jia YQ, Liu ZQ, et al. Robustly improved base editing efficiency of Cpf1 base editor using optimized cytidine deaminases [J]. Cell Discov, 2020, 6: 62. |
| 26 | Chen FB, Lian M, Ma BX, et al. Multiplexed base editing through Cas12a variant-mediated cytosine and adenine base editors [J]. Commun Biol, 2022, 5(1): 1163. |
| 27 | Kleinstiver BP, Sousa AA, Walton RT, et al. Engineered CRISPR-Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing [J]. Nat Biotechnol, 2019, 37(3): 276-282. |
| 28 | Gaillochet C, Peña Fernández A, Goossens V, et al. Systematic optimization of Cas12a base editors in wheat and maize using the ITER platform [J]. Genome Biol, 2023, 24(1): 6. |
| 29 | 王敬文, 严芳, 柳浪, 等. 水稻CRISPR/Cas12a系统的优化及其介导的腺嘌呤碱基编辑器的建立 [J]. 生物技术通报, 2021, 37(6): 279-285. |
| Wang JW, Yan F, Liu L, et al. Optimization of CRISPR/Cas12a system and development of it mediated adenine base editor in rice [J]. Biol Bull, 2021, 37(6): 279-285. | |
| 30 | Cheng YH, Zhang YX, Li G, et al. CRISPR-Cas12a base editors confer efficient multiplexed genome editing in rice [J]. Plant Commun, 2023, 4(4): 100601. |
| 31 | Wang GY, Xu ZP, Wang FQ, et al. Development of an efficient and precise adenine base editor (ABE) with expanded target range in allotetraploid cotton (Gossypium hirsutum) [J]. BMC Biol, 2022, 20(1): 45. |
| 32 | Liang RH, He ZX, Zhao KT, et al. Prime editing using CRISPR-Cas12a and circular RNAs in human cells [J]. Nat Biotechnol, 2024, 42(12): 1867-1875. |
| 33 | Wei JJ, Liu JT, Wang ZW, et al. Engineering of a high-fidelity Cas12a nuclease variant capable of allele-specific editing [J]. PLoS Biol, 2024, 22(6): e3002680. |
| 34 | Zhang YX, Ren QR, Tang X, et al. Expanding the scope of plant genome engineering with Cas12a orthologs and highly multiplexable editing systems [J]. Nat Commun, 2021, 12(1): 1944. |
| 35 | Li JH, Liang QC, Zhou HP, et al. Profiling the impact of the promoters on CRISPR-Cas12a system in human cells [J]. Cell Mol Biol Lett, 2023, 28(1): 41. |
| 36 | Zhang XH, Xu LP, Fan RH, et al. Genetic editing and interrogation with Cpf1 and caged truncated pre-tRNA-like crRNA in mammalian cells [J]. Cell Discov, 2018, 4: 36. |
| 37 | Park HM, Liu H, Wu J, et al. Extension of the crRNA enhances Cpf1 gene editing in vitro and in vivo [J]. Nat Commun, 2018, 9(1): 3313. |
| 38 | Li B, Zhao WY, Luo X, et al. Engineering CRISPR-Cpf1 crRNAs and mRNAs to maximize genome editing efficiency [J]. Nat Biomed Eng, 2017, 1(5): 0066. |
| 39 | Moreno-Mateos MA, Fernandez JP, Rouet R, et al. CRISPR-Cpf1 mediates efficient homology-directed repair and temperature-controlled genome editing [J]. Nat Commun, 2017, 8(1): 2024. |
| 40 | Malzahn AA, Tang X, Lee K, et al. Application of CRISPR-Cas12a temperature sensitivity for improved genome editing in rice, maize, and Arabidopsis [J]. BMC Biol, 2019, 17(1): 9. |
| 41 | Schindele P, Puchta H. Engineering CRISPR/LbCas12a for highly efficient, temperature-tolerant plant gene editing [J]. Plant Biotechnol J, 2020, 18(5): 1118-1120. |
| 42 | Zhang LY, Li G, Zhang YX, et al. Boosting genome editing efficiency in human cells and plants with novel LbCas12a variants [J]. Genome Biol, 2023, 24(1): 102. |
| 43 | Xin CP, Qiao DX, Wang JY, et al. Enhanced editing efficiency in Arabidopsis with a LbCas12a variant harboring D156R and E795L mutations [J]. aBIOTECH, 2024, 5(2): 117-126. |
| 44 | Riesenberg S, Maricic T. Targeting repair pathways with small molecules increases precise genome editing in pluripotent stem cells [J]. Nat Commun, 2018, 9(1): 2164. |
