[1]Suga H, Kristina M, Smith KM. Molecular mechanisms of bacterial quorom sensing as a new drug target[J]. Curr Opin Chem Biol, 2003, 7(5):586-591. [2]Nealson KH, Platt T, Hastings JW. Cellular control of the synthesis and activity of the bacterial luminescent system[J]. J Bacteriol, 1970, 104(1):313-322. [3]Fuqua WC, Winans SC, Greenberg EP. Quorum-sensing in bacteria:the LuxR-LuxI family of cell density-responsive transcriptional regulatiors[J]. J Bacteriol, 1994, 176(2):269-275. [4]Bassler BL. How bacteria talk to each other:regulation of gene exp-ression by quorum sensing[J]. Curr Opin Microbiol, 1999, 2(6):582-587. [5]Bruhn JB, Dalsgaard I, Nielsen KF, et al. Quorum sensing signal molecules(acylated homoserine lactones)in gram-negative fish pathogenic bacteria[J]. Dis Aquat Org, 2005, 65(1):43-52. [6]Kalia VC, Purohit HJ. Quenching the quorum sensing system:potential antibacterial drug targets[J]. Crit Rev Microbiol, 2011, 37(2):121-140. [7]Dong YH, Xu JL, Li XZ, et al. AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora[J]. Proc Natl Acad Sci USA, 2000, 97(7):3526-3531. [8] Swift S, Downie JA, Whitehead NA, et al. Quorum sensing as a popu-lation-density-dependent determinant of bacterial physiology[J]. Adv Microb Physiol, 2001, 45(11):199-270. [9]Williams P. Quorum sensing, communication and cross-kingdom signalling in the bacterial world[J]. Microbiology, 2007, 153(12):3923-3938. [10]Bentley SD, Chater KF, Cerdeno-Tarraga AM, et al. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2)[J]. Nature, 2002, 417(9):141-147. [11]Leadbetter JR, Greenberg EP. Metabolism of acylhomoserine lactone quorum-sensing signals by Variovorax paradoxus[J]. J Bacteriol, 2000, 182:6921-6926. [12]Dong YH, Zhang LH. Quorum sensing and quorum-quenching enzymes[J]. The Journal of Microbiology, 2005, 43(S):101-109. [13]Czajkowski R, Jafra S. Quenching of acyl-homoserine lactone-dependent quorum sensing by enzymatic disruption of signal molecules[J]. Acta Biochim Pol, 2009, 56(1):1-16. [14]Lin YH, Xu JL, Hu J, et al. Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes[J]. Mol Microbiol, 2003, 47(3):849-860. [15]Huang JJ, Han JI, Zhang LH, Leadbetter JR. Utilization of acyl-homoserine lactone quorum signals for growth by a soil pseudomonad and Pseudomonas aeruginosa PAO1[J]. Appl Environ Microbiol, 2003, 69(10):5941-5949. [16]Chen CN, Chen CJ, Liao CT, Lee CY. A probable aculeacin A acylase from the Ralstonia solanacearum GMI1000 is N-acyl-homoserine lactone acylase with quorum-quenching activity[J]. BMC Microbiol, 2009, 9(89):1-11. [17]Huang JJ, Petersen A, Whiteley M, Leadbetter JR. Identification of QuiP, the product of gene PA1032, as the second acyl-homoserine lactone acylase of Pseudomonas aeruginosa PAO1[J]. Appl Environ Microbiol, 2006, 72(2):1190-1197. [18]Shepherd RW, Lindow SE. Two dissimilar N-acyl-homoserine lactone acylases of Pseudomonas syringae influence colony and biofilm morphology[J]. Appl Environ Microbiol, 2009, 75:45-53. [19] Park SY, Kang HO, Jang HS, et al. Identification of extracellular N-acylhom-oserine lactone acylase froma Streptomyces sp. and its application to quorum quenching[J]. Appl Environ Microbiol, 2005, 71(5):2632-2641. [20] Romero M, Diggle SP, Heeb S, et al. Quorum quenching activity in Anabaena sp. PCC 7120:identification of aiiC, a novel AHL-acylase[J]. FEMS Microbiol Lett, 2008, 280(1):73-80. [21] Koch G, Nadal-Jimenez P, Cool RH, Quax WJ. Deinococcus radiodurans can interfere with quorum sensing by producing an AHL-acylase and an AHL-lactonase[J]. FEMS Microbiology Letters, 2014, 356(1):62-70. [22] Morohoshi T, Nakazawa S, Ebata A, et al. Identification and characterization of N-acylhomoserine lactone-acylase from the fish intestinal Shewanella sp. strain MIB015[J]. Biosci Biotechnol Biochem, 2008, 72(7):1887-1893. [23] Czajkowski R, Krzyzanowska D, Karczewska J, et al. Inactivation of AHLs by Ochrobactrum sp. A44 depends on the activity of a novel class of AHL acylase[J]. Environmental Microbiology Reports, 2011, 3(1):59-68. [24] Romero M, Avenda?o-Herrera R, Magari?os B, et al. Acylhomose-rine lactone production and degradation by the fish pathogen Tenacibaculum maritimum, a member of the Cytophaga-Flavobact-erium-Bacteroides(CFB)group[J]. FEMS Microbiol Lett, 2010, 304(2):131-139. [25] Chow JY, Xue B, Lee KH, et al. Directed evolution of a thermost-able quorum-quenching lactonase from the amidohydrolase superfa-mily[J]. Biol Chem, 2010, 285:40911-40920. [26]Seo MJ, Lee BS, Pyun YR, Park H. Isolation and characterization of N-acylhomoserine lactonase from the thermophilic bacterium, Geobacillus caldoxylosilyticus YS-8[J]. Biosci Biotechnol