生物技术通报 ›› 2024, Vol. 40 ›› Issue (3): 118-134.doi: 10.13560/j.cnki.biotech.bull.1985.2023-0857
收稿日期:
2023-09-04
出版日期:
2024-03-26
发布日期:
2024-04-08
通讯作者:
杨宇,男,博士,研究员,研究方向:塑料降解微生物与酶工程;E-mail: yooyoung@bit.edu.cn作者简介:
茹扎·也里扎提,女,硕士研究生,研究方向:酶工程;E-mail: 3120211414@bit.edu.cn
基金资助:
Received:
2023-09-04
Published:
2024-03-26
Online:
2024-04-08
摘要:
利用异源重组表达系统表达外源蛋白是基因工程研究的重点。巴斯德毕赤酵母(Pichia pastoris)是一种甲基营养型酵母,由于其易于遗传操作、高水平分泌外源蛋白、翻译后修饰等特点,已成为工业应用中蛋白质生产的重要菌株,常被用于酶制剂的生产。然而,部分外源蛋白在毕赤酵母系统中的表达水平较低,仍有待提升的空间。因此,进一步探索提升毕赤酵母中外源蛋白表达量的原理和方法,将对降低毕赤酵母表达系统工业化生产成本,提高经济效益,具有重要的意义。本文主要从基因水平、转录水平、翻译水平、折叠分泌水平、抗逆水平、发酵工艺六个方面归纳总结了近年来毕赤酵母提高外源蛋白表达的优化策略的研究进展,旨在为提高外源蛋白在毕赤酵母表达系统中的表达水平提供有益参考。
茹扎·也里扎提, 杨宇. 毕赤酵母中外源蛋白表达量的提升策略[J]. 生物技术通报, 2024, 40(3): 118-134.
RUZHA Yelizhati, YANG Yu. Strategies for Increasing Heterologous Protein Expression in Pichia pastoris[J]. Biotechnology Bulletin, 2024, 40(3): 118-134.
图1 毕赤酵母中外源蛋白表达的优化策略 Gene of interest(GOI):目的基因;Posttransformational vector amplification(PTVA):转化后载体扩增;Geneticin(G418):遗传霉素;Protein disulfide isomerase(PDI):二硫键异构酶;Endoplasmic reticulum oxidation 1(ERO1):内质网蛋白折叠氧化还原辅助因子; Immunoglobulin heavy chain binding protein(BiP):免疫球蛋白结合蛋白; Process analytical technology(PAT):应用过程分析技术; Eukaryotic translation initiation factor 4F(eIF4F):真核起始因子4F;43S preinitiation complex(43S PIC):43S前起始复合物
Fig. 1 Strategies for increasing heterologous protein expression in Pichia pastoris
优化策略Optimizing strategy | 外源蛋白Heterologous protein | 优化效果Optimizing effect | 发酵规模Fermentation scale/L | 参考文献Reference |
---|---|---|---|---|
密码子优化 | 果胶酶 | 酶活提升1.19倍 | - | [ |
α-淀粉酶 | 酶活提升2.31倍 | 5 | [ | |
α-淀粉酶 | 酶活提升2.62倍 | 50 | [ | |
木聚糖酶 | 酶活提升1.44倍 | 5 | [ | |
豆血红蛋白 | 酶活提升4.5倍 | 10 | [ | |
高拷贝筛选 | 甘露聚糖酶 | 酶活提升2.2倍 | - | [ |
L-天冬酰胺酶 | 酶活提升1.4倍 | - | [ | |
壳聚糖酶 | 酶活提升1.61倍 | 50 | [ | |
明胶 | 蛋白表达量提高1.31倍 | 140 | [ |
表1 外源蛋白在毕赤酵母中通过基因水平的优化提高表达策略
Table 1 Gene level-optimizing strategies for enhancing heterologous proteins expression in P. pastoris
优化策略Optimizing strategy | 外源蛋白Heterologous protein | 优化效果Optimizing effect | 发酵规模Fermentation scale/L | 参考文献Reference |
---|---|---|---|---|
密码子优化 | 果胶酶 | 酶活提升1.19倍 | - | [ |
α-淀粉酶 | 酶活提升2.31倍 | 5 | [ | |
α-淀粉酶 | 酶活提升2.62倍 | 50 | [ | |
木聚糖酶 | 酶活提升1.44倍 | 5 | [ | |
豆血红蛋白 | 酶活提升4.5倍 | 10 | [ | |
高拷贝筛选 | 甘露聚糖酶 | 酶活提升2.2倍 | - | [ |
L-天冬酰胺酶 | 酶活提升1.4倍 | - | [ | |
壳聚糖酶 | 酶活提升1.61倍 | 50 | [ | |
明胶 | 蛋白表达量提高1.31倍 | 140 | [ |
图2 转录水平上提高毕赤酵母中外源蛋白表达的示意图 Iron-responsive transcription factor(Aft1):铁响应转录因子; forkhead-like transcription factor(Fhl1p):叉头转录因子;Zn[II]2Cys6-transcription factor(SUT2):Zn[II]2Cys6-转录因子;Saccharomyces cerevisiae GAL4-like transcription factor(ATT1):酿酒酵母GAL4转录因子同源物;glucose transcriptional repressor(Mig):葡萄糖转录抑制因子;transcriptional repressor for glucose and glycerol repression(Nrg1):葡萄糖及甘油转录抑制因子
Fig. 2 A workflow diagram of enhancing heterologous proteins expression in P. pastoris at transcription levels
优化策略Optimizing strategy | 外源蛋白Heterologous protein | 优化效果Optimizing effect | 发酵规模Fermentation scale/L | 参考文献Reference |
---|---|---|---|---|
启动子的选择和使用 | 几丁质酶 | 蛋白表达量提高1.5倍 | 1.5 | [ |
葡萄糖醛酸酯酶 | 酶活提升3.5倍 | 14 | [ | |
南极假丝酵母脂肪酶B | 蛋白表达量提高3倍 | - | [ | |
终止子的选择和使用 | 羧基酯酶 | 蛋白表达量提高2.5倍 | 1 | [ |
转录因子的过表达 | 水蛭透明质酸酶 | 酶活提升1.47倍 | 3 | [ |
植酸酶 | 酶活提升20% | - | [ | |
果胶酶 | 酶活提升35% | - | [ | |
转录因子的去表达 | 人表皮生长因子受体-2单抗 | 蛋白表达量提高1.5倍 | 1 | [ |
- | 解除甘油环境对PAOX1的抑制 | - | [ | |
- | 挽救过氧化物酶体相关缺陷 | - | [ |
表2 外源蛋白在毕赤酵母中通过转录水平的优化提高表达策略
Table 2 Transcription level-optimizing strategies for enhancing heterologous proteins expression in P. pastoris
优化策略Optimizing strategy | 外源蛋白Heterologous protein | 优化效果Optimizing effect | 发酵规模Fermentation scale/L | 参考文献Reference |
---|---|---|---|---|
启动子的选择和使用 | 几丁质酶 | 蛋白表达量提高1.5倍 | 1.5 | [ |
葡萄糖醛酸酯酶 | 酶活提升3.5倍 | 14 | [ | |