| 45 | Ma XJ, Chen X, Jin Y, et al. Small molecules promote CRISPR-Cpf1-mediated genome editing in human pluripotent stem cells [J]. Nat Commun, 2018, 9(1): 1303. |
| 46 | Zhang QW, Yin KQ, Liu GW, et al. Fusing T5 exonuclease with Cas9 and Cas12a increases the frequency and size of deletion at target sites [J]. Sci China Life Sci, 2020, 63(12): 1918-1927. |
| 47 | Gao LY, Cox DBT, Yan WX, et al. Engineered Cpf1 variants with altered PAM specificities [J]. Nat Biotechnol, 2017, 35(8): 789-792. |
| 48 | Hui FJ, Tang X, Li B, et al. Robust CRISPR/Mb2Cas12a genome editing tools in cotton plants [J]. iMETA, 2024, 3(3): e209. |
| 49 | Liu SS, He Y, Fan TT, et al. PAM-relaxed and temperature-tolerant CRISPR-Mb3Cas12a single transcript unit systems for efficient singular and multiplexed genome editing in rice, maize, and tomato [J]. Plant Biotechnol J, 2025, 23(1): 156-173. |
| 50 | Li SY, Zhang X, Wang WS, et al. Expanding the scope of CRISPR/Cpf1-mediated genome editing in rice [J]. Mol Plant, 2018, 11(7): 995-998. |
| 51 | Endo A, Masafumi M, Kaya H, et al. Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisella novicida [J]. Sci Rep, 2016, 6: 38169. |
| 52 | Dong SJ, Qin YL, Vakulskas CA, et al. Efficient targeted mutagenesis mediated by CRISPR-Cas12a ribonucleoprotein complexes in maize [J]. Front Genome Ed, 2021, 3: 670529. |
| 53 | Wang W, Tian B, Pan QL, et al. Expanding the range of editable targets in the wheat genome using the variants of the Cas12a and Cas9 nucleases [J]. Plant Biotechnol J, 2021, 19(12): 2428-2441. |
| 54 | Banakar R, Schubert M, Kurgan G, et al. Efficiency, specificity and temperature sensitivity of Cas9 and Cas12a RNPs for DNA-free genome editing in plants [J]. Front Genome Ed, 2022, 3: 760820. |
| 55 | Li B, Rui HP, Li YJ, et al. Robust CRISPR/Cpf1 (Cas12a)-mediated genome editing in allotetraploid cotton (Gossypium hirsutum) [J]. Plant Biotechnol J, 2019, 17(10): 1862-1864. |
| 56 | Su H, Wang YC, Xu J, et al. Generation of the transgene-free canker-resistant Citrus sinensis using Cas12a/crRNA ribonucleoprotein in the T0 generation [J]. Nat Commun, 2023, 14(1): 3957. |
| 57 | Vu TV, Sivankalyani V, Kim EJ, et al. Highly efficient homology-directed repair using CRISPR/Cpf1-geminiviral replicon in tomato [J]. Plant Biotechnol J, 2020, 18(10): 2133-2143. |
| 58 | Ferenczi A, Pyott DE, Xipnitou A, et al. Efficient targeted DNA editing and replacement in Chlamydomonas reinhardtii using Cpf1 ribonucleoproteins and single-stranded DNA [J]. Proc Natl Acad Sci USA, 2017, 114(51): 13567-13572. |
| 59 | Pu XJ, Liu LN, Li P, et al. A CRISPR/LbCas12a-based method for highly efficient multiplex gene editing in Physcomitrella patens [J]. Plant J, 2019, 100(4): 863-872. |
| 60 | Yin XJ, Biswal AK, Dionora J, et al. CRISPR-Cas9 and CRISPR-Cpf1 mediated targeting of a stomatal developmental gene EPFL9 in rice [J]. Plant Cell Rep, 2017, 36(5): 745-757. |
| 61 | Tang X, Lowder LG, Zhang T, et al. A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants [J]. Nat Plants, 2017, 3: 17018. |
| 62 | Li SY, Li JY, Zhang JH, et al. Synthesis-dependent repair of Cpf1-induced double strand DNA breaks enables targeted gene replacement in rice [J]. J Exp Bot, 2018, 69(20): 4715-4721. |
| 63 | Zheng XL, Tang X, Wu YC, et al. An efficient CRISPR-Cas12a-mediated microRNA knockout strategy in plants [J]. Plant Biotechnol J, 2025, 23(1): 128-140. |
