[1] 赵东杰. 植物细胞电信号高空间分辨率信息获取及分析方法研究[D]. 北京:中国农业大学, 2014. [2] 翟新. 物理方法破裂植物细胞壁的力学模型研究[D]. 无锡:江南大学, 2013. [3] 罗洁. 基于逆问题的膜片钳新技术研究[D]. 武汉:华中科技大学, 2012. [4] 王晓玲. 激光辅助显微切割技术分离植物细胞研究进展[J]. 现代农业科技, 2008(11):99. [5] 赵毅, 刘刚, 蔡绍皙, 等. 基于微流控芯片构建的肿瘤细胞三维共培养模型[J]. 科学通报, 2014(28):2868-2876. [6] 林炳承, 秦建华. 图解微流控芯片实验室[M]. 北京:科学出版社, 2008. [7] Jayamohan H, Smith YR, Hansen LC, et al. Anodized titania nanotube array microfluidic device for photocatalytic application:experiment and simulation[J]. Applied Catalysis B:Environmental, 2015, 174:167-175. [8] Yao X, Zhang Y, Du L, et al. Review of the applications of microreactors[J]. Renewable and Sustainable Energy Reviews, 2015, 47:519-539. [9] Martel JM, Smith KC, Dlamini M, et al. Continuous flow microfluidic bioparticle concentrator[J]. Sci Rep, 2015, 5:11300. [10] Lin C, Ballinger KR, Khetani SR. The application of engineered liver tissues for novel drug discovery[J]. Expert Opinion on Drug Discovery, 2015, 10(5):519-540. [11] Lucchetta EM, Lee JH, Fu LA, et al. Dynamics of Drosophila embryonic patterning network perturbed in space and time using microfluidics[J]. Nature, 2005, 434(7037):1134-1138. [12] Samara C, Rohde CB, Gilleland CL, et al. Large-scale in vivo femtosecond laser neurosurgery screen reveals small-molecule enhancer of regeneration[J]. Proceedings of the National Academy of Sciences, 2010, 107(43):18342-18347. [13] Gilleland CL, Rohde CB, Zeng F, et al. Microfluidic immobilization of physiologically active Caenorhabditis elegans[J]. Nature Protocols, 2010, 5(12):1888-1902. [14] 王虎, 魏俊峰, 郑国侠. 微流控芯片在水环境污染分析中的应用[J]. 应用生态学报, 2014, 25(4):1231-1238. [15] 王立凯, 冯喜增. 微流控芯片技术在生命科学研究中的应用[J]. 化学进展, 2005, 17(3):482-498. [16] 赵亮, 申洁, 周宏伟, 等. 集成微流控芯片[J]. 科学通报, 2011, 56(23):1855-1870. [17] 夏飞. PDMS 微流控芯片的制备工艺研究[D]. 南京:南京理工大学, 2010. [18] 高菊逸. 简易型微流控芯片的研制及其在临床诊断中的应用[D]. 南昌:南昌大学, 2014. [19] 殷学锋, 沈宏. 制造玻璃微流控芯片的简易加工技术[J]. 分析化学, 2003, 31(1):116-119. [20] 吕春华. 基于 SU-8 负光胶的微流控芯片加工技术的研究[D]. 杭州:浙江大学, 2007. [21] Grossmann G, Guo WJ, Ehrhardt DW, et al. The RootChip:an integrated microfluidic chip for plant science[J]. Plant Cell, 2011, 23(12):4234-4240. [22] Busch W, Moore BT, Martsberger B, et al. A microfluidic device and computational platform for high-throughput live imaging of gene expression[J]. Nature Methods, 2012, 9(11):1101-1106. [23] Agudelo CG, Sanati Nezhad A, Ghanbari M, et al. TipChip:a modular, MEMS based platform for experimentation and phenotyping of tip-growing cells[J]. The Plant Journal, 2013, 73(6):1057-1068. [24] Nezhad AS, Ghanbari M, Agudelo CG, et al. Optimization of flow assisted entrapment of pollen grains in a microfluidic platform for tip growth analysis[J]. Biomedical Microdevices, 2014, 16(1):23-33. [25] Horade M, Yanagisawa N, Mizuta Y, et al. Growth assay of individual pollen tubes arrayed by microchannel device[J]. Microelectronic Engineering, 2014, 118:25-28. [26] Nezhad AS, Packirisamy M, Bhat R, et al. In vitro study of oscillatory growth dynamics of Camellia pollen tubes in microfluidic environment[J]. Biomedical Engineering, IEEE Transactions on, 2013, 60(11):3185-3193. [27] Arata H, Higashiyama T. Poly(dimethylsiloxane)-based microdevices for studying plant reproduction[J]. Biochemical Society Transactions, 2014, 42:320-324. [28] Held M, Edwards C, Nicolau DV. Probing the growth dynamics of Neurospora crassa with microfluidic structures[J]. Fungal Biology, 2011, 115(6):493-505. [29] Wu H, Liu WM, Tu Q, et al. Culture and chemical-induced fusion of tobacco mesophyll protoplasts in a microfluidic device[J]. Microfluidics and Nanofluidics, 2011, 10(4):867-876. [30] Ju J, Ko JM, Cha HC, et al. An