南极假丝酵母脂肪酶B | 蛋白表达量提高3倍 | - | [ | |
终止子的选择和使用 | 羧基酯酶 | 蛋白表达量提高2.5倍 | 1 | [ |
转录因子的过表达 | 水蛭透明质酸酶 | 酶活提升1.47倍 | 3 | [ |
植酸酶 | 酶活提升20% | - | [ | |
果胶酶 | 酶活提升35% | - | [ | |
转录因子的去表达 | 人表皮生长因子受体-2单抗 | 蛋白表达量提高1.5倍 | 1 | [ |
- | 解除甘油环境对PAOX1的抑制 | - | [ | |
- | 挽救过氧化物酶体相关缺陷 | - | [ |
优化策略Optimizing strategy | 外源蛋白Heterologous protein | 优化效果Optimizing effect | 发酵规模Fermentation scale | 参考文献Reference |
---|---|---|---|---|
翻译起始因子的过表达 | 纳米抗体vHH | 蛋白表达量提高3倍 | 1 L | [ |
核糖体生物合成因子的过表达 | 增强型绿色荧光蛋白 | 蛋白表达和细胞生物量均提高20% | 250 mL | [ |
植酸酶 | 酶活提升26% | 250 mL | [ | |
其他翻译相关元件的过表达 | β-半乳糖苷酶 | 酶活提升2倍 | - | [ |
表3 外源蛋白在毕赤酵母中通过优化翻译水平提高表达策略
Table 3 Translation level-optimizing strategies for enhancing heterologous proteins expression in P. pastoris
优化策略Optimizing strategy | 外源蛋白Heterologous protein | 优化效果Optimizing effect | 发酵规模Fermentation scale | 参考文献Reference |
---|---|---|---|---|
翻译起始因子的过表达 | 纳米抗体vHH | 蛋白表达量提高3倍 | 1 L | [ |
核糖体生物合成因子的过表达 | 增强型绿色荧光蛋白 | 蛋白表达和细胞生物量均提高20% | 250 mL | [ |
植酸酶 | 酶活提升26% | 250 mL | [ | |
其他翻译相关元件的过表达 | β-半乳糖苷酶 | 酶活提升2倍 | - | [ |
图3 分泌折叠水平上提高毕赤酵母中外源蛋白表达的示意图 Protein disulfide isomerase(PDI):二硫键异构酶;Endoplasmic reticulum oxidation 1(ERO1):内质网蛋白折叠氧化还原辅助因子; immunoglobulin heavy chain binding protein(BiP):免疫球蛋白结合蛋白;Saccharomyces cerevisiae Heat shock protein(Ssa4):热休克蛋白;Transcriptional activator(HAC1):转录激活剂; Endoplasmic reticulum stress(ER stress):内质网应激;unfolded protein response(UPR):未折叠蛋白响应;ER-associated protein degradation(ERAD):内质网相关蛋白降解;disulfide bond(S-S):二硫键
Fig. 3 A schematic diagram of improving secretion and folding level of heterologous proteins in P. pastoris
优化策略Optimizing strategy | 外源蛋白Heterologous protein | 优化效果Optimizing effect | 发酵规模Fermentation scale/L | 参考文献Reference |
---|---|---|---|---|
分子伴侣共表达帮助蛋白正确折叠 | 巴西甜蛋白 | 蛋白表达量提高2.59倍 | 5 | [ |
人溶菌酶 | 蛋白表达量提高1.54倍 | 5 | [ | |
磷脂酶C | 酶活提升4.2倍 | 5 | [ | |
分子伴侣共表达帮助蛋白易位 | 抗体片段Fabs、scFvs | 蛋白表达量提高5倍 | 1 | [ |
信号肽优化 | 果胶裂解酶 | 酶活提升1.14倍 | 50 | [ |
抗菌肽 | 蛋白表达量提高2倍 | 5 | [ |
表4 外源蛋白在毕赤酵母中通过优化分泌折叠水平提高表达策略
Table 4 Protein secretion and folding levels-optimizing strategies for enhancing heterologous proteins expression in P. pastoris
优化策略Optimizing strategy | 外源蛋白Heterologous protein | 优化效果Optimizing effect | 发酵规模Fermentation scale/L | 参考文献Reference |
---|---|---|---|---|
分子伴侣共表达帮助蛋白正确折叠 | 巴西甜蛋白 | 蛋白表达量提高2.59倍 | 5 | [ |
人溶菌酶 | 蛋白表达量提高1.54倍 | 5 | [ | |
磷脂酶C | 酶活提升4.2倍 | 5 | [ | |
分子伴侣共表达帮助蛋白易位 | 抗体片段Fabs、scFvs | 蛋白表达量提高5倍 | 1 | [ |
信号肽优化 | 果胶裂解酶 | 酶活提升1.14倍 | 50 | [ |
抗菌肽 | 蛋白表达量提高2倍 | 5 | [ |
图4 毕赤酵母中提高细胞抗逆水平的示意图 Gene of interest(GOI):目的基因;Htreoscilla Hemoglobin(VHb):透明颤菌血红蛋白基因;small heat shock protein gene 17.2(CsHSP17.2):小热休克蛋白热诱导基因;antioxidant genes(CAT、SOD1、GLR1):抗氧化基因;reactive oxygen species(ROS):活性氧
Fig. 4 A Schematic diagram of improving cell resistance level in P. pastoris
优化策略Optimizing strategy | 外源蛋白Heterologous protein | 优化效果Optimizing effect | 参考文献Reference |
---|---|---|---|
改善溶解氧限制 | 脂肪酶Lip2 | 蛋白表达量提高83% | [ |
脂肪酶Lip2 | 酶活提升1.88倍 | [ | |
β-甘露聚糖酶 | 蛋白表达量提高90% | [ | |
提高耐热性 | - | 菌株生长率提高 | [ |
过氧化氢酶 | 酶活提升2.5倍 | [ | |
提高抗氧化性 | 脂肪酶r27RCL | 蛋白表达量提高1.6倍 | [ |
表5 外源蛋白在毕赤酵母中通过优化抗逆水平提高表达策略
Table 5 Cell resistance level-optimizing strategies for enhancing heterologous proteins expression in P. pastoris
优化策略Optimizing strategy | 外源蛋白Heterologous protein | 优化效果Optimizing effect | 参考文献Reference |
---|---|---|---|
改善溶解氧限制 | 脂肪酶Lip2 | 蛋白表达量提高83% | [ |
脂肪酶Lip2 | 酶活提升1.88倍 | [ | |
β-甘露聚糖酶 | 蛋白表达量提高90% | [ | |
提高耐热性 | - | 菌株生长率提高 | [ |
过氧化氢酶 | 酶活提升2.5倍 | [ | |
提高抗氧化性 | 脂肪酶r27RCL | 蛋白表达量提高1.6倍 | [ |
优化策略Optimizing strategy | 外源蛋白Heterologous protein | 优化效果Optimizing effect | 发酵规模Fermentation scale/L | 参考文献Reference |
---|---|---|---|---|
培养基优化 | 人血清蛋白 | 蛋白表达量提高1.97倍 | 5 | [ |
溶解氧比例优化 | MAS1脂肪酶 | 细胞生长率提高 | 5 | [ |
