生物技术通报 ›› 2014, Vol. 0 ›› Issue (5): 1-7.
• 综述与专论 • 下一篇
宋卫华1,2 刘坤1 赵同标1
收稿日期:
2013-10-08
出版日期:
2014-05-23
发布日期:
2014-05-24
作者简介:
宋卫华,女,硕士,讲师,研究方向:干细胞与免疫学;E-mail:whsong1978@126.com;刘坤与宋卫华同为本文第一作者
基金资助:
Song Weihua1,2 Liu Kun1 Zhao Tongbiao1
Received:
2013-10-08
Published:
2014-05-23
Online:
2014-05-24
摘要: 成熟的体细胞过表达转录激活因子Oct4、Sox2、Klf4和c-Myc能够转化为具有多能性的干细胞,称为诱导多能干细胞。类似于胚胎干细胞,诱导多能性干细胞具有自我更新和多向分化潜能性两个主要特征。同胚胎干细胞相比,诱导多能干细胞不仅能够为以细胞替代治疗为核心的再生医学提供无限的细胞来源,而且有望解决胚胎干细胞临床开发面临的伦理道德及免疫排斥问题。从诱导多能干细胞技术的建立、重编程的机理及其在临床中的应用几方面作简要综述。
宋卫华, 刘坤, 赵同标. 诱导多能干细胞研究进展[J]. 生物技术通报, 2014, 0(5): 1-7.
Song Weihua, Liu Kun, Zhao Tongbiao. Progress in Induced Pluripotent Stem Cells[J]. Biotechnology Bulletin, 2014, 0(5): 1-7.
[1] Hochedlinger K, Plath K. Epigenetic reprogramming and induced pluripotency[J]. Development, 2009, 136(4):509-523. [2] Spemann H. Embryonic development and induction[M]. New Haven, CT, USA:Yale University Press, 1938. [3] Briggs R, King TJ. Transplantation of living nuclei from blastula cells into enucleated frogs' eggs[J]. Proc Natl Acad Sci USA, 1952, 38(5):455-463. [4] Gurdon JB. The developmental capacity of nuclei taken from intes-tinal epithelium cells of feeding tadpoles[J]. J Embryol Exp Morp-hol, 1962, 10(4):622-640. [5] Gurdon J, Graham C. Nuclear changes during cell differentiation[J]. Science Progress, 1967, 55(218):259. [6] Tachibana M, Amato P, Sparman M, et al. Human embryonic stem cells derived by somatic cell nuclear transfer[J]. Cell, 2013, 153(6):1228-1238. [7] Stevens Jr LC, Little CC. Spontaneous testicular teratomas in an inbred strain of mice[J]. Proc Natl Acad Sci USA, 1954, 40(11):1080. [8] Kleinsmith LJ, Pierce GB. Multipotentiality of single embryonal carcinoma cells[J]. Cancer Res, 1964, 24(9):1544-1551. [9] Miller RA, Ruddle FH. Pluripotent teratocarcinoma-thymus somatic cell hybrids[J]. Cell, 1976, 9(1):45-55. [10] Tada M, Takahama Y, Abe K, et al. Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells[J]. Current Biology, 2001, 11(19):1553-1558. [11] Davis RL, Weintraub H, Lassar AB. Expression of a single transfected cDNA converts fibroblasts to myoblasts[J]. Cell, 1987, 51(6):987-1000. [12] Xie H, Ye M, Feng R, et al. Stepwise reprogramming of B cells into macrophages[J]. Cell, 2004, 117(5):663-676. [13] Laiosa CV, Stadtfeld M, Xie H, et al. Reprogramming of committed T cell progenitors to macrophages and dendritic cells by C/EBPα and PU. 1 transcription factors[J]. Immunity, 2006, 25(5):731-744. [14] Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126(4):663-676. [15] Wernig M, Meissner A, Foreman R, et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state[J]. Nature, 2007, 448(7151):318-324. [16] Kang L, Wang J, Zhang Y, et al. iPS cells can support full-term development of tetraploid blastocyst-complemented embryos[J]. Cell Stem Cell, 2009, 5(2):135-138. [17] Zhao XY, Li W, Lv Z, et al. iPS cells produce viable mice through tetraploid complementation[J]. Nature, 2009, 461:86-90. [18] Zhao XY, Lv Z, Li