[1]Yildirim MA, Goh KI, Cusick ME, et al. Drug-target network[J]. Nature Biotechnology, 2007, 25(10):1119-1126. [2]Cross TA, Ekanayake V, Paulino J, et al. Solid state NMR:The essential technology for helical membrane protein structural characterization[J]. Journal of Magnetic Resonance, 2014, 239:100-109. [3]Chen YK, Zhang ZF, Tang XQ, et al. Conformation and topology of diacylglycerol kinase in E. coli membranes revealed by solid-state NMR spectroscopy[J]. Angewandte Chemie-International Edition, 2014, 53(22):5624-5628. [4]Su PC, Si W, Baker DL, et al. High-yield membrane protein expression from E. coli using an engineered outer membrane protein F fusion[J]. Protein Science, 2013, 22(4):434-443. [5]Dong GF, Wang CZ, Wu YH, et al. Tat peptide-mediated soluble expression of the membrane protein LSECtin-CRD in Escherichia coli[J]. PLoS One, 2013, 8(12):e83579. [6]Zuo X, Lie S, Hall J, et al. Enhanced expression and purification of membrane proteins by SUMO fusion in Escherichia coli[J]. Journal of Structural and Functional Genomics, 2005, 6(2-3):103-111. [7]Guimaraes JC, Rocha M, Arkin AP. Transcript level and sequence determinants of protein abundance and noise in Escherichia coli[J]. Nucleic Acids Research, 2014, 42(8):4791-4799. [8]Prilusky J, Bibi E. Studying membrane proteins through the eyes of the genetic code revealed a strong uracil bias in their coding mRNAs[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(16):6662-6666. [9]Norholm MHH, Light S, Virkki MTI, et al. Manipulating the genetic code for membrane protein production:what have we learnt so far?[J]. Biochimica Et Biophysica Acta-Biomembranes, 2012, 1818(4):1091-1096. [10]Greenbaum D, Jansen R, Gerstein M. Analysis of mRNA expression and protein abundance data:an approach for the comparison of the enrichment of features in the cellular population of proteins and transcripts[J]. Bioinformatics, 2002, 18(4):585-596. [11]Jansen R, Gerstein M. Analysis of the yeast transcriptome with structural and functional categories:characterizing highly expressed proteins[J]. Nucleic Acids Research, 2000, 28(6):1481-1488. [12]Kimchi-Sarfaty C, Oh JM, Kim IW, et al. A "silent" polymorphism in the MDR1 gene changes substrate specificity[J]. Science, 2007, 315(5811):525-528. [13]Kepes F. The"+70 pause":Hypothesis of a translational control of membrane protein assembly[J]. Journal of Molecular Biology, 1996, 262(2):77-86. [14]Dessen P, Kepes F. The PAUSE software for analysis of translational control over protein targeting:application to E-nidulans membrane proteins[J]. Gene, 2000, 244(1-2):89-96. [15]Katzen F, Peterson TC, Kudlicki W. Membrane protein expression:no cells required[J]. Trends in Biotechnology, 2009, 27(8):455-460. [16]Wang Q, Mei C, Zhen HH, et al. Codon preference optimization increases prokaryotic cystatin C expression[J]. Journal of Biom-edicine and Biotechnology, 2012, doi:org/10.1155/2012/732017. [17]Norholm MHH, Toddo S, Virkki MTI, et al. Improved production of membrane proteins in Escherichia coli by selective codon substitutions[J]. Febs Letters, 2013, 587(15):2352-2358. [18]Grosjean H, Fiers W. Preferential codon usage in prokaryotic genes-the optimal codon anticodon interaction energy and the selective co-don usage in efficiently expressed genes[J]. Gene, 1982, 18(3):199-209. [19]Gouy M, Gautier C. Codon usage in bacteria-correlation with gene expressivity[J]. Nucleic Acids Research, 1982, 10(22):7055-7074. [20]L?w C, Jegersch?ld C, Kovermann M, et al. Optimisation of over-expression in E. coli and biophysical characterisation of human membrane protein synaptogyrin 1[J]. PLoS One, 2012, 7(6):e38244. [21]Hardt B, Volker C, Mundt S, et al. Human endo-alpha 1, 2-mannosidase is a golgi-resident type II membrane protein[J]. Biochimie, 2005, 87(2):169-179. [22]Hassan KA, Xu ZQ, Watkins RE, et al. Optimized production and analysis of the staphylococcal multidrug efflux protein QacA[J]. Protein Expression and Purification, 2009, 64(2):118-124. [23]Slimko EM, Lester HA. Codon optimization of