人类溶菌酶 | 细胞密度提高 | 5 | [ | |
分批补料策略优化 | 人生长激素 | 蛋白表达量提高1.16倍 | 2 | [ |
马铃薯糖蛋白 | 蛋白表达量提高6.9倍 | 5 | [ | |
漆酶 | 蛋白表达量提高1.5倍 | 7.5 | [ |
表6 外源蛋白在毕赤酵母中通过优化发酵水平提高表达策略
Table 6 Fermentation level-optimizing strategies for enhancing heterologous proteins expression in P. pastoris
优化策略Optimizing strategy | 外源蛋白Heterologous protein | 优化效果Optimizing effect | 发酵规模Fermentation scale/L | 参考文献Reference |
---|---|---|---|---|
培养基优化 | 人血清蛋白 | 蛋白表达量提高1.97倍 | 5 | [ |
溶解氧比例优化 | MAS1脂肪酶 | 细胞生长率提高 | 5 | [ |
人类溶菌酶 | 细胞密度提高 | 5 | [ | |
分批补料策略优化 | 人生长激素 | 蛋白表达量提高1.16倍 | 2 | [ |
马铃薯糖蛋白 | 蛋白表达量提高6.9倍 | 5 | [ | |
漆酶 | 蛋白表达量提高1.5倍 | 7.5 | [ |
[1] |
Watts A, Sankaranarayanan S, Watts A, et al. Optimizing protein expression in heterologous system: strategies and tools[J]. Meta Gene, 2021, 29: 100899.
doi: 10.1016/j.mgene.2021.100899 URL |
[2] |
Ahmad M, Hirz M, Pichler H, et al. Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production[J]. Appl Microbiol Biotechnol, 2014, 98(12): 5301-5317.
doi: 10.1007/s00253-014-5732-5 pmid: 24743983 |
[3] | Ingram Z, Patkar A, Oh D, et al. Overcoming obstacles in protein expression in the yeast Pichia pastoris: interviews of leaders in the Pichia field[J]. Pac J Health, 2021, 4(1): 2. |
[4] |
Huang YD, Lin T, Lu LF, et al. Codon pair optimization(CPO): a software tool for synthetic gene design based on codon pair bias to improve the expression of recombinant proteins in Pichia pastoris[J]. Microb Cell Fact, 2021, 20(1): 209.
doi: 10.1186/s12934-021-01696-y pmid: 34736476 |
[5] |
Presnyak V, Alhusaini N, Chen YH, et al. Codon optimality is a major determinant of mRNA stability[J]. Cell, 2015, 160(6): 1111-1124.
doi: 10.1016/j.cell.2015.02.029 pmid: 25768907 |
[6] |
Karaoğlan M, Erden-Karaoğlan F. Effect of codon optimization and promoter choice on recombinant endo-polygalacturonase production in Pichia pastoris[J]. Enzyme Microb Technol, 2020, 139: 109589.
doi: 10.1016/j.enzmictec.2020.109589 URL |
[7] |
Li JD, Xie X, Cai J, et al. Enhanced secretory expression and surface display level of Bombyx mori acetylcholinesterase 2 by Pichia pastoris based on codon optimization strategy for pesticides setection[J]. Appl Biochem Biotechnol, 2021, 193(10): 3321-3335.
doi: 10.1007/s12010-021-03597-7 |
[8] | Wang JR, Li YY, Liu DN, et al. Codon optimization significantly improves the expression level of α-amylase gene from Bacillus licheniformis in Pichia pastoris[J]. Biomed Res Int, 2015, 2015: 248680. |
[9] | 林影, 韩双艳, 袁清焱, 等. 酶高效表达体系构建及高通量筛选关键技术[J]. 生物产业技术, 2019(3): 44-53. |
Lin Y, Han SY, Yuan QY, et al. Key technologies of construction of efficient enzyme expression system and highthroughput screening[J]. Biotechnol Bus, 2019(3): 44-53. | |
[10] |
Zheng J, Guo N, Zhou HB. A simple strategy for the generation of multi-copy Pichia pastoris with the efficient expression of mannanase[J]. J Basic Microbiol, 2014, 54(12): 1410-1416.
doi: 10.1002/jobm.v54.12 URL |
[11] |
Erden-Karaoğlan F, Karaoğlan M. Improvement of recombinant L-asparaginase production in Pichia pastoris[J]. 3 Biotech, 2023, 13(5): 164.
doi: 10.1007/s13205-023-03600-4 pmid: 37159589 |
[12] |
Mombeni M, Arjmand S, Siadat SOR, et al. pMOX: a new powerful promoter for recombinant protein production in yeast Pichia pastoris[J]. Enzyme Microb Technol, 2020, 139: 109582.
doi: 10.1016/j.enzmictec.2020.109582 URL |
[13] |
Sunga AJ, Tolstorukov I, Cregg JM. Posttransformational vector amplification in the yeast Pichia pastoris[J]. FEMS Yeast Res, 2008, 8(6): 870-876.
doi: 10.1111/fyr.2008.8.issue-6 URL |
[14] |
Jiao LC, Zhou QH, Liu W, et al. New insight into the method of posttransformational vector amplification(PTVA)in Pichia pastoris[J]. J Microbiol Methods, 2018, 148: 151-154.