W, et al. Production of mice using iPS cells and tetraploid complementation[J]. Nat Protoc, 2010, 5:963-971. [19] Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J]. Cell, 2007, 131(5):861-872. [20] Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells[J]. Science, 2007, 318(5858):1917-1920. [21] Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells[J]. Nature, 2007, 448(7151):313-317. [22] Maherali N, Ahfeldt T, Rigamonti A, et al. A high-efficiency system for the generation and study of human induced pluripotent stem cells[J]. Cell Stem Cell, 2008, 3(3):340-345. [23] Sridharan R, Tchieu J, Mason MJ, et al. Role of the murine reprogramming factors in the induction of pluripotency[J]. Cell, 2009, 136(2):364-377. [24] Mikkelsen TS, Hanna J, Zhang X, et al. Dissecting direct reprogra-mming through integrative genomic analysis[J]. Nature, 2008, 454(7200):49-55. [25] Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126(4):663-676. [26] Stadtfeld M, Nagaya M, Utikal J, et al. Induced pluripotent stem cells generated without viral integration[J]. Science, 2008, 322(5903):945-949. [27] Kaji K, Norrby K, Paca A, et al. Virus-free induction of pluripotency and subsequent excision of reprogramming factors[J]. Nature, 2009, 458(7239):771-775. [28] Kim D, Kim CH, Moon JI, et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins[J]. Cell Stem Cell, 2009, 4(6):472-476. [29] Thier M, Munst B, Edenhofer F. Exploring refined conditions for reprogramming cells by recombinant Oct4 protein[J]. Int J Dev Biol, 2010, 54(11-12):1713-1721. [30] Thier M, Munst B, Mielke S, et al. Cellular reprogramming employing recombinant sox2 protein[J]. Stem Cells Int, 2012:549846. [31] Anokye-Danso F, Trivedi CM, Juhr D, et al. Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency[J]. Cell Stem Cell, 2011, 8(4):376-388. [32] Subramanyam D, Lamouille S, Judson RL, et al. Multiple targets of miR-302 and miR-372 promote reprogramming of human fibroblasts to induced pluripotent stem cells[J]. Nat Biotechnol, 2011, 29:443-448. [33] Babiarz JE, Ruby JG, Wang Y, et al. Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs[J]. Genes Dev, 2008, 22(20):2773-2785. [34] Betel D, Wilson M, Gabow A, et al. The microRNA.org resource:targets and expression[J]. Nucleic Acids Res, 2008, 36(Database issue):D149-153. [35] Bhutani N, Brady JJ, Damian M, et al. Reprogramming towards pluripotency requires AID-dependent DNA demethylation[J]. Nature, 2010, 463(7284):1042-1047. [36] Judson RL, Babiarz JE, Venere M, et al. Embryonic stem cell-specific microRNAs promote induced pluripotency[J]. Nat Biotechnol, 2009, 27(5):459-461. [37] Lagarkova MA, Shutova MV, Bogomazova AN, et al. Induction of pluripotency in human endothelial cells resets epigenetic profile on genome scale[J]. Cell Cycle, 9(5):937-946. [38] Mali P, Chou BK, Yen J, et al. Butyrate greatly enhances derivation of human induced pluripotent stem cells by promoting epigenetic remodeling and the expression of