生物技术通报 ›› 2022, Vol. 38 ›› Issue (7): 194-204.doi: 10.13560/j.cnki.biotech.bull.1985.2021-1040
收稿日期:
2021-08-15
出版日期:
2022-07-26
发布日期:
2022-08-09
作者简介:
陆新华,女,博士,副研究员,研究方向:纳米生物技术在作物上的应用;E-mail: 基金资助:
LU Xin-hua(), SUN De-quan, ZHANG Xiu-mei()
Received:
2021-08-15
Published:
2022-07-26
Online:
2022-08-09
摘要:
随着纳米生物技术的快速发展,以纳米材料作为基因载体在植物细胞转导研究中取得了初步进展。本研究制备了两种尺寸的介孔硅纳米颗粒,氨基修饰后对其进行表征,并负载含smGFP基因的质粒DNA对拟南芥原生质体进行细胞转导。结果表明,直径约20 nm的氨基化介孔硅纳米颗粒(Am-MSN-20)呈类球形,花形结构的氨基化介孔硅纳米颗粒(Am-MSN-50)直径约50 nm,两者均带正电荷。Am-MSN-50结合DNA的能力高于Am-MSN-20,两种纳米载体都表现出了良好的稳定性,能够保护负载的pDNA不被细胞核酸酶降解,并且对原生质体没有毒害作用。与Am-MSN-20相比较,Am-MSN-50具备更高的转导效率。本研究表明,氨基修饰的MSNs有望成为一种安全高效的新型植物基因载体。
陆新华, 孙德权, 张秀梅. 介孔硅纳米粒作为植物细胞转基因载体的研究[J]. 生物技术通报, 2022, 38(7): 194-204.
LU Xin-hua, SUN De-quan, ZHANG Xiu-mei. Genetic Transformation of Plant Cells Mediated by Mesoporous Silica Nanoparticles[J]. Biotechnology Bulletin, 2022, 38(7): 194-204.
图1 不同纳米材料透射电镜图 A:直径为20 nm MSN;B:氨基修饰的直径为20 nm的MSN;C:直径为50 nm MSN;D:氨基修饰的直径为50 nm的MSN
Fig.1 TEM images of different nanoparticles A:MSN-20;B:Am-MSN-20;C:MSN-50;D:Am-MSN-50
图2 不同纳米材料红外光谱图 A:直径为20 nm MSN;B:氨基修饰直径为20 nm的MSN;C:直径为50 nm MSN;D:氨基修饰的直径为50 nm的MSN
Fig.2 FTIR spectra of of different nanoparticles A:MSN-20;B:Am-MSN-20;C:MSN-50;D:Am-MSN-50
图4 两种Am-MSNs与DNA结合的凝胶阻滞实验 A:Am-MSN-20/pDNA;B:Am-MSN-50/pDNA。1:纯pDNA(阳性对照);2:Am-MSNs(阴性对照),3-8:分别代表Am-MSNs与pDNA的质量比为5∶1,10∶1,20∶1,30∶1,40∶1和 50∶1时的DNA结合情况
Fig.4 Agarose gel electrophoresis assay of Am-MSNs/DNA complexes A:Am-MSN-20/pDNA;B:Am-MSN-50/pDNA;1:free pDNA(positive CK);2:Am-MSNs(negative CK);3-8 presented that the mass ratios of Am-MSNs to pDNA are 5∶1,10∶1,20∶1,30∶1,40∶1 and 50∶1,respectively
图5 氨基化硅纳米粒对pDNA的酶切保护 1:pDNA;2:pDNA + DNase I;3:Am-MSN-20/pDNA;4:Am-MSN-20/pDNA + DNase I;5:Am-MSN-50/pDNA;6:Am-MSN-50/pDNA + DNase I
Fig.5 Protection of Am-MSNs against pDNA digestion 1:free pDNA;2:free pDNA + DNase I;3:Am-MSN-20/pDNA;4:Am-MSN-20/pDNA + DNase I;5:Am-MSN-50/pDNA;6:Am-MSN-50/pDNA + DNase I
图6 氨基化硅纳米粒对拟南芥原生质体的细胞毒性评价 A:氨基修饰的直径为20 nm的MSN;B:氨基修饰的直径为50 nm的MSN
Fig.6 Assessment of Am-MSNs cytotoxicity to A. thaliana mesophyll protoplasts A:Am-MSN-20;B:Am-MSN-50
图7 氨基化硅纳米粒介导的smGFP质粒在拟南芥原生质体中的瞬时表达 A:质粒DNA;B:氨基修饰的MSN;C:质粒DNA与PEG混合同;D:氨基修饰直径20 nm MSN与质粒DNA混合;E:氨基修饰直径20 nm MSN与质粒DNA混合;比例尺= 5 µm
Fig.7 Am-MSN-mediated transient smGFP expression in the protoplasts of A. thaliana A:pDNA only;B:Am-MSNs;C:pDNA/PEG;D:pDNA/Am-MSN-20;E:pDNA/Am-MSN-50. Scale bars=5 µm
图8 转化48 h后 smGFP在拟南芥原生质体中的基因表达评价 图中误差线表示标准偏差。不同小写字母表示差异达到显著水平(P<0.05)