doi: 10.1016/j.mimet.2018.04.013 URL |
[15] |
Aw R, Polizzi KM. Liquid PTVA: a faster and cheaper alternative for generating multi-copy clones in Pichia pastoris[J]. Microb Cell Fact, 2016, 15: 29.
doi: 10.1186/s12934-016-0432-8 URL |
[16] |
Yu J, Liu XQ, Guan LY, et al. High-level expression and enzymatic properties of a novel thermostable xylanase with high arabinoxylan degradation ability from Chaetomium sp. suitable for beer mashing[J]. Int J Biol Macromol, 2021, 168: 223-232.
doi: 10.1016/j.ijbiomac.2020.12.040 URL |
[17] |
Shao YR, Xue CL, Liu WQ, et al. High-level secretory production of leghemoglobin in Pichia pastoris through enhanced globin expression and heme biosynthesis[J]. Bioresour Technol, 2022, 363: 127884.
doi: 10.1016/j.biortech.2022.127884 URL |
[18] |
Wang JR, Li XM, Chen H, et al. Heterologous expression and characterization of a high-efficiency chitosanase from Bacillus mojavensis SY1 suitable for production of chitosan oligosaccharides[J]. Front Microbiol, 2021, 12: 781138.
doi: 10.3389/fmicb.2021.781138 URL |
[19] |
Werten MW, van den Bosch TJ, Wind RD, et al. High-yield secretion of recombinant gelatins by Pichia pastoris[J]. Yeast, 1999, 15(11): 1087-1096.
doi: 10.1002/(SICI)1097-0061(199908)15:11<1087::AID-YEA436>3.0.CO;2-F pmid: 10455232 |
[20] | 金晓媚, 马雁冰. 用于异源基因表达的毕赤酵母启动子研究进展[J]. 微生物学杂志, 2015, 35(3): 71-74. |
Jin XM, Ma YB. Advances in Pichia pastoris promoters used for heterogeneous gene expression[J]. J Microbiol, 2015, 35(3): 71-74. | |
[21] |
Jiang MT, Liu YX, Xue HJ, et al. Expression and biochemical characterization of a Bacillus subtilis catalase in Pichia pastoris X-33[J]. Protein Expr Purif, 2023, 208/209: 106277.
doi: 10.1016/j.pep.2023.106277 URL |
[22] |
Shen Q, Yu Z, Lv PJ, et al. Engineering a Pichia pastoris nitrilase whole cell catalyst through the increased nitrilase gene copy number and co-expressing of ER oxidoreductin 1[J]. Appl Microbiol Biotechnol, 2020, 104(6): 2489-2500.
doi: 10.1007/s00253-020-10422-4 pmid: 32020278 |
[23] | Srivastava N. Enzymes in food biotechnology[M]. India: Academic Press, 2019. |
[24] |
Cámara E, Landes N, Albiol J, et al. Increased dosage of AOX1 promoter-regulated expression cassettes leads to transcription attenuation of the methanol metabolism in Pichia pastoris[J]. Sci Rep, 2017, 7: 44302.
doi: 10.1038/srep44302 pmid: 28295011 |
[25] |
Haghighi Poodeh S, Ranaei Siadat SO, Arjmand S, et al. Improving AOX1 promoter efficiency by overexpression of Mit1 transcription factor[J]. Mol Biol Rep, 2022, 49(10): 9379-9386.
doi: 10.1007/s11033-022-07790-7 pmid: 36002652 |
[26] |
Sahu U, Rao KK, Rangarajan PN. Trm1p, a Zn(II)2Cys6-type transcription factor, is essential for the transcriptional activation of genes of methanol utilization pathway, in Pichia pastoris[J]. Biochem Biophys Res Commun, 2014, 451(1): 158-164.
doi: 10.1016/j.bbrc.2014.07.094 URL |
[27] |
Yang J, Cai HM, Liu J, et al. Controlling AOX1 promoter strength in Pichia pastoris by manipulating poly(dA: dT)tracts[J]. Sci Rep, 2018, 8(1): 1401.
doi: 10.1038/s41598-018-19831-y pmid: 29362428 |
[28] | 耿宏伟, 侯红燕, 王丕武, 等. pGAP-毕赤酵母表达系统的研究进展[J]. 农业机械, 2011(29): 159-162. |
Geng HW, Hou HY, Wang PW, et al. Research progress of pGAP- Pichia pastoris expression system[J]. Farm Mach, 2011(29): 159-162. | |
[29] |
Zhang AL, Luo JX, Zhang TY, et al. Recent advances on the GAP promoter derived expression system of Pichia pastoris[J]. Mol Biol Rep, 2009, 36(6): 1611-1619.
doi: 10.1007/s11033-008-9359-4 URL |
[30] |
Goodrick JC, Xu M, Finnegan R, et al. High-level expression and stabilization of recombinant human chitinase produced in a continuous constitutive Pichia pastoris expression system[J]. Biotechnol Bioeng, 2001, 74(6): 492-497.
pmid: 11494216 |
[31] |
Martínez D, Menéndez C, Chacón O, et al. Removal of bacterial dextran in sugarcane juice by Talaromyces minioluteus dextranase expressed constitutively in Pichia pastoris[J]. J Biotechnol, 2021, 333: 10-20.
doi: 10.1016/j.jbiotec.2021.04.006 URL |
[32] |
Ata Ö, Prielhofer R, Gasser B, et al. Transcriptional engineering of the glyceraldehyde-3-phosphate dehydrogenase promoter for improved heterologous protein production in Pichia pastoris[J]. Biotechnol Bioeng, 2017, 114(10): 2319-2327.
doi: 10.1002/bit.v114.10 URL |
[33] |
Vogl T, Glieder A. Regulation of Pichia pastoris promoters and its consequences for protein production[J]. N Biotechnol, 2013, 30(4): 385-404.
doi: 10.1016/j.nbt.2012.11.010 URL |
[34] |
Jeong E, Shim WY, Kim JH. Metabolic engineering of Pichia pastoris for production of hyaluronic acid with high molecular weight[J]. J Biotechnol, 2014, 185: 28-36.
doi: 10.1016/j.jbiotec.2014.05.018 URL |
[35] | Kielkopf CL, Bauer W, Urbatsch IL. Expression of cloned genes in Pichia pastoris using the methanol-inducible promoter AOX1[J]. Cold Spring Harb Protoc, 2021, 2021(1). DOI: 10.1101/pdb.prot102160. |
[36] | Stadlmayr G, Mecklenbräuker A, Rothmüller M, et al. Identification and characterisation of novel Pichia pastoris promoters for heterologous protein production[J]. J Biotechnol, 2010, 150(4): 519-529. |
[37] |
Hribar G, Smilović V, Zupan AL, et al. Beta-lactamase reporter system for selecting high-producing yeast clones[J]. BioTechniques, 2008, 44(4): 477-478, 480, 482 passim.
