生物技术通报 ›› 2025, Vol. 41 ›› Issue (8): 234-241.doi: 10.13560/j.cnki.biotech.bull.1985.2025-0059
• 研究报告 • 上一篇
收稿日期:2025-01-14
出版日期:2025-08-26
发布日期:2025-08-14
通讯作者:
李丹丹,女,博士,讲师,研究方向 :药用植物次生代谢产物生物合成与调控;E-mail: ddli3@gzu.edu.cn作者简介:李开杰,男,硕士研究生,研究方向 :药用植物次生代谢产物生物合成与调控;E-mail: 982641736@qq.com
基金资助:
LI Kai-jie1(
), WU Yao1, LI Dan-dan1,2(
)
Received:2025-01-14
Published:2025-08-26
Online:2025-08-14
摘要:
目的 碱性螺旋‒环‒螺旋(basic helix-loop-helix, bHLH)转录因子广泛参与植物生长、发育和胁迫响应,是真核生物最大的转录因子家族之一。课题组前期在红花转录组数据中发现一个可能参与红花干旱及脱水负调控响应基因CtbHLH128,深入探究该基因参与干旱胁迫应答的功能情况,为红花生物育种等奠定重要基础。 方法 基于基因组中CtbHLH128的完整CDS序列,采用Primer 6.0软件设计引物,克隆并获得该基因正确序列,并采用生物信息学分析该基因编码氨基酸数目、保守结构域及系统发育树等;将CtbHLH128片段构建至植物表达载体,采用农杆菌侵染法转化拟南芥,并采用除草剂筛选及PCR等方法鉴定阳性株系,对阳性株系采用苗期和萌发期干旱胁迫以探究该基因在干旱胁迫中的作用。 结果 CtbHLH128含948 bp核苷酸,编码315个氨基酸,其编码蛋白分子量为33 742.32 Da, 理论等电点为9.02;CD-Search分析结果揭示,其C端含典型的HLH保守结构域,位于第249-301位氨基酸残基处;系统发育树揭示其与向日葵和生菜中bHLH128基因相似度较高;将CtbHLH128基因在拟南芥中过表达,经过抗性筛选和PCR鉴定共获得3个T3代阳性株系,对阳性株系进行干旱胁迫相关的表型分析,结果揭示转基因拟南芥植株在苗期对干旱条件表现出更强的敏感性,但在萌发期对干旱的抗性增强。 结论 CtbHLH128基因在干旱胁迫响应及种子萌发过程中具有重要功能。
李开杰, 吴瑶, 李丹丹. 红花CtbHLH128基因克隆及调控干旱胁迫应答功能研究[J]. 生物技术通报, 2025, 41(8): 234-241.
LI Kai-jie, WU Yao, LI Dan-dan. Cloning of Gene CtbHLH128 in Safflower and Response Function Regulating Drought Stress[J]. Biotechnology Bulletin, 2025, 41(8): 234-241.
名称 Primer name | 核苷酸序列 Nucleotide sequence (5′‒3′) | 功能/基因名 Function/Gene name |
|---|---|---|
| PF1 | ATGTATCCGAACTCCAATTCCTCT | Sequence clone (CtbHLH128) |
| PR1 | TCATCTTGGTTTGCATCCACACGAA | Sequence clone (CtbHLH128) |
| PF2 | atttggagaggacagggtaccATGTATCCGAACTCCAATTCCTCT | Recombination (CtbHLH128) |
| PR2 | cttgctcaccatggtactagtTCAAACCTTAGACCGTCCACCACCA | Recombination (CtbHLH128) |
| PF3 | GGTAATATCCGGAAACCTCCTCGGA | PCR identification (CtbHLH128) |
| PR3 | GCGGGCGAGACCTAATCCTCCGCCT | PCR identification (CtbHLH128) |
| PF4 | TAGATTCTTCTCACCTCCGC | semi-quantitative PCR (CtbHLH128) |
| PR4 | GCTTGGCGCGAATTTTACAAG | semi-quantitative PCR (CtbHLH128) |
| PF5 | GAACGGGAAATTGTCCGTG | semi-quantitative PCR (Atactin) |
| PR5 | TGAACAATCGATGGACCTGAC | semi-quantitative PCR (Atactin) |
表1 试验中所用引物的信息
Table 1 Information of primers in experiement
名称 Primer name | 核苷酸序列 Nucleotide sequence (5′‒3′) | 功能/基因名 Function/Gene name |
|---|---|---|
| PF1 | ATGTATCCGAACTCCAATTCCTCT | Sequence clone (CtbHLH128) |
| PR1 | TCATCTTGGTTTGCATCCACACGAA | Sequence clone (CtbHLH128) |
| PF2 | atttggagaggacagggtaccATGTATCCGAACTCCAATTCCTCT | Recombination (CtbHLH128) |
| PR2 | cttgctcaccatggtactagtTCAAACCTTAGACCGTCCACCACCA | Recombination (CtbHLH128) |
| PF3 | GGTAATATCCGGAAACCTCCTCGGA | PCR identification (CtbHLH128) |
| PR3 | GCGGGCGAGACCTAATCCTCCGCCT | PCR identification (CtbHLH128) |