electrofusion chip with a cell delivery system driven by surface tension[J]. Journal of Micromechanics and Microengineering, 2009, 19(1):015004. [31] Yetisen A, Jiang L, Cooper J, et al. A microsystem-based assay for studying pollen tube guidance in plant reproduction[J]. Journal of Micromechanics and Microengineering, 2011, 21(5):054018. [32] Casimiro I, Beeckman T, Graham N, et al. Dissecting Arabidopsis lateral root development[J]. Trends in Plant Science, 2003, 8(4):165-171. [33] Malamy J. Intrinsic and environmental response pathways that regulate root system architecture[J]. Plant, Cell & Environment, 2005, 28(1):67-77. [34] Walter A, Silk WK, Schurr U. Environmental effects on spatial and temporal patterns of leaf and root growth[J]. Annual Review of Plant Biology, 2009, 60:279-304. [35] Chaudhuri B, H?rmann F, Frommer WB. Dynamic imaging of glucose flux impedance using FRET sensors in wild-type Arabidopsis plants[J]. Journal of Experimental Botany, 2011, 62(7):2411-2417. [36] Bassel GW, Fung P, Chow TF, et al. Elucidating the germination transcriptional program using small molecules[J]. Plant Physiology, 2008, 147(1):143-155. [37] Grossmann G, Guo WJ, Ehrhardt DW, et al. The RootChip:an integrated microfluidic chip for plant science[J]. The Plant Cell Online, 2011, 23(12):4234-4240. [38] Grossmann G, Meier M, Cartwright HN, et al. Time-lapse fluorescence imaging of Arabidopsis root growth with rapid manipulation of the root environment using the RootChip[J]. Journal of Visualized Experiments, 2012(65):e4290. [39] Okumoto S. Imaging approach for monitoring cellular metabolites and ions using genetically encoded biosensors[J]. Current Opinion in Biotechnology, 2010, 21(1):45-54. [40] Lanquar V, Lelièvre F, Bolte S, et al. Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron[J]. The EMBO Journal, 2005, 24(23):4041-4051. [41] Clara B, Jennifer CE, Viviane L, et al. In vivo biochemistry:quantifying ion and metabolite levels in individual cells or cultures of yeast[J]. Biochemical Journal, 2011, 438(1):1-10. [42] Lanquar V, Grossmann G, Vinkenborg JL, et al. Dynamic imaging of cytosolic zinc in Arabidopsis roots combining FRET sensors and RootChip technology[J]. New Phytologist, 2014, 202(1):198-208. [43] Nezhad AS. Microfluidic platforms for plant cells studies[J]. Lab on a Chip, 2014, 14(17):3262-3274. [44] Zhang H, Forde BG. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture[J]. Science, 1998, 279(5349):407-409. [45] Meier M, Lucchetta EM, Ismagilov RF. Chemical stimulation of the Arabidopsis thaliana root using multi-laminar flow on a microfluidic chip[J]. Lab on a Chip, 2010, 10(16):2147-2153. [46] Escobar-Restrepo JM, Huck N, Kessler S, et al. The FERONIA receptor-like kinase mediates male-female interactions during pollen tube reception[J]. Science, 2007, 317(5838):656-660. [47] Cheung AY, Wu HM. Structural and signaling networks for the polar cell growth machinery in pollen tubes[J]. Annu Rev Plant Biol, 2008, 59:547-572. [48] Bou Daher F, Geitmann A. Actin is involved in pollen tube tropism through redefining the spatial targeting of secretory vesicles[J]. Traffic, 2011, 12(11):1537-1551. [49] Chebli Y, Geitmann A. Mechanical principles governing pollen tube growth[J]. Functional Plant Science and Biotechnology, 2007, 1(2):232-245. [50] Geitmann A, Ortega JK. Mechanics and modeling of plant cell growth[J]. Trends in Plant Science, 2009, 14(9):467-478. [51] Hepler PK, Vidali L, Cheung AY. Polarized cell growth in higher plants[J]. Annual Review of Cell and Developmental Biology, 2001, 17(1):159-187. [52] Kost B. Spatial control