doi: 10.2144/000112730 pmid: 18476812 |
[38] | Özçelik AT, Yılmaz S, Inan M. Pichia pastoris promoters[J]. Methods Mol Biol, 2019, 1923: 97-112. |
[39] | Yan CX, Yu W, Zhai XX, et al. Characterizing and engineering promoters for metabolic engineering of Ogataea polymorpha[J]. Synth Syst Biotechnol, 2021, 7(1): 498-505. |
[40] |
Bernat-Camps N, Ebner K, Schusterbauer V, et al. Enabling growth-decoupled Komagataella phaffii recombinant protein production based on the methanol-free PDH promoter[J]. Front Bioeng Biotechnol, 2023, 11: 1130583.
doi: 10.3389/fbioe.2023.1130583 URL |
[41] |
Mischo HE, Proudfoot NJ. Disengaging polymerase: terminating RNA polymerase II transcription in budding yeast[J]. Biochim Biophys Acta, 2013, 1829(1): 174-185.
doi: 10.1016/j.bbagrm.2012.10.003 pmid: 23085255 |
[42] |
Ramakrishnan K, Prattipati M, Samuel P, et al. Transcriptional control of gene expression in Pichia pastoris by manipulation of terminators[J]. Appl Microbiol Biotechnol, 2020, 104(18): 7841-7851.
doi: 10.1007/s00253-020-10785-8 pmid: 32715362 |
[43] |
Ito Y, Terai G, Ishigami M, et al. Exchange of endogenous and heterogeneous yeast terminators in Pichia pastoris to tune mRNA stability and gene expression[J]. Nucleic Acids Res, 2020, 48(22): 13000-13012.
doi: 10.1093/nar/gkaa1066 URL |
[44] |
Ruth C, Buchetics M, Vidimce V, et al. Pichia pastoris Aft1—a novel transcription factor, enhancing recombinant protein secretion[J]. Microb Cell Fact, 2014, 13: 120.
doi: 10.1186/s12934-014-0120-5 URL |
[45] |
Huang H, Liang QX, Wang Y, et al. High-level constitutive expression of leech hyaluronidase with combined strategies in recombinant Pichia pastoris[J]. Appl Microbiol Biotechnol, 2020, 104(4): 1621-1632.
doi: 10.1007/s00253-019-10282-7 pmid: 31907577 |
[46] |
Zheng XY, Zhang YM, Zhang XY, et al. Fhl1p protein, a positive transcription factor in Pichia pastoris, enhances the expression of recombinant proteins[J]. Microb Cell Fact, 2019, 18(1): 207.
doi: 10.1186/s12934-019-1256-0 |
[47] |
Yang YK, Zheng YT, Wang PC, et al. Characterization and application of a putative transcription factor(SUT2)in Pichia pastoris[J]. Mol Genet Genomics, 2020, 295(5): 1295-1304.
doi: 10.1007/s00438-020-01697-3 |
[48] |
Jiang B, Argyros R, Bukowski J, et al. Inactivation of a GAL4-like transcription factor improves cell fitness and product yield in glycoengineered Pichia pastoris strains[J]. Appl Environ Microbiol, 2015, 81(1): 260-271.
doi: 10.1128/AEM.02619-14 URL |
[49] |
Ata Ö, Ergün BG, Fickers P, et al. What makes Komagataella phaffii non-conventional?[J]. FEMS Yeast Res, 2021, 21(8): foab059.
doi: 10.1093/femsyr/foab059 URL |
[50] |
Shi L, Wang XL, Wang JJ, et al. Transcriptome analysis of Δmig1Δmig2 mutant reveals their roles in methanol catabolism, peroxisome biogenesis and autophagy in methylotrophic yeast Pichia pastoris[J]. Genes Genomics, 2018, 40(4): 399-412.
doi: 10.1007/s13258-017-0641-5 URL |
[51] |
Wang XL, Cai MH, Shi L, et al. PpNrg1 is a transcriptional repressor for glucose and glycerol repression of AOX1 promoter in methylotrophic yeast Pichia pastoris[J]. Biotechnol Lett, 2016, 38(2): 291-298.
doi: 10.1007/s10529-015-1972-4 URL |
[52] |
Farre JC, Carolino K, Devanneaux L, et al. OXPHOS deficiencies affect peroxisome proliferation by downregulating genes controlled by the SNF1 signaling pathway[J]. eLife, 2022, 11: e75143.
doi: 10.7554/eLife.75143 URL |
[53] |
Conacher CG, García-Aparicio MP, Coetzee G, et al. Scalable methanol-free production of recombinant glucuronoyl esterase in Pichia pastoris[J]. BMC Res Notes, 2019, 12(1): 596.
doi: 10.1186/s13104-019-4638-9 pmid: 31533815 |
[54] |
Rebnegger C, Graf AB, Valli M, et al. In Pichia pastoris, growth rate regulates protein synthesis and secretion, mating and stress response[J]. Biotechnol J, 2014, 9(4): 511-525.
doi: 10.1002/biot.201300334 pmid: 24323948 |
[55] |
Staudacher J, Rebnegger C, Dohnal T, et al. Going beyond the limit: increasing global translation activity leads to increased productivity of recombinant secreted proteins in Pichia pastoris[J]. Metab Eng, 2022, 70: 181-195.
doi: 10.1016/j.ymben.2022.01.010 URL |
[56] |
Dörner K, Ruggeri C, Zemp I, et al. Ribosome biogenesis factors-from names to functions[J]. EMBO J, 2023, 42(7): e112699.
doi: 10.15252/embj.2022112699 URL |
[57] | 林雯炀, 廖锡豪, 陈南柱, 等. 一种通过过表达毕赤酵母翻译相关因子提高重组蛋白胞内表达的策略[J]. 现代食品科技, 2021, 37(7): 66-73. |
Lin WY, Liao XH, Chen NZ, et al. A strategy to increase the intracellular overexpression of recombinant proteins by expressing Pichia pastoris translation-related factors[J]. Mod Food Sci Technol, 2021, 37(7): 66-73. | |
[58] |
Liao XH, Lin WY, Chen NZ, et al. Overexpression of the regulatory subunit of protein kinase A increases heterologous protein expression in Pichia pastoris[J]. Biotechnol Lett, 2020, 42(12): 2685-2692.