| PF4 | TAGATTCTTCTCACCTCCGC | semi-quantitative PCR (CtbHLH128) |
| PR4 | GCTTGGCGCGAATTTTACAAG | semi-quantitative PCR (CtbHLH128) |
| PF5 | GAACGGGAAATTGTCCGTG | semi-quantitative PCR (Atactin) |
| PR5 | TGAACAATCGATGGACCTGAC | semi-quantitative PCR (Atactin) |
图2 CtbHLH128系统进化分析A:系统发育树;B:CtbHLH128与相近物种同源基因氨基酸序列的多序列比对分析;Amt:苋;Brd:二穗短柄草;Brn:油菜;Caa:辣椒;Cis: 甜橙;Cus:黄瓜;Eug:大桉;Glm:大豆;Goh:棉花;Hea:向日葵;Hov:大麦;Jur:胡桃;Kln:克里藻;Las:生菜;Mae:木薯;Met:苜蓿;Nen:莲;Nit:烟草;Ors:水稻;Php:小立碗藓;Pot:毛果杨;Ric:蓖麻;Sei:梁;Sly:番茄;Stu:马铃薯;Zma:玉米;Sbi:高粱;Ct:红花
Fig. 2 Phylogenetic analysis of CtbHLH128A: Phylogenetic tree. B: Multiple-sequence alignment and analysis of the bHLH motif of amino acid sequences between CtbHLH128 and the closely related species. Amt: Amaranthus tricolor; Brd: Brachypodium distachyon; Brn: Brassica napus; Caa: Capsicum annuum; Cis: Citrus sinensis; Cus: Cucumis sativus; Eug: Eucalyptus grandis; Glm: Glycine max; Goh: Gossypium hirsutum; Hea: Helianthus annuus; Hov: Hordeum vulgare; Jur: Juglans regia; Kln: Klebsormidium nitens; Las: Lactuca sativa; Mae: Manihot esculenta; Met: Medicago truncatula; Nen: Nelumbo nucifera; Nit: Nicotiana tabacum; Ors: Oryza sativa; Php: Physcomitrium patens; Pot: Populus trichocarpa; Ric: Ricinus communis; Sei: Setaria italica; Sly: Solanum lycopersicum; Stu: Solanum tuberosum; Zma: Zea mays; Sbi: Sorghum bicolor; Ct: Carthamus tinctorius
图3 拟南芥阳性苗的鉴定A:阳性苗基因组DNA的PCR鉴定结果;B:转基因阳性苗与野生型对照的半定量PCR检测结果。#28-1、#29-1和#32-4为纯合T3代阳性转基因拟南芥株系,WT为野生型拟南芥,下同
Fig. 3 Identification of positive transfected A. thalianaA: PCR identification results of the positive seedlings genomic DNA. B: Results of the semi-quantitative PCR between transgenic positive seedlings and control seedlings. #28-1, #29-1 and #32-4 are homozygous T3 positive lines transferred CtbHLH128 to Arabidopsis thaliana, and WT is wild-type. The same below
图4 苗期干旱胁迫下过表达和野生型拟南芥的形态图OEbHLH#26、OEbHLH#7、OEbHLH#23、OEbHLH#3和OEbHLH#36表示转基因T2代株系;WT(col-gl)为野生型;干旱处理14 d
Fig. 4 Morphological diagram of overexpressed and wild-type Arabidopsis under drought stress during seedling stageOEbHLH#26, OEbHLH#7, OEbHLH#23, OEbHLH#3 and OEbHLH#36 indicate the different positive T2 lines. WT (col-gl) refers to wild type. The observation was conducted at 14 d after drought stress
图5 过表达与野生型拟南芥种子在15% PEG模拟干旱条件下的萌发率** P<0.01,下同
Fig. 5 Germination rates of transgenic Arabidopsis and wild Arabidopsis seeds under 15% PEG simulated drought conditions** P<0.01. The same below
| [1] | 吕培霖, 李成义, 彭文化, 等. 红花籽油抗氧化活性实验研究 [J]. 西北国防医学杂志, 2017, 38(7): 439-441. |
| Lv PL, Li CY, Peng WH, et al. Antioxidant activity of safflower seed oil [J]. Med J Natl Defending Forces Northwest China, 2017, 38(7): 439-441. | |