| 64 | Lee K, Zhang YX, Kleinstiver BP, et al. Activities and specificities of CRISPR/Cas9 and Cas12a nucleases for targeted mutagenesis in maize [J]. Plant Biotechnol J, 2019, 17(2): 362-372. |
| 65 | Li B, Liang SJ, Alariqi M, et al. The application of temperature sensitivity CRISPR/LbCpf1 (LbCas12a) mediated genome editing in allotetraploid cotton (G. hirsutum) and creation of nontransgenic, gossypol-free cotton [J]. Plant Biotechnol J, 2021, 19(2): 221-223. |
| 66 | Jia HG, Orbović V, Wang N. CRISPR-LbCas12a-mediated modification of Citrus [J]. Plant Biotechnol J, 2019, 17(10): 1928-1937. |
| 67 | Liu HY, Wang K, Jia ZM, et al. Efficient induction of haploid plants in wheat by editing of TaMTL using an optimized Agrobacterium-mediated CRISPR system [J]. J Exp Bot, 2020, 71(4): 1337-1349. |
| 68 | Duan KX, Cheng YY, Ji J, et al. Large chromosomal segment deletions by CRISPR/LbCpf1-mediated multiplex gene editing in soybean [J]. J Integr Plant Biol, 2021, 63(9): 1620-1631. |
| 69 | Kim H, Kim ST, Ryu J, et al. CRISPR/Cpf1-mediated DNA-free plant genome editing [J]. Nat Commun, 2017, 8: 14406. |
| 70 | Ren C, Gathunga EK, Li X, et al. Efficient genome editing in grapevine using CRISPR/LbCas12a system [J]. Mol Hortic, 2023, 3(1): 21. |
| 71 | Zhang L, Wang T, Wang GY, et al. Simultaneous gene editing of three homoeoalleles in self-incompatible allohexaploid grasses [J]. J Integr Plant Biol, 2021, 63(8): 1410-1415. |
| 72 | Karlson D, Mojica JP, Poorten TJ, et al. Targeted mutagenesis of the multicopy Myrosinase gene family in allotetraploid Brassica juncea reduces pungency in fresh leaves across environments [J]. Plants, 2022, 11(19): 2494. |
| 73 | Tang X, Zhang Y. Beyond knockouts: fine-tuning regulation of gene expression in plants with CRISPR-Cas-based promoter editing [J]. New Phytol, 2023, 239(3): 868-874. |
| 74 | Jiang K, Yan Z, Di Bernardo M, et al. Rapid in silico directed evolution by a protein language model with EVOLVEpro [J]. Science, 2025, 387(6732): eadr6006. |
| [1] | 高畅, 庄添驰, 李宁, 刘云, 顾鹏飞, 赵昕怡, 季明辉. RPA-CRISPR/Cas12a结合重力驱动微流控芯片的MTB快检方法的建立[J]. 生物技术通报, 2025, 41(5): 62-69. |
| [2] | 刘爽, 江洲, 赵帅, 赵雷真, 黄峰, 周佳, 屈建航. 一株产蛋白酶细菌的筛选、鉴定及发酵工艺优化[J]. 生物技术通报, 2025, 41(4): 335-344. |
| [3] | 陈海敏, 孙菲, 袁源, 吴佳雯, 江红, 周剑. 紫外诱变选育巴弗洛霉素A1高产菌株及其培养基优化[J]. 生物技术通报, 2025, 41(3): 51-61. |
| [4] | 宋倩娜, 段永红, 冯瑞云. CRISPR/Cas9介导的高效四倍体马铃薯试管薯基因编辑体系的建立[J]. 生物技术通报, 2024, 40(9): 33-41. |
| [5] | 张梦菲, 余炼, 李菲, 李喆, 苏芯莹, 蓝彩碧, 朱虎, 秦莹. 响应面法优化暹罗芽孢杆菌产大环内酯的发酵培养条件[J]. 生物技术通报, 2024, 40(8): 299-308. |
| [6] | 侯文婷, 孙琳, 张艳军, 董合忠. 基因编辑技术在棉花种质创新和遗传改良中的应用[J]. 生物技术通报, 2024, 40(7): 68-77. |
| [7] | 陈墨岩, 祝诚. 基于CRISPR/Cas12a的生物传感平台的机制研究及应用[J]. 生物技术通报, 2024, 40(7): 90-98. |
| [8] | 杨鹭, 袁源, 方志锴, 林如, 江红, 周剑. 一株链霉菌的鉴定及其产格尔德霉素的发酵工艺研究[J]. 生物技术通报, 2024, 40(6): 299-309. |
| [9] | 茹扎·也里扎提, 杨宇. 毕赤酵母中外源蛋白表达量的提升策略[J]. 生物技术通报, 2024, 40(3): 118-134. |
| [10] | 李蕊蕊, 那道远, 王洪林, 赵亮, 谭文松, 叶倩. 重组腺相关病毒瞬时表达系统的理性设计及其高效生产工艺的建立[J]. 生物技术通报, 2024, 40(12): 61-71. |
| [11] | 杨帅朋, 屈子啸, 朱向星, 唐冬生. DNA碱基编辑技术的研究进展及在猪基因修饰中的应用[J]. 生物技术通报, 2024, 40(1): 127-144. |
| [12] | 江海溶, 崔若琪, 王玥, 白淼, 张明露, 任连海. NH3和H2S降解功能菌的分离鉴定及降解特性研究[J]. 生物技术通报, 2023, 39(9): 246-254. |
| [13] | 李雪琪, 张素杰, 于曼, 黄金光, 周焕斌. 基于CRISPR/CasX介导的水稻基因组编辑技术的建立[J]. 生物技术通报, 2023, 39(9): 40-48. |
| [14] | 张岳一, 兰社益, 裴海闰, 封棣. 多菌种联用发酵燕麦麸皮工艺优化及发用功效评价[J]. 生物技术通报, 2023, 39(9): 58-70. |
| [15] | 赵光绪, 杨合同, 邵晓波, 崔志豪, 刘红光, 张杰. 一株高效溶磷产红青霉培养条件优化及其溶磷特性[J]. 生物技术通报, 2023, 39(9): 71-83. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||