Fig.8 Assessment of smGFP gene expression in the proto-plasts of A. thaliana 48 h post-transformation The error line in the figure refers to the standard deviation. Different lowercase letters indicate a significant difference(P < 0.05)
[1] | 马海燕, 袁雪, 刘丕庆. 农杆菌介导植物原位转化的研究进展[J]. 分子植物育种, 2019, 17(23):7764-7769. |
Ma HY, Yuan X, Liu PQ. The research progress of Agrobacterium-mediated in planta genetic transformation[J]. Mol Plant Breed, 2019, 17(23):7764-7769. | |
[2] |
Wang Y, Cao LM, Zhang YX, et al. Map-based cloning and characterization of BPH29, a B3 domain-containing recessive gene conferring brown planthopper resistance in rice[J]. J Exp Bot, 2015, 66(19):6035-6045.
doi: 10.1093/jxb/erv318 URL |
[3] | 王军, 付爱根, 徐敏, 等. 基因枪法在遗传转化中的研究进展[J]. 基因组学与应用生物学, 2018, 37(1):459-468. |
Wang J, Fu AG, Xu M, et al. Research progress of gene Gun bombardment in genetic transformation[J]. Genom Appl Biol, 2018, 37(1):459-468. | |
[4] |
Singh RK, Prasad M. Advances in Agrobacterium tumefaciens-mediated genetic transformation of graminaceous crops[J]. Protoplasma, 2016, 253(3):691-707.
doi: 10.1007/s00709-015-0905-3 URL |
[5] | 赵露, 李俊, 周新芳, 等. 白屈菜CmFAD2基因的克隆及植物转化载体构建[J]. 分子植物育种, 2020, 18(6):1876-1882. |
Zhao L, Li J, Zhou XF, et al. Cloning of CmFAD2 gene from Chelidonium majus L. and construction of plant transformation vector[J]. Mol Plant Breed, 2020, 18(6):1876-1882. | |
[6] |
Khalaj-Kondori M, Sadeghizadeh M, Behmanesh M, et al. Chemical coupling as a potent strategy for preparation of targeted bacteriophage-derived gene nanocarriers into eukaryotic cells[J]. J Gene Med, 2011, 13(11):622-631.
doi: 10.1002/jgm.1617 URL |
[7] |
Kwak SY, Lew TTS, Sweeney CJ, et al. Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers[J]. Nat Nanotechnol, 2019, 14(5):447-455.
doi: 10.1038/s41565-019-0375-4 URL |
[8] | 高鸿飞, 范世航, 刘婧琳, 等. 纳米材料在植物遗传转化中的应用[J]. 中国油料作物学报, 2021, 43(1):64-69. |
Gao HF, Fan SH, Liu JL, et al. Application of nanomaterials in plant genetic transformation[J]. Chin J Oil Crop Sci, 2021, 43(1):64-69. | |
[9] |
Lv ZY, Jiang R, Chen JF, et al. Nanoparticle-mediated gene transformation strategies for plant genetic engineering[J]. Plant J, 2020, 104(4):880-891.
doi: 10.1111/tpj.14973 URL |
[10] |
孙敬爽, 胡瑞阳, 郑广顺, 等. 纳米载体介导的植物遗传转化研究现状和前景[J]. 生物技术通报, 2021, 37(2):162-173.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0521 |
Sun JS, Hu RY, Zheng GS, et al. Research progress and prospect of plant genetic transformation mediated by nano-gene vector[J]. Biotechnol Bull, 2021, 37(2):162-173. | |
[11] |
Pasupathy K, Lin SJ, Hu Q, et al. Direct plant gene delivery with a poly(amidoamine)dendrimer[J]. Biotechnol J, 2008, 3(8):1078-1082.