| [2] | 白启荣, 郭姣洁, 吴娇. 红花的化学成分及药理作用研究进展 [J]. 新乡医学院学报, 2024, 41(1): 88-94, 100. |
| Bai QR, Guo JJ, Wu J. Research progress on chemical constituents and pharmacological effects of safflower [J]. J Xinxiang Med Univ, 2024, 41(1): 88-94, 100. | |
| [3] | 吕培霖, 李成义, 王俊丽. 红花籽油的研究进展 [J]. 中国现代中药, 2016, 18(3): 387-389. |
| Lyu PL, Li CY, Wang JL. Review of safflower seed oil [J]. Mod Chin Med, 2016, 18(3): 387-389. | |
| [4] | 任超翔, 吴沂芸, 唐小慧, 等. 红花的起源与产地变迁 [J]. 中国中药杂志, 2017, 42(11): 2219-2222. |
| Ren CX, Wu YY, Tang XH, et al. Safflower's origin and changes of producing areas [J]. China J Chin Mater Med, 2017, 42(11): 2219-2222. | |
| [5] | 郭美丽, 张汉明, 张美玉. 红花本草考证 [J]. 中药材, 1996, 19(4): 202-203. |
| Guo ML, Zhang HM, Zhang MY. Herbological study of Honghua [J]. J Chin Med Mater, 1996, 19(4): 202-203. | |
| [6] | Gong ZZ, Xiong LM, Shi HZ, et al. Plant abiotic stress response and nutrient use efficiency [J]. Sci China Life Sci, 2020, 63(5): 635-674. |
| [7] | Xie YP, Chen PX, Yan Y, et al. An atypical R2R3 MYB transcription factor increases cold hardiness by CBF-dependent and CBF-independent pathways in apple [J]. New Phytol, 2018, 218(1): 201-218. |
| [8] | Samira R, Li BH, Kliebenstein D, et al. The bHLH transcription factor ILR3 modulates multiple stress responses in Arabidopsis [J]. Plant Mol Biol, 2018, 97(4/5): 297-309. |
| [9] | Govind G, Harshavardhan VT, Patricia JK, et al. Identification and functional validation of a unique set of drought induced genes preferentially expressed in response to gradual water stress in peanut [J]. Mol Genet Genomics, 2009, 281(6): 591-605. |
| [10] | Jin JP, Zhang H, Kong L, et al. PlantTFDB 3.0: a portal for the functional and evolutionary study of plant transcription factors [J]. Nucleic Acids Res, 2014, 42(Database issue): D1182-D1187. |
| [11] | Heim MA, Jakoby M, Werber M, et al. The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity [J]. Mol Biol Evol, 2003, 20(5): 735-747. |
| [12] | Feller A, Machemer K, Braun EL, et al. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors [J]. Plant J, 2011, 66(1): 94-116. |
| [13] | Bailey PC, Martin C, Toledo-Ortiz G, et al. Update on the basic helix-loop-helix transcription factor gene family in Arabidopsis thaliana [J]. Plant Cell, 2003, 15(11): 2497-2502. |
| [14] | Anuj Kumer Das. bHLH转录因子ABP7-Like在玉米叶片和籽粒发育中的功能鉴定和分子机制分析 [D]. 北京: 中国农业科学院, 2019. |
| Anuj KD. Functional characterization and molecular mechanism analysis of ABP7-like, a bHLH transcription factor, in maize leaf and kernel development [D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. | |
| [15] | 汪德州, 莫小婷, 张霞, 等. 玉米转录因子ZmbHLH4基因的克隆及功能分析 [J]. 中国农业科技导报, 2018, 20(12): 16-25. |
