生物技术通报 ›› 2025, Vol. 41 ›› Issue (7): 37-48.doi: 10.13560/j.cnki.biotech.bull.1985.2024-1061

• 综述与专论 • 上一篇    下一篇

褪黑素在植物低温胁迫中的研究进展

林佳怡1(), 陈强2, 张磊1, 刘宏鑫1, 郑晓明3,4,5(), 逄洪波1()   

  1. 1.沈阳师范大学生命科学学院,沈阳 110034
    2.沈阳师范大学实验教学中心,沈阳 110034
    3.中国农业科学院作物科学研究所 农业农村部粮食作物基因资源评价利用重点实验室,北京 100081
    4.海南三亚中国农业科学院国家南繁研究院,三亚 571700
    5.国际水稻研究所,菲律宾马尼拉 DAPO box 7777
  • 收稿日期:2024-10-30 出版日期:2025-07-26 发布日期:2025-07-22
  • 通讯作者: ‍:‍逄洪波,女,博士,教授,研究方向 :植物逆境分子生物学;E-mail: panghb@synu.edu.cn
    郑晓明,女,博士,研究员,研究方向 :水稻优异资源挖掘与利用;E-mail: zhengxiaoming@caas.cn
  • 作者简介:林佳怡,女,硕士研究生,研究方向 :生物化学与分子生物学;E-mail: 15998495879@163.com
    第一联系人:林佳怡、陈强为共同第一作者
  • 基金资助:
    ?:?国家自然科学基金国际地区合作与交流项目(32261143465);国家自然科学基金专项项目(32341026);辽宁省属本科高校基本科研业务费创新团队支持计划专项(LJ202410166052);沈阳师范大学“百人计划”拔尖人才项目(SSDBRJH2002012)

Research Progress in Melatonin in Plant Low-temperature Stress

LIN Jia-yi1(), CHEN Qiang2, ZHANG Lei1, LIU Hong-xin1, ZHENG Xiao-ming3,4,5(), PANG Hong-bo1()   

  1. 1.College of Life Science, Shenyang Normal University, Shenyang 110034
    2.Experiment Teaching Center, Shenyang Normal University, Shenyang 110034
    3.Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Key Laboratory of Gene Resource Evaluation and Utilization of Food Crops, Ministry of Agriculture and Rural Affairs, Beijing 100081
    4.Sanya National Research Institute of Breeding in Hainan, Chinese Academy of Agricultural Sciences, Sanya 571700
    5.International Rice Research Institute, Metro DAPO box 7777, Philippines
  • Received:2024-10-30 Published:2025-07-26 Online:2025-07-22

摘要:

褪黑素(melatonin, MT)是植物中普遍存在的吲哚胺类生物活性分子,近年来其参与植物非生物胁迫响应的分子机制已成为研究的前沿热点。本文系统综述了褪黑素在植物低温胁迫响应中的最新研究进展,深入解析其通过多维度调控网络增强植物耐寒性的分子机理。在生理生化层面,褪黑素通过稳定细胞膜脂质双分子层结构、保护光合系统Ⅱ反应中心复合体、清除过量活性氧(ROS)等核心途径,有效缓解低温引发的膜脂过氧化和光抑制效应。在分子调控网络层面,褪黑素通过复杂的信号网络调控植物的低温响应,如:(1)激活ICE1-CBF-COR转录级联通路,上调冷响应基因的表达;(2)通过受体介导的信号途径传递胁迫信号;(3)调控钙离子、一氧化氮、H2O2等第二信使的动态平衡;(4)与植物激素(如ABA、JA、IAA)协同或拮抗,形成信号网络;(5)激活MAPK、CDPK等蛋白激酶级联反应,放大冷胁迫信号,这些机制共同作用增强植物的耐寒性。褪黑素在植物低温耐受性调控中的应用潜力巨大,外源施用褪黑素已被证明对多种作物的低温耐受性具有积极作用,通过基因编辑技术提升植物内源褪黑素的合成能力也是提高作物耐寒性的重要策略。未来研究应以多学科交叉为基础,深入探讨褪黑素在植物低温胁迫中的作用机制及其潜在应用价值,为培育更加耐寒的作物品种提供理论支撑和技术指导。

关键词: 褪黑素, 低温胁迫, 植物, 分子机制, 抗逆性

Abstract:

Melatonin (MT), an indoleamine bioactive molecule prevalent in plants, has recently emerged as a focal point of research concerning its molecular mechanisms in plant responses to abiotic stress. This paper provides a comprehensive review of the latest advancements in understanding melatonin’s role in plant responses to low-temperature stress, with a particular emphasis on its molecular mechanisms for enhancing cold tolerance through multidimensional regulation. Physiologically, melatonin mitigates low-temperature-induced membrane lipid peroxidation and photoinhibition by stabilizing cell membrane lipid bilayers, safeguarding photosystem Ⅱ reaction centers, and scavenging excess reactive oxygen species (ROS). At the molecular level, melatonin enhances plant low-temperature tolerance through a complex signaling network: it activates the ICE1-CBF-COR transcriptional cascade to upregulate cold-responsive genes; transmits stress signals via receptor-mediated pathways; regulates the dynamics of secondary messengers such as Ca2+, NO, and H2O2; interacts with plant hormones (e.g., abscisic acid (ABA), jasmonic acid (JA), indole-3-acetic acid (IAA)) to form signaling networks; and triggers mitogen-activated protein kinase (MAPK) and calcium-dependent protein kinase (CDPK) cascades to amplify low-temperature stress signals. Melatonin holds significant potential for application in enhancing plant tolerance to low temperatures. The exogenous application of melatonin has been shown to enhance crop tolerance to low temperatures, while augmenting endogenous melatonin synthesis through gene editing represents a crucial strategy for improving crop resistance to low-temperature stress. Future research should adopt multidisciplinary approaches to investigate the role and potential applications of melatonin in plant responses to low-temperature stress, thereby facilitating the development of crop varieties with enhanced low-temperature tolerance.

Key words: melatonin, low-temperature stress, plant, molecular mechanism, resistance to stress