doi: 10.1002/biot.200800021 URL |
[12] | Eggenberger K, Frey N, Zienicke B, et al. Use of nanoparticles to study and manipulate plant cells[J]. Adv Eng Mater, 2010, 12(9):B406-B412. |
[13] | Fu YQ, Li LH, Wang PW, et al.. Delivering DNA into plant cell by gene carriers of ZnS nanoparticles[J]. Chem Res Chin Univ, 2012(4):672-676. |
[14] | 贾艳晶, 郭鑫, 成仿云. 纳米磁珠介导牡丹花粉转基因技术的初步分析[J]. 分子植物育种, 2020, 18(8):2577-2584. |
Jia YJ, Guo X, Cheng FY. Preliminary analysis on transgenic technology of pollen-mediated by magnetic nanoparticles in tree peony[J]. Mol Plant Breed, 2020, 18(8):2577-2584. | |
[15] |
Chang FP, Kuang LY, Huang CA, et al. A simple plant gene delivery system using mesoporous silica nanoparticles as carriers[J]. J Mater Chem B, 2013, 1(39):5279-5287.
doi: 10.1039/c3tb20529k URL |
[16] |
Fu YQ, Li LH, Wang H, et al. Silica nanoparticles-mediated stable genetic transformation in Nicotiana tabacum[J]. Chem Res Chin Univ, 2015, 31(6):976-981.
doi: 10.1007/s40242-015-5088-0 URL |
[17] |
Torney F, Trewyn BG, Lin VSY, et al. Mesoporous silica nanoparticles deliver DNA and chemicals into plants[J]. Nat Nanotechnol, 2007, 2(5):295-300.
doi: 10.1038/nnano.2007.108 URL |
[18] |
Martin-Ortigosa S, Peterson DJ, Valenstein JS, et al. Mesoporous silica nanoparticle-mediated intracellular cre protein delivery for maize genome editing via loxP site excision[J]. Plant Physiol, 2014, 164(2):537-547.
doi: 10.1104/pp.113.233650 pmid: 24376280 |
[19] |
Zolghadrnasab M, Mousavi A, Farmany A, et al. Ultrasound-mediated gene delivery into suspended plant cells using polyethyleneimine-coated mesoporous silica nanoparticles[J]. Ultrason Sonochem, 2021, 73:105507.
doi: 10.1016/j.ultsonch.2021.105507 URL |
[20] |
Mitter N, Worrall EA, Robinson KE, et al. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses[J]. Nat Plants, 2017, 3:16207.
doi: 10.1038/nplants.2016.207 pmid: 28067898 |
[21] | Demirer GS, Zhang H, Goh NS, et al. Carbon nanocarriers deliver siRNA to intact plant cells for efficient gene knockdown[J]. Sci Adv, 2020, 6(26):eaaz0495. |
[22] |
Davis SJ, Vierstra RD. Soluble, highly fluorescent variants of green fluorescent protein(GFP)for use in higher plants[J]. Plant Mol Biol, 1998, 36(4):521-528.
pmid: 9484447 |
[23] |
Yi ZF, Hussain HI, Feng CF, et al. Functionalized mesoporous silica nanoparticles with redox-responsive short-chain gatekeepers for agrochemical delivery[J]. ACS Appl Mater Interfaces, 2015, 7(18):9937-9946.
doi: 10.1021/acsami.5b02131 URL |
[24] |
Yoo SD, Cho YH, Sheen J. Arabidopsis mesophyll protoplasts:a versatile cell system for transient gene expression analysis[J]. Nat Protoc, 2007, 2(7):1565-1572.
doi: 10.1038/nprot.2007.199 URL |
[25] | Zhai Z, Jung HI, Vatamaniuk OK. Isolation of protoplasts from tissues of 14-day-old seedlings of Arabidopsis thaliana[J]. J Vis Exp, 2009(30):1149. |
[26] |
Larkin PJ. Purification and viability determinations of plant protoplasts[J]. Planta, 1976, 128(3):213-216.