| Wang DZ, Mo XT, Zhang X, et al. Cloning and functional analysis of transcription factors gene ZmbHLH4 from Zea mays [J]. J Agric Sci Technol, 2018, 20(12): 16-25. | |
| [16] | 刘玮. 花生AhbHLH1参与调控FAD2基因在种子中表达的研究 [D]. 济南: 山东大学, 2016. |
| Liu W. The study on AhbHLH1 involved in regulating the FAD2 gene expression in peanut (Arachis hypogaea L.) seed [D]. Jinan: Shandong University, 2016. | |
| [17] | 许红梅, 张立军, 刘淳. 农杆菌蘸花法侵染拟南芥的研究 [J]. 北方园艺, 2010(14): 143-146. |
| Xu HM, Zhang LJ, Liu C. Study of infection Arabidopsis thaliana by Agrobacterium dipping flower method [J]. North Hortic, 2010(14): 143-146. | |
| [18] | Toledo-Ortiz G, Huq E, Quail PH. The Arabidopsis basic/helix-loop-helix transcription factor family [J]. Plant Cell, 2003, 15(8): 1749-1770. |
| [19] | Li XX, Duan XP, Jiang HX, et al. Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis [J]. Plant Physiol, 2006, 141(4): 1167-1184. |
| [20] | Zhang TT, Lv W, Zhang HS, et al. Genome-wide analysis of the basic Helix-Loop-Helix (bHLH) transcription factor family in maize [J]. BMC Plant Biol, 2018, 18(1): 235. |
| [21] | 李彩霞, 李艺, 穆宏秀, 等. 中国南瓜bHLH转录因子家族的鉴定与生物信息学分析 [J]. 生物技术通报, 2025, 41(1): 186-197. |
| Li CX, Li Y, Mu HX, et al. Identification and bioinformatics analysis of the bHLH transcription factor family in Cucurbita moschata duch [J]. Biotechnol Bull, 2025, 41(1): 186-197. | |
| [22] | 谢荟清, 苏文娟, 赵娜红, 等. 油茶bHLH基因家族鉴定与响应干旱胁迫的基因表达分析 [J]. 中南林业科技大学学报, 2025, 45(1): 168-180. |
| Xie HQ, Su WJ, Zhao NH, et al. Identification of bHLH gene family in Camellia oleifera and analysis of its expression under drought stress [J]. J Cent South Univ For Technol, 2025, 45(1): 168-180. | |
| [23] | Tan ZW, Lu DD, Yu YL, et al. Genome-wide identification and characterization of the bHLH gene family and its response to abiotic stresses in Carthamus tinctorius [J]. Plants, 2023, 12(21): 3764. |
| [24] | 刘福, 陈诚, 张凯旋, 等. 日本百脉根LjbHLH34基因克隆及耐旱功能鉴定 [J]. 草业学报, 2023, 32(1): 178-191. |
| Liu F, Chen C, Zhang KX, et al. Cloning and identification of drought tolerance function of the LjbHLH34 gene in Lotus japonicus [J]. Acta Prataculturae Sin, 2023, 32(1): 178-191. | |
| [25] | 张斌. 抗氧化途径下大豆GmbHLH130转录因子增强植物耐旱性研究 [J]. 西北农业学报, 2024, 33(9): 1746-1756. |
| Zhang B. Research of soybean GmbHLH130 transcription factor on plant drought tolerance under antioxidant pathway [J]. Acta Agric Boreali Occidentalis Sin, 2024, 33(9): 1746-1756. | |
| [26] | Takahashi Y, Ebisu Y, Kinoshita T, et al. bHLH transcription factors that facilitate K⁺ uptake during stomatal opening are repressed by abscisic acid through phosphorylation [J]. Sci Signal, 2013, 6(280): ra48. |
| [27] | 鄢梦雨, 韦晓薇, 曹婧, 等. 异子蓬SabHLH169基因的克隆及抗旱功能分析 [J]. 生物技术通报, 2023, 39(11): 328-339. |