doi: 10.1007/s10529-020-02977-z |
[59] |
Huang YD, Zhang YF, Li SH, et al. Screening for functional IRESes using α-complementation system of β-galactosidase in Pichia pastoris[J]. Biotechnol Biofuels, 2019, 12: 300.
doi: 10.1186/s13068-019-1640-3 pmid: 31890028 |
[60] |
Owji H, Nezafat N, Negahdaripour M, et al. A comprehensive review of signal peptides: structure, roles, and applications[J]. Eur J Cell Biol, 2018, 97(6): 422-441.
doi: S0171-9335(18)30018-9 pmid: 29958716 |
[61] |
Juturu V, Wu JC. Heterologous protein expression in Pichia pastoris: latest research progress and applications[J]. Chembiochem, 2018, 19(1): 7-21.
doi: 10.1002/cbic.v19.1 URL |
[62] |
Michaelis S, Barrowman J. Biogenesis of the Saccharomyces cerevisiae pheromone a-factor, from yeast mating to human disease[J]. Microbiol Mol Biol Rev, 2012, 76(3): 626-651.
doi: 10.1128/MMBR.00010-12 URL |
[63] |
张娜, 闫亚茹, 武运, 等. 信号肽优化提高葡萄糖氧化酶在毕赤酵母中的表达量[J]. 中国农业科技导报, 2023, 25(2): 211-219.
doi: 10.13304/j.nykjdb.2020.0219 |
Zhang N, Yan YR, Wu Y, et al. Signal peptide optimization increases glucose oxidase expression in Pichia pastoris[J]. J Agric Sci Technol, 2023, 25(2): 211-219. | |
[64] |
Donelan W, Li SW, Dominguez-Gutierrez PR, et al. Expression and secretion of glycosylated barley oxalate oxidase in Pichia pastoris[J]. PLoS One, 2023, 18(5): e0285556.
doi: 10.1371/journal.pone.0285556 URL |
[65] |
Püllmann P, Weissenborn MJ. Improving the heterologous production of fungal peroxygenases through an episomal Pichia pastoris promoter and signal peptide shuffling system[J]. ACS Synth Biol, 2021, 10(6): 1360-1372.
doi: 10.1021/acssynbio.0c00641 pmid: 34075757 |
[66] |
孟珊珊, 谭明, 肖冬光, 等. 甜蛋白Brazzein在毕赤酵母中的表达及应用[J]. 食品与发酵工业, 2020, 46(15): 21-26.
doi: 10.13995/j.cnki.11-1802/ts.023943 |
Meng SS, Tan M, Xiao DG, et al. Expression of sweet protein Brazzein in Pichia pastoris and its application[J]. Food Ferment Ind, 2020, 46(15): 21-26. | |
[67] |
王儒昕, 韩琴, 陈园园, 等. 共表达分子伴侣PDI和转录因子Aft1对毕赤酵母表达人溶菌酶的影响[J]. 食品科学, 2020, 41(10): 124-130.
doi: 10.7506/spkx1002-6630-20190305-049 |
Wang RX, Han Q, Chen YY, et al. Effect of co-expression of chaperone PDI and transcription factor Aft1 on the expression of recombinant human lysozyme in Pichia pastoris[J]. Food Sci, 2020, 41(10): 124-130. | |
[68] |
Wang JR, Wu ZZ, Zhang TY, et al. High-level expression of Thermomyces dupontii thermophilic lipase in Pichia pastoris via combined strategies[J]. 3 Biotech, 2019, 9(2): 62.
doi: 10.1007/s13205-019-1597-8 |
[69] | 汪步青, 陈洲, 王亚森, 等. 基于组合优化策略在毕赤酵母中高效表达杜邦嗜热菌脂肪酶[J]. 中国油脂, 2022, 47(7): 125-131. |
Wang BQ, Chen Z, Wang YS, et al. High-efficient expression of Thermomyces dupontii lipase in Pichia pastoris based on combinatorial optimization strategy[J]. China Oils Fats, 2022, 47(7): 125-131. | |
[70] |
Wang YX, Luo X, Zhao YQ, et al. Integrated strategies for enhancing the expression of the AqCoA chitosanase in Pichia pastoris by combined optimization of molecular chaperones combinations and copy numbers via a novel plasmid pMC-GAP[J]. Appl Biochem Biotechnol, 2021, 193(12): 4035-4051.
doi: 10.1007/s12010-021-03668-9 |
[71] |
董聪, 高庆华, 王玥, 等. 基于联合策略提高FAD依赖的葡萄糖脱氢酶的酵母表达[J]. 生物技术通报, 2023, 39(6): 316-324.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-1255 |
Dong C, Gao QH, Wang Y, et al. Increasing the expression of FAD-dependent glucose dehydrogenase by recombinant Pichia pastoris using a combined strategy[J]. Biotechnol Bull, 2023, 39(6): 316-324. | |
[72] |
Zito E. ERO1: a protein disulfide oxidase and H2O2 producer[J]. Free Radic Biol Med, 2015, 83: 299-304.
doi: 10.1016/j.freeradbiomed.2015.01.011 URL |
[73] |
Alagar Boopathy LR, Beadle E, Xiao AR, et al. The ribosome quality control factor Asc1 determines the fate of HSP70 mRNA on and off the ribosome[J]. Nucleic Acids Res, 2023, 51(12): 6370-6388.
doi: 10.1093/nar/gkad338 pmid: 37158240 |
[74] |
Jiao LC, Zhou QH, Su ZX, et al. Efficient heterologous production of Rhizopus oryzae lipase via optimization of multiple expression-related helper proteins[J]. Int J Mol Sci, 2018, 19(11): 3372.
doi: 10.3390/ijms19113372 URL |
[75] |
Zahrl RJ, Prielhofer R, Ata Ö, et al. Pushing and pulling proteins into the yeast secretory pathway enhances recombinant protein secretion[J]. Metab Eng, 2022, 74: 36-48.
doi: 10.1016/j.ymben.2022.08.010 pmid: 36057427 |
[76] |
Li X, Liu ZM, Wang GL, et al. Overexpression of Candida rugosa lipase Lip1 via combined strategies in Pichia pastoris[J]. Enzyme Microb Technol, 2016, 82: 115-124.
doi: 10.1016/j.enzmictec.2015.09.003 URL |
[77] |
Jiang LX, Guan X, Liu HJ, et al. Improved production of recombinant carboxylesterase FumDM by co-expressing molecular chaperones in Pichia pastoris[J]. Toxins, 2023, 15(2): 156.
doi: 10.3390/toxins15020156 URL |
[78] |
Yang J, Lu ZP, Chen JW, et al. Effect of cooperation of chaperones and gene dosage on the expression of porcine PGLYRP-1 in Pichia pastoris[J]. Appl Microbiol Biotechnol, 2016, 100(12): 5453-5465.