Biochem, 2011, 75(9):1789-1795. [27]Hong KW, Koh CL, Sam CK, et al. Quorum quenching revisited—from signal decays to signalling confusion[J]. Sensors, 2012, 12(4):4661-4696. [28] Park SY, Lee SJ, Oh TK, et al. AhlD, an N-acylhomoserine lactonase in Arthrobacter sp. , and predicted homologues in other bacteria[J]. Microbiology, 2003, 149(6):1541-1550. [29]Wang WZ, Morohoshi T, Ikenoya M, et al. AiiM, a novel class of N-acylhomoserine lactonase from the leaf-associated bacterium Microbacterium testaceum[J]. Appl Environ Microbiol, 2010, 76(8):2524-2530. [30] Morohoshi T, Tominaga Y, Someya N, Ikeda T. Complete genome sequence andcharacterization of the N-acylhomoserine lactone-degrading gene of the potato leaf-associated Solibacillus silvestris[J]. J Biosci Bioeng, 2012, 113(1):20-25. [31]Schipper C, Hornung C, Bijtenhoorn P, et al. Metagenome-derived clones encoding two novel lactonase family proteins involved in biofilm inhibition in Pseudomonas aeruginosa[J]. Appl Environ Microbiol, 2009, 75(1):224-233. [32] Amara N, Krom BP, Kaufmann GF, Meijler MM. Macromolecular inhibition of quorum sensing:enzymes, antibodies, and beyond[J]. Chem Rev, 2011, 111(1):195-208. [33] Elias M, Dupuy J, Merone L, et al. Structural basis for natural lactonase and promiscuous phosphotriesterase activities[J]. J Mol Biol, 2008, 379(5):1017-1028. [34] Uroz S, Oger PM, Chapelle E, et al. A Rhodococcus qsdA-encoded enzyme defines a novel class of large-spectrum quorum-quenching lactonases[J]. Applied and envirmental Microbiology, 2008, 74(5):1357-1366. [35] Elias M, Tawfik DS. Divergence and convergence in enzyme evolution:parallel evolution of paraoxonases from quorum-quenching lactonases[J]. The Journal of Biological Chemistry, 2011, 287(1):11-20. [36]Mei GY, Yan XX, Turak A, et al. AidH, an alpha/beta-hydrolase fold family member from an Ochrobactrum sp. strain, is a novel N-acylhomose-rine lactonase[J]. Appl Environ Microbiol, 2010, 76(15):4933-4942. [37] Riaz K, Elmerich C, Raffoux A, et al. Metagenomics revealed a quorum quenching lactonase QlcA from yet unculturable soil bacteria[J]. Commun Agric Appl Biol Sci, 2008, 73(2):3-6. [38] Chow JY, Wu L, Yew WS. Directed evolution of a quorum-quenching lactonase from Mycobacterium avium subsp. paratuberculosis K-10 in the amidohydrolase superfamily[J]. Biochemistry, 2009, 48(20):4344-4353. [39] Afriat L, Roodveldt C, Manco G, Tawfik DS. The latent promiscuity of newly identified microbial lactonases is linked to a recently diverged phosphotriesterase[J]. Biochemistry, 2006, 45(46):13677-13686. [40]Park SY, Hwang BJ, Shin MH, et al. N-acyl homoserine lactone producing Rhodococcus spp. with different AHL-degrading activities[J]. FEMS Microbiol Lett, 2006, 261(1):102-108. [41]Kalia VC, Purohit HJ. Quenching the quorum sensing system:potential antibacterial drug targets[J]. Crit Rev Microbiol, 2011, 37(2):121-140. [42]Terwagne M, Mirabella A, Lemaire J, et al. Quorum sensing and self-quorum quenching in the intracellular pathogen Brucella melitensis[J]. PLoS One, 2013, 8(12):e82514. [43] Dong YH, Wang LH, Xu JL, et al. Quenching quorum-sensing-dependent bacterialinfection by an N-acyl homoserine lactonase[J]. Nature, 2001, 411:813-817. [44] Lade H, Paul D, Kweon JH. Quorum quenching mediated approaches for control of membrane biofouling[J]. International Journal of Biological Sciences, 2014, 10(5):550-565. [45] Koch G, Nadal-Jimenez P, Reis CR, et al. Reducing virulence of the human pathogen Burkholderia by altering the substrate specificity of the quorum-quenching acylase PvdQ[J]. National Academy of Sciences, 2014, 111(4):1568-1573. [46] Chow YJ, Yang YY, Tay SB, et al. Disruption of Biofilm Formation by the Human Pathogen Acinetobacter baumannii using engineered quorum-quenching lactonases[J]. Antimicrobial Agents and Chemotherapy, 2014, 58(3):1802-1805. [47]Igarashi J, Suga H. Custom synthesis of autoinducers and their analogues[M]. Methods Mol Biol, 2011, 692:265-274. [48] Hawwa R, Aikens J, Turner RJ, et al. Structural basis for thermost-ability revealed through the identification and characterization of a highly thermostable phosphotriesterase-like lactonase from Geobac-illus stearothermophilus[J]. Arch Biochem Biophys, 2009, 488(2):109-120. [49] Lee B, Yeon KM, Shim J, et al. Effective antifouling using quorum-quenching acylase stabilized in magnetically-separable mesoporous silica[J]. American Chemical Society, 2014, 15(4):1153-1159. [50] Romero M, Mayer C, Muras A, et al. Silencing bacterial communi-cation through enzymatic quorum-sensing inhibition[M]//Quo-rum Sensing vs Quorum Quenching:A Battle with No End in Sight. Springer India, 2015:219-236. |