pluripotency-associated genes[J]. Stem Cells, 2010, 28(4):713-720. [39] Zheng Z, Jian J, Zhang X, et al. Reprogramming of human fibroblasts into multipotent cells with a single ECM proteoglycan, fibromodulin[J]. Biomaterials, 2012, 33(24):5821-5831. [40] Zhao T, Zhang ZN, Rong Z, et al. Immunogenicity of induced pluripotent stem cells[J]. Nature, 2011, 474(7350):212-215. [41] Zhou H, Wu S, Joo JY, et al. Generation of induced pluripotent stem cells using recombinant proteins[J]. Cell Stem Cell, 2009, 4:381. [42] Cho HJ, Lee CS, Kwon YW, et al. Induction of pluripotent stem cells from adult somatic cells by protein-based reprogramming without genetic manipulation[J]. Blood, 2010, 116:386-395. [43] Hou P, Li Y, Zhang X, et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds[J]. Science, 2013, 341(6146):651-654. [44] Polo JM, Anderssen E, Walsh RM, et al. A molecular roadmap of reprogramming somatic cells into iPS cells[J]. Cell, 2012, 151:1617-1632. [45] Buganim Y, Faddah DA, Cheng AW, et al. Single-cell expression analyses during cellular reprogramming reveal an early stochastic and a late hierarchic phase[J]. Cell, 2012, 150:1209-1222. [46] Takikawa S, Ray C, Wang X, et al. Genomic imprinting is variably lost during reprogramming of mouse iPS cells[J]. Stem Cell Research, 2013, 11(2):861-873. [47] Liu X, Sun H, Qi J, et al. Sequential introduction of reprogramming factors reveals a time-sensitive requirement for individual factors and a sequential EMT-MET mechanism for optimal reprogramm-ing[J]. Nat Cell Biol, 2013, 15(7):829-838. [48] Bedzhov I, Alotaibi H, Basilicata MF, et al. Adhesion, but not a specific cadherin code, is indispensable for ES cell and induced pluripotency[J]. Stem Cell Res, 2013, 11(3):1250-1263. [49] Muraro MJ, Kempe H, Verschure PJ. The dynamics of induced pluripotency and its behavior captured in gene network motifs[J]. Stem Cells, 2013, 31(5):838-848. [50] Meissner A, Wernig M, Jaenisch R. Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells[J]. Nat Biotechnol, 2007, 25(10):1177-1181. [51] Wernig M, Meissner A, Foreman R, et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state[J]. Nature, 2007, 448(7151):318-324. [52] Stadtfeld M, Apostolou E, Akutsu H, et al. Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells[J]. Nature, 2010, 465(7295):175-181. [53] Liu L, Luo GZ, Yang W, et al. Activation of the imprinted Dlk1-Dio3 region correlates with pluripotency levels of mouse stem cells[J]. J Biol Chem, 285(25):19483-19490. [54] Mattout A, Biran A, Meshorer E. Global epigenetic changes during somatic cell reprogramming to iPS cells[J].J Mol Cell Biol, 2011, 3(6):341-350. [55] Razak SRA, Ueno K, Takayama N, et al. Profiling of microRNA in human and mouse ES and iPS cells reveals overlapping but distinct microRNA expression patterns[J]. PLOS ONE, 2013, 8(9):e73532. [56] Rais Y, Zviran A, Geula S, et al. Deterministic direct reprogramming of somatic cells to pluripotency[J]. Nature, 2013, 502:65-70. [57] Shu