doi: 10.1007/s00253-016-7372-4 pmid: 26883349 |
[79] |
Guerfal M, Ryckaert S, Jacobs PP, et al. The HAC1 gene from Pichia pastoris: characterization and effect of its overexpression on the production of secreted, surface displayed and membrane proteins[J]. Microb Cell Fact, 2010, 9: 49.
doi: 10.1186/1475-2859-9-49 pmid: 20591165 |
[80] |
Bao CJ, Li JP, Chen H, et al. Expression and function of an Hac1-regulated multi-copy xylanase gene in Saccharomyces cerevisiae[J]. Sci Rep, 2020, 10(1): 11686.
doi: 10.1038/s41598-020-68570-6 |
[81] |
Duan GD, Ding LM, Wei DS, et al. Screening endogenous signal peptides and protein folding factors to promote the secretory expression of heterologous proteins in Pichia pastoris[J]. J Biotechnol, 2019, 306: 193-202.
doi: 10.1016/j.jbiotec.2019.06.297 URL |
[82] |
He HH, Wu SJ, Mei M, et al. A combinational strategy for effective heterologous production of functional human lysozyme in Pichia pastoris[J]. Front Bioeng Biotechnol, 2020, 8: 118.
doi: 10.3389/fbioe.2020.00118 URL |
[83] |
Wang L, Hu TT, Jiang ZQ, et al. Efficient production of a novel alkaline cold-active phospholipase C from Aspergillus oryzae by molecular chaperon co-expression for crude oil degumming[J]. Food Chem, 2021, 350: 129212.
doi: 10.1016/j.foodchem.2021.129212 URL |
[84] |
Zheng XY, Zhang YM, Liu XX, et al. High-level expression and biochemical properties of A thermo-alkaline pectate lyase from Bacillus sp. RN1 in Pichia pastoris with potential in ramie degumming[J]. Front Bioeng Biotechnol, 2020, 8: 850.
doi: 10.3389/fbioe.2020.00850 URL |
[85] |
Jin YJ, Yang N, Teng D, et al. Molecular modification of Kex2 P1’ site enhances expression and druggability of fungal defensin[J]. Antibiotics, 2023, 12(4): 786.
doi: 10.3390/antibiotics12040786 URL |
[86] | Wei XX, Chen GQ. Applications of the VHb gene vgb for improved microbial fermentation processes[J]. Methods Enzymol, 2008, 436: 273-287. |
[87] | 唐辉桂, 黄火清, 罗会颖, 等. 利用透明颤菌血红蛋白在低氧条件下提高毕赤酵母中植酸酶的表达[J]. 中国农业科技导报, 2008, 10(3): 84-89. |
Tang HG, Huang HQ, Luo HY, et al. Expression of bacterial hemoglobin with a low O2-induced promoter improves recombinant phytase production in Pichia pastoris[J]. J Agric Sci Technol, 2008, 10(3): 84-89. | |
[88] | 汪小锋, 孙永川, 申旭光, 等. 毕赤酵母中表达透明颤菌血红蛋白提高重组脂肪酶的表达[J]. 生物工程学报, 2011, 27(12): 1755-1764. |
Wang XF, Sun YC, Shen XG, et al. Expression of Vitreoscilla hemoglobin improves recombinant lipase production in Pichia pastoris[J]. Chin J Biotechnol, 2011, 27(12): 1755-1764. | |
[89] |
Zhou QH, Su ZX, Jiao LC, et al. High-level production of a thermostable mutant of Yarrowia lipolytica lipase 2 in Pichia pastoris[J]. Int J Mol Sci, 2019, 21(1): 279.
doi: 10.3390/ijms21010279 URL |
[90] |
张晓龙, 肖静, 王瑞明, 等. 共表达透明颤菌血红蛋白对毕赤酵母产β-甘露聚糖酶发酵过程的影响[J]. 生物技术通报, 2015, 31(12): 193-199.
doi: 10.13560/j.cnki.biotech.bull.1985.2015.12.028 |
Zhang XL, Xiao J, Wang RM, et al. Effect of co-expression of Vitreoscilla hemoglobin on expression of β-mannanase in Pichia pastoris[J]. Biotechnol Bull, 2015, 31(12): 193-199. | |
[91] |
Wang ML, Zou ZW, Li QH, et al. The CsHSP17.2 molecular chaperone is essential for thermotolerance in Camellia sinensis[J]. Sci Rep, 2017, 7(1): 1237.
doi: 10.1038/s41598-017-01407-x |
[92] |
Lin NX, He RZ, Xu Y, et al. Augmented peroxisomal ROS buffering capacity renders oxidative and thermal stress cross-tolerance in yeast[J]. Microb Cell Fact, 2021, 20(1): 131.
doi: 10.1186/s12934-021-01623-1 |
[93] |
Hu RK, Cui RG, Xu QQ, et al. Controlling specific growth rate for recombinant protein production by Pichia pastoris under oxidation stress in fed-batch fermentation[J]. Appl Biochem Biotechnol, 2022, 194(12): 6179-6193.
doi: 10.1007/s12010-022-04022-3 |
[94] |
Lin NX, He RZ, Xu Y, et al. Oxidative stress tolerance contributes to heterologous protein production in Pichia pastoris[J]. Biotechnol Biofuels, 2021, 14(1): 160.
doi: 10.1186/s13068-021-02013-w |
[95] |
Li H, Wei JC. Functional analysis of thioredoxin from the desert lichen-forming fungus, Endocarpon pusillum Hedwig, reveals its role in stress tolerance[J]. Sci Rep, 2016, 6: 27184.
doi: 10.1038/srep27184 |
[96] |
Cos O, Ramón R, Montesinos JL, et al. Operational strategies, monitoring and control of heterologous protein production in the methylotrophic yeast Pichia pastoris under different promoters: a review[J]. Microb Cell Fact, 2006, 5(1): 17.
doi: 10.1186/1475-2859-5-17 |
[97] |
Liu B, Li HJ, Zhou HL, et al. Enhancing xylanase expression by Komagataella phaffii by formate as carbon source and inducer[J]. Appl Microbiol Biotechnol, 2022, 106(23): 7819-7829.
doi: 10.1007/s00253-022-12249-7 |
[98] |
Lee JY, Chen H, Liu AL, et al. Auto-induction of Pichia pastoris AOX1 promoter for membrane protein expression[J]. Protein Expr Purif, 2017, 137: 7-12.