Caenorhabditis elegans GluCl ion channel genes for mammalian cells dramatically improves expression levels[J]. Journal of Neuroscience Methods, 2003, 124(1):75-81. [24]Sohl CD, Guengerich FP. Kinetic Analysis of the three-step steroid aromatase reaction of human cytochrome P450 19A1[J]. Journal of Biological Chemistry, 2010, 285(23):17734-17743. [25]Baneres JL, Martin A, Hullot P, et al. Structure-based analysis of GPCR function:conformational adaptation of both agonist and receptor upon leukotriene B-4 binding to recombinant BLT1[J]. Journal of Molecular Biology, 2003, 329(4):801-814. [26]Calderone TL, Stevens RD, Oas TG. High-level misincorporation of lysine for arginine at AGA codons in a fusion protein expressed in Escherichia coli[J]. Journal of Molecular Biology, 1996, 262(4):407-412. [27]Gurvich OL, Baranov PV, Gesteland RF, et al. Expression levels influence ribosomal frameshifting at the tandem rare arginine codons AGG_AGG and AGA_AGA in Escherichia coli[J]. Journal of Bacteriology, 2005, 187(12):4023-4032. [28]McNulty DE, Claffee BA, Huddleston MJ, et al. Mistranslational errors associated with the rare arginine codon CGG in Escherichia coli[J]. Protein Expression and Purification, 2003, 27(2):365-374. [29]Vyas VV, Esposito D, Sumpter TL, et al. Clinical manufacturing of recombinant human interleukin 15. I. Production cell line development and protein expression in E. coli with stop codon optimization[J]. Biotechnology Progress, 2012, 28(2):497-507. [30]Whittaker MM, Whittaker JW. Expression and purification of recombinant Saccharomyces cerevisiae mitochondrial carrier protein YGR257Cp(Mtm1p)[J]. Protein Expression and Purification, 2014, 93:77-86. [31]Li GW, Oh E, Weissman JS. The anti-Shine-Dalgarno sequence drives translational pausing and codon choice in bacteria[J]. Nature, 2012, 484(7395):538-541. [32]Deana A, Ehrlich R, Reiss C. Silent mutations in the Escherichia coli ompA leader peptide region strongly affect transcription and translation in vivo[J]. Nucleic Acids Research, 1998, 26(20):4778-4782. [33]Duan JB, Wainwright MS, Comeron JM, et al. Synonymous mutations in the human dopamine receptor D2(DRD2)affect mRNA stability and synthesis of the receptor[J]. Human Molecular Genetics, 2003, 12(3):205-216. [34]Pedersen M, Nissen S, Mitarai N, et al. The functional half-life of an mRNA depends on the ribosome spacing in an early coding region[J]. Journal of Molecular Biology, 2011, 407(1):35-44. [35]Kudla G, Murray AW, Tollervey D, et al. Coding-Sequence determinants of gene expression in Escherichia coli[J]. Science, 2009, 324(5924):255-258. [36]Makino S, Qu JN, Uemori K, et al. A silent mutation in the ftsH gene of Escherichia coli that affects FtsH protein production and colicin tolerance[J]. Molecular & General Genetics, 1997, 254(5):578-583. [37]Hockenberry AJ, Sirer MI, Amaral LAN, et al. Quantifying position-dependent codon usage bias[J]. Molecular Biology and Evolution, 2014, 31(7):1880-1893. [38]Bentele K, Saffert P, Rauscher R, et al. Efficient translation initiation dictates codon usage at gene start[J]. Molecular Systems Biology, 2013, 9:675. [39] Goodman DB, Church GM, Kosuri S. Causes and effects of N-terminal codon bias in bacterial genes[J]. Science, 2013, 342(6157):475-479. [40] Tang ZM, Salamanca-Pinzon SG, Wu ZL, et al. Human cytochrome P450 4F11:Heterologous expression in bacteria, purification, and characterization of catalytic function[J]. Archives of Biochemistry and Biophysics, 2010, 494(1):86-93. [41] Mitarai N, Pedersen S. Control of ribosome traffic by position-dependent choice of synonymous codons[J]. Physical Biology, 2013, 10(5):056011. [42]Chartier M, Gaudreault F, Najmanovich R. Large-scale analysis of conserved rare codon clusters suggests an involvement in co-translational molecular recognition events[J]. Bioinformatics, 2012, 28(11):1438-1445. [43]Fluman N, Navon S, Bibi E, et al. mRNA-programmed translation pauses in the targeting of E. coli membrane proteins. [J]. Elife, 2014, 3. doi:10. 7554/eLife. 03440. |