| Yan MY, Wei XW, Cao J, et al. Cloning of basic helix-loop-helix(bHLH) transcription factor gene SabHLH169 in Suaeda aralocaspica and analysis of its resistances to drought stress [J]. Biotechnol Bull, 2023, 39(11): 328-339. | |
| [28] | Zhao PC, Li XX, Jia JT, et al. bHLH92 from sheepgrass acts as a negative regulator of anthocyanin/proanthocyandin accumulation and influences seed dormancy [J]. J Exp Bot, 2019, 70(1): 269-284. |
| [29] | 陶均, 李玲. 高等植物脱落酸生物合成的酶调控 [J]. 植物学通报, 2002, 37(6): 675-683. |
| Tao J, Li L. Abscisic acid biosynthesis regulated by some key enzymes in higher plants [J]. Chin Bull Bot, 2002, 37(6): 675-683. | |
| [30] | 周金鑫, 胡新文, 张海文, 等. ABA在生物胁迫应答中的调控作用 [J]. 农业生物技术学报, 2008, 16(1): 169-174. |
| Zhou JX, Hu XW, Zhang HW, et al. Regulatory role of ABA in plant response to biotic stresses [J]. J Agric Biotechnol, 2008, 16(1): 169-174. | |
| [31] | 郭秀林, 刘子会, 李运朝, 等. Ca2+/CaM对玉米干旱信息传递的介导作用研究 [J]. 作物学报, 2005, 31(8): 1001-1006. |
| Guo XL, Liu ZH, Li YC, et al. Function of Ca2+/CaM on transduction of stress signal [J]. Acta Agron Sin, 2005, 31(8): 1001-1006. |
| [1] | 陈强, 于璎霏, 张颖, 张冲. 茉莉酸甲酯对薄皮甜瓜‘绿宝石’采后冷害的调控[J]. 生物技术通报, 2025, 41(9): 1-10. |
| [2] | 程雪, 付颖, 柴晓娇, 王红艳, 邓欣. 谷子LHC基因家族鉴定及非生物胁迫表达分析[J]. 生物技术通报, 2025, 41(8): 102-114. |
| [3] | 腊贵晓, 赵玉龙, 代丹丹, 余永亮, 郭红霞, 史贵霞, 贾慧, 杨铁钢. 红花质膜H+-ATPase基因家族成员鉴定及响应低氮低磷胁迫的表达分析[J]. 生物技术通报, 2025, 41(8): 220-233. |
| [4] | 赖诗雨, 梁巧兰, 魏列新, 牛二波, 陈应娥, 周鑫, 杨思正, 王博. NbJAZ3在苜蓿花叶病毒侵染本氏烟过程中的作用[J]. 生物技术通报, 2025, 41(8): 186-196. |
| [5] | 李雅琼, 格桑拉毛, 陈启迪, 杨宇环, 何花转, 赵耀飞. 异源过表达高粱SbSnRK2.1增强拟南芥对盐胁迫的抗性[J]. 生物技术通报, 2025, 41(8): 115-123. |
| [6] | 曾丹, 黄园, 王健, 张艳, 刘庆霞, 谷荣辉, 孙庆文, 陈宏宇. 铁皮石斛bZIP转录因子家族全基因组鉴定及表达分析[J]. 生物技术通报, 2025, 41(8): 197-210. |
| [7] | 张泽, 杨秀丽, 宁东贤. 花生4CL基因家族鉴定及对干旱与盐胁迫响应分析[J]. 生物技术通报, 2025, 41(7): 117-127. |
| [8] | 李新妮, 李俊怡, 马雪华, 何卫, 李佳丽, 于佳, 曹晓宁, 乔治军, 刘思辰. 谷子果胶甲酯酶抑制子PMEI基因家族鉴定及其对非生物胁迫的响应分析[J]. 生物技术通报, 2025, 41(7): 150-163. |
| [9] | 牛景萍, 赵婧, 郭茜, 王书宏, 赵晋忠, 杜维俊, 殷丛丛, 岳爱琴. 基于WGCNA鉴定大豆抗大豆花叶病毒NAC转录因子及其诱导表达分析[J]. 生物技术通报, 2025, 41(7): 95-105. |
| [10] | 李霞, 张泽伟, 刘泽军, 王楠, 郭江波, 辛翠花, 张彤, 简磊. 马铃薯转录因子StMYB96的克隆及功能研究[J]. 生物技术通报, 2025, 41(7): 181-192. |
| [11] | 魏雨佳, 李岩, 康语涵, 弓晓楠, 杜敏, 涂岚, 石鹏, 于子涵, 孙彦, 张昆. 白颖苔草CrMYB4基因的克隆和表达分析[J]. 生物技术通报, 2025, 41(7): 248-260. |
| [12] | 程慧娟, 王昕, 石小涛, 马东旭, 龚大春, 胡骏鹏, 谢智文. 转录因子CREA敲除对黑曲霉形态和分泌β-葡萄糖苷酶的影响[J]. 生物技术通报, 2025, 41(6): 344-354. |
| [13] | 李锐, 胡婷, 陈树溦, 王尧, 王计平. 紫苏PfMYB80转录因子正向调控花青素的生物合成[J]. 生物技术通报, 2025, 41(6): 243-255. |
| [14] | 郭涛, 艾丽皎, 邹世慧, 周玲, 李学梅. 山茶CjRAV1调控开花延迟的功能研究[J]. 生物技术通报, 2025, 41(6): 208-217. |
| [15] | 程珊, 王会伟, 陈晨, 朱雅婧, 李春鑫, 别海, 王树峰, 陈献功, 张向歌. 油莎豆MYB转录因子基因CeMYB154克隆及耐盐功能分析[J]. 生物技术通报, 2025, 41(6): 218-228. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||