doi: 10.1016/j.pep.2017.06.006 URL |
[99] |
Zhu W, Xu RR, Gong GH, et al. Medium optimization for high yield production of human serum albumin in Pichia pastoris and its efficient purification[J]. Protein Expr Purif, 2021, 181: 105831.
doi: 10.1016/j.pep.2021.105831 URL |
[100] |
Çalık P, Ata Ö, Güneş H, et al. Recombinant protein production in Pichia pastoris under glyceraldehyde-3-phosphate dehydrogenase promoter: from carbon source metabolism to bioreactor operation parameters[J]. Biochem Eng J, 2015, 95: 20-36.
doi: 10.1016/j.bej.2014.12.003 URL |
[101] |
Velastegui E, Quezada J, Guerrero K, et al. Is heterogeneity in large-scale bioreactors a real problem in recombinant protein synthesis by Pichia pastoris?[J]. Appl Microbiol Biotechnol, 2023, 107(7-8): 2223-2233.
doi: 10.1007/s00253-023-12434-2 |
[102] |
Jia LQ, Li T, Wu YX, et al. Enhanced human lysozyme production by Pichia pastoris via periodic glycerol and dissolved oxygen concentrations control[J]. Appl Microbiol Biotechnol, 2021, 105(3): 1041-1050.
doi: 10.1007/s00253-021-11100-9 |
[103] | Liu WC, Zhu P. Demonstration-scale high-cell-density fermentation of Pichia pastoris[J]. Methods Mol Biol, 2018, 1674: 109-116. |
[104] |
Liu WC, Inwood S, Gong T, et al. Fed-batch high-cell-density fermentation strategies for Pichia pastoris growth and production[J]. Crit Rev Biotechnol, 2019, 39(2): 258-271.
doi: 10.1080/07388551.2018.1554620 URL |
[105] |
Boojari MA, Rajabi Ghaledari F, Motamedian E, et al. Developing a metabolic model-based fed-batch feeding strategy for Pichia pastoris fermentation through fine-tuning of the methanol utilization pathway[J]. Microb Biotechnol, 2023, 16(6): 1344-1359.
doi: 10.1111/mbt2.v16.6 URL |
[106] | Dai ZQ, Wu XH, Zeng WZ, et al. Characterization of highly gelatinous patatin storage protein from Pichia pastoris[J]. Food Res Int, 2022, 162(Pt A): 111925. |
[107] |
Bronikowski A, Hagedoorn PL, Koschorreck K, et al. Expression of a new laccase from Moniliophthora roreri at high levels in Pichia pastoris and its potential application in micropollutant degradation[J]. AMB Express, 2017, 7(1): 73.
doi: 10.1186/s13568-017-0368-3 pmid: 28357784 |
[108] | 李小芳, 吴宏斌, 马兆堂. 过程分析技术在生物制品中的研究应用[J]. 药学进展, 2019, 43(9): 688-694. |
Li XF, Wu HB, Ma ZT. Research and application of process analysis technology in the development of biological products[J]. Prog Pharm Sci, 2019, 43(9): 688-694. |
[1] | 陈艳梅. 蛋白质翻译后修饰之间的互作关系及其协同调控机理[J]. 生物技术通报, 2024, 40(2): 1-8. |
[2] | 李雪, 李容欧, 孔美懿, 黄磊. 解淀粉芽孢杆菌SQ-2对水稻的促生作用[J]. 生物技术通报, 2024, 40(2): 109-119. |
[3] | 赵曜, 文朗, 骆少丹, 栗子杏, 刘超超. 番茄HMA基因家族的鉴定及SlHMA1镉转运功能研究[J]. 生物技术通报, 2024, 40(2): 212-222. |
[4] | 李昊, 伍国强, 魏明, 韩悦欣. 甜菜BvBADH基因家族全基因组鉴定及其高盐胁迫下的表达分析[J]. 生物技术通报, 2024, 40(2): 233-244. |
[5] | 李灿, 蒋湘宁, 盖颖. 日本落叶松LkF3H2基因克隆及调控类黄酮代谢功能研究[J]. 生物技术通报, 2024, 40(2): 245-252. |
[6] | 郑菲, 杨俊钊, 牛羽丰, 李蕊麟, 赵国柱. 嗜热毁丝菌裂解性多糖单加氧酶TtLPMO9I的酶学性质及其功能研究[J]. 生物技术通报, 2024, 40(2): 289-299. |
[7] | 李亚男, 张豪杰, 梁梦静, 罗涛, 李旺宁, 张春辉, 季春丽, 李润植, 薛金爱, 崔红利. 雨生红球藻钙依赖蛋白激酶(CDPK)家族鉴定与表达分析[J]. 生物技术通报, 2024, 40(2): 300-312. |
[8] | 夏光丽, 曹娜, 孙慧慧, 赵玲, 曹荣. 半乳糖氧化酶的生物学改造研究进展[J]. 生物技术通报, 2024, 40(1): 176-185. |
[9] | 史京辉, 陈文慧, 陆坤, 郑婷婷, 任志远, 鲍国庆, 王敏, 骆健美. 定点饱和突变提高赭曲霉11α羟化酶的催化性能[J]. 生物技术通报, 2024, 40(1): 322-331. |
[10] | 向霞, 朱恩恒, 韩楠玉. 三种主要真菌毒素及其毒素降解酶的研究进展[J]. 生物技术通报, 2024, 40(1): 45-56. |
[11] | 娄慧, 朱金成, 杨洋, 张薇. 抗、感品种棉花根系分泌物对尖孢镰刀菌生长及基因表达的影响[J]. 生物技术通报, 2023, 39(9): 156-167. |
[12] | 杨志晓, 侯骞, 刘国权, 卢志刚, 曹毅, 芶剑渝, 王轶, 林英超. 不同抗性烟草品系Rubisco及其活化酶对赤星病胁迫的响应[J]. 生物技术通报, 2023, 39(9): 202-212. |
[13] | 江海溶, 崔若琪, 王玥, 白淼, 张明露, 任连海. NH3和H2S降解功能菌的分离鉴定及降解特性研究[J]. 生物技术通报, 2023, 39(9): 246-254. |
[14] | 徐发迪, 徐康, 孙东明, 李萌蕾, 赵建志, 鲍晓明. 基于杨木(Populus sp.)的二代燃料乙醇技术研究进展[J]. 生物技术通报, 2023, 39(9): 27-39. |
[15] | 张岳一, 兰社益, 裴海闰, 封棣. 多菌种联用发酵燕麦麸皮工艺优化及发用功效评价[J]. 生物技术通报, 2023, 39(9): 58-70. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||