J, Wu C, Wu Y, et al. Induction of pluripotency in mouse somatic cells with lineage specifiers[J]. Cell, 2013, 153(5):963-975. [58] Jung-Il C, Dong-Wook K, Nayeon L, et al. Quantitative proteomic analysis of induced pluripotent stem cells derived from a human Huntington's disease patient[J]. Biochemical Journal, 2012, 446(3):359-371. [59] Nguyen HN, Byers B, Cord B, et al. LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress[J]. Cell Stem Cell, 2011, 8(3):267-280. [60] Mitne-Neto M, Machado-Costa M, Marchetto MC, et al. Downregulation of VAPB expression in motor neurons derived from induced pluripotent stem cells of ALS8 patients[J]. Human Molecular Genetics, 2011, 20(18):3642-3652. [61] Kondo T, Asai M, Tsukita K, et al. Modeling Alzheimer’s disease with iPSCs reveals stress phenotypes associated with intracellular Aβ and differential drug responsiveness[J]. Cell Stem Cell, 2013, 12(4):487-496. [62] Lancaster MA, Renner M, Martin CA, et al. Cerebral organoids model human brain development and microcephaly[J]. Nature, 2013, 501(7467):373-379. [63] Hanna J, Wernig M, Markoulaki S, et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin[J]. Science, 2007, 318(5858):1920-1923. [64] Yan B, Abdelli LS, Singla DK. Transplanted induced pluripotent stem cells improve cardiac function and induce neovascularization in the infarcted hearts of db/db mice[J]. Mol Pharm, 2011, 8:1602-1610. [65] Morizane A, Doi D, Kikuchi T, et al. Direct comparison of autologous and allogeneic transplantation of iPSC-derived neural cells in the brain of a nonhuman primate[J]. Stem Cell Reports, 2013, 1(4):283-292. [66] Schwartz SD, Hubschman JP, Heilwell G, et al. Embryonic stem cell trials for macular degeneration:a preliminary report[J]. The Lancet, 2012, 379(9817):713-720. |
[1] | 曾虹, 曾睿琳, 付伟, 吉文汇, 兰道亮. 牛诱导多能干细胞的建立及应用研究进展[J]. 生物技术通报, 2023, 39(5): 130-141. |
[2] | 吴玉苹, 周勇, 蒲娟, 李会, 章金刚, 朱艳平. 代谢组学在肿瘤药物靶点筛选中的应用进展[J]. 生物技术通报, 2022, 38(1): 311-318. |
[3] | 吴霄, 庄站伟, 马晓莉, 黄思秀, 李紫聪, 徐铮. 核移植介导的哺乳动物体细胞核重编程研究进展[J]. 生物技术通报, 2019, 35(11): 187-194. |
[4] | 王福平, 张锋, 赵同标. 人尿源干细胞的分离与鉴定[J]. 生物技术通报, 2018, 34(8): 190-198. |
[5] | 顾珊, 赵高平, 李喜和. 小分子化合物诱导细胞重编程研究进展[J]. 生物技术通报, 2018, 34(1): 79-83. |
[6] | 张宏燕, 信吉阁. 猪体细胞核移植技术研究进展[J]. 生物技术通报, 2016, 32(8): 41-46. |
[7] | 奥旭东,萨如拉,王杰,王会敏,于海泉. DNA甲基转移酶抑制剂5-Aza-CdR对AID基因修饰的牛胎儿成纤维细胞的作用[J]. 生物技术通报, 2016, 32(8): 103-112. |
[8] | 范荻,孙筱放. 诱导多能干细胞在血液系统疾病中的研究进展[J]. 生物技术通报, 2016, 32(4): 34-38. |
[9] | 周桢宁. 体细胞直接重编程为神经元和神经干细胞[J]. 生物技术通报, 2015, 31(7): 26-32. |
[10] | 许锴,陈霞,高绍荣. 我国诱导多能干细胞研究进展[J]. 生物技术通报, 2015, 31(4): 72-81. |
[11] | 薛冰华,刘忠华. 猪多能性干细胞研究进展与前瞻[J]. 生物技术通报, 2015, 31(4): 82-91. |
[12] | 沈心怡 ,宋坤, 杨利珊, 肖雄 ,张大鹏, 杨波 ,李跃民. 卵母细胞裂解液逆转化体细胞为多能干细胞的研究进展[J]. 生物技术通报, 2014, 0(12): 24-28. |
[13] | 李宏. 基因组稳定性与iPS细胞重编程的分子机制[J]. 生物技术通报, 2013, 0(12): 36-42. |
[14] | 侯士芳;黄家学;. 诱导多能干细胞技术的专利保护及价值分析[J]. , 2012, 0(09): 208-210. |
[15] | 李佳佳;马利兵;陈秀莉;籍凤宇;. 诱导性多能干细胞构建策略及其提高重编程效率的方法[J]. , 2012, 0(07): 41-48. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||