of Rho(Rac-Rop)signaling in tip-growing plant cells[J]. Trends in Cell Biology, 2008, 18(3):119-127. [53] Bove J, Vaillancourt B, Kroeger J, et al. Magnitude and direction of vesicle dynamics in growing pollen tubes using spatiotemporal image correlation spectroscopy and fluorescence recovery after photobleaching[J]. Plant Physiology, 2008, 147(4):1646-1658. [54] Knight JB, Vishwanath A, Brody JP, et al. Hydrodynamic focusing on a silicon chip:mixing nanoliters in microseconds[J]. Physical Review Letters, 1998, 80(17):3863-3866. [55] Kürsten D, Cao J, Funfak A, et al. Cultivation of Chlorella vulgaris in microfluid segments and microtoxicological determination of their sensitivity against CuCl2 in the nanoliter range[J]. Engineering in Life Sciences, 2011, 11(6):580-587. [56] Barile F, Dierickx P, Kristen U. In vitro cytotoxicity testing for prediction of acute human toxicity[J]. Cell biology and toxicology, 1994, 10(3):155-162. [57] Lee CC, Sui G, Elizarov A, et al. Multistep synthesis of a radiolabeled imaging probe using integrated microfluidics[J]. Science, 2005, 310(5755):1793-1796. [58] Ma B, Zhang G, Qin J, et al. Characterization of drug metabolites and cytotoxicity assay simultaneously using an integrated microfluidic device[J]. Lab on a Chip, 2009, 9(2):232-238. [59] Kirkness EF. Targeted sequencing with microfluidics[J]. Nature Biotechnology, 2009, 27(11):998-999. [60] Park ES, Brown AC, Difeo MA, et al. Continuously perfused, non-cross-contaminating microfluidic chamber array for studying cellular responses to orthogonal combinations of matrix and soluble signals[J]. Lab on a Chip, 2010, 10(5):571-580. [61] Ju JI, Ko JM, Kim SH, et al. Soft material-based microculture system having air permeable cover sheet for the protoplast culture of Nicotiana tabacum[J]. Bioprocess and Biosystems Engineering, 2006, 29(3):163-168. [62] Negrutiu I, De Brouwer D, Watts J, et al. Fusion of plant protoplasts:a study using auxotrophic mutants of Nicotiana plumbaginifolia, Viviani[J]. Theoretical and Applied Genetics, 1986, 72(2):279-286. [63] Tomos AD, Leigh RA. The pressure probe:a versatile tool in plant cell physiology[J]. Annual Review of Plant Biology, 1999, 50(1):447-472. [64] Wang L, Hukin D, Pritchard J, et al. Comparison of plant cell turgor pressure measurement by pressure probe and micromanipulation[J]. Biotechnology Letters, 2006, 28(15):1147-1150. [65] Cosgrove DJ. Wall extensibility:its nature, measurement and relationship to plant cell growth[J]. New Phytologist, 1993, 124(1):1-23. [66] Routier-Kierzkowska AL, Weber A, Kochova P, et al. Cellular force microscopy for in vivo measurements of plant tissue mechanics[J]. Plant Physiology, 2012, 158(4):1514-1522. [67] Wei C, Lintilhac LS, Lintilhac PM. Loss of stability, pH, and the anisotropic extensibility of Chara cell walls[J]. Planta, 2006, 223(5):1058-1067. [68] Nezhad AS, Naghavi M, Packirisamy M, et al. Quantification of the Young’s modulus of the primary plant cell wall using Bending-Lab-On-Chip(BLOC)[J]. Lab on a Chip, 2013, 13(13):2599-2608. [69] Jiang H, Xu Z, Aluru MR, et al. Plant chip for high-throughput phenotyping of Arabidopsis[J]. Lab on a Chip, 2014, 14(7):1281-1293. [70] Uthayakumaran S, Zhao F, Sivri D, et al. Defect identification in wheat grain by micro-fluidic electrophoresis:sulfur deficiency and bug damage[J]. Cereal Chemistry, 2007, 84(4):301-303. [71] Zhang B, Luo Y, Pearlstein AJ, et al. Fabrication of biomimetically patterned surfaces and their application to probing plant-bacteria interactions[J]. Acs Applied Materials & Interfaces, 2014, 6(15):12467-12478. |