doi: 10.1007/BF00393231 pmid: 24430749 |
[27] |
Pereira C, Alves C, Monteiro A, et al. Designing novel hybrid materials by one-pot co-condensation:from hydrophobic mesoporous silica nanoparticles to superamphiphobic cotton textiles[J]. ACS Appl Mater Interfaces, 2011, 3(7):2289-2299.
doi: 10.1021/am200220x URL |
[28] | Hussain HI, Yi ZF, Rookes JE, et al. Mesoporous silica nanoparticles as a biomolecule delivery vehicle in plants[J]. J Nanoparticle Res, 2013, 15(6):1-15. |
[29] |
Barabanova AI, Pryakhina TA, Afanas’ev ES, et al. Anhydride modified silica nanoparticles:preparation and characterization[J]. Appl Surf Sci, 2012, 258(7):3168-3172.
doi: 10.1016/j.apsusc.2011.11.057 URL |
[30] | 杨威, 徐本梁, 严顺洪, 等. 纳米二氧化硅粒径尺寸调控及其对表面化学修饰的影响研究[J]. 硅酸盐通报, 2020, 39(7):2321-2325. |
Yang W, Xu BL, Yan SH, et al. Regulation of nano SiO2 and the effect of particle size on surface modification[J]. Bull Chin Ceram Soc, 2020, 39(7):2321-2325. | |
[31] |
Zhu JH, Niu YM, Li Y, et al. Stimuli-responsive delivery vehicles based on mesoporous silica nanoparticles:recent advances and challenges[J]. J Mater Chem B, 2017, 5(7):1339-1352.
doi: 10.1039/C6TB03066A URL |
[32] | 公绪强, 王雅祺, 张利. 改性纳米二氧化硅增强增韧聚对苯二甲酸丁二醇酯[J]. 材料导报, 2016, 30(4):52-56. |
Gong XQ, Wang YQ, Zhang L. Toughening and reinforcing polybutylene terephthalate nanocomposites by modified silica[J]. Mater Rev, 2016, 30(4):52-56. | |
[33] |
Chen YP, Wu SH, Chen IC, et al. Impacts of cross-linkers on biological effects of mesoporous silica nanoparticles[J]. ACS Appl Mater Interfaces, 2017, 9(11):10254-10265.
doi: 10.1021/acsami.7b00240 URL |
[34] | 张广宇, 程冉, 王道, 等. 氨基改性纳米SiO2接枝棉织物防紫外超疏水整理[J]. 南通大学学报:自然科学版, 2020, 19(4):69-74. |
Zhang GY, Cheng R, Wang D, et al. Anti-ultraviolet and super-hydrophobic finishing of amino-modified nano-SiO2 grafted cotton fabric[J]. J Nantong Univ Nat Sci Ed, 2020, 19(4):69-74. | |
[35] |
He XX, Wang KM, Tan WH, et al. A novel gene carrier based on amino-modified silica nanoparticles[J]. Chin Sci Bull, 2003, 48(3):223-228.
doi: 10.1007/BF03183287 URL |
[36] | Li X, Zhang JX, Gu HC. Study on the adsorption mechanism of DNA with mesoporous silica nanoparticles in aqueous solution[J]. Langmuir 2012, 28, 2827-2834. |
[37] | Gao F, Botella P, Corma A, et al. Monodispersed mesoporous silica nanoparticles with very large pores for enhanced adsorption and release of DNA. J Phys Chem B 2009, 113, 1796-1804. |
[38] | Kukowska-Latallo JF, Bielinska AU, Johnson J, et al. Efficient transfer of genetic material into mammalian cells using Starburst polyamidoamine dendrimers[J]. Pro Natl Acad Sci, 1996, 93 |
10):4897-4902. | |
[39] | 侯欣欣, 王静, 侯听, 等. 磁性白蛋白纳米球作为基因载体的研究[J]. 医学研究杂志, 2018, 47(2):168-171, 176. |
Hou XX, Wang J, Hou T, et al. Research of magnetic albumin nanoparticles as gene vector[J]. J Med Res, 2018, 47(2):168-171, 176. | |
[40] |
Chang JH, Tsai PH, Chen W, et al. Dual delivery of siRNA and plasmid DNA using mesoporous silica nanoparticles to differentiate induced pluripotent stem cells into dopaminergic neurons[J]. J Mater Chem B, 2017, 5(16):3012-3023.
doi: 10.1039/C7TB00351J URL |
[41] | 徐晓薇. 基于二氧化硅纳米粒子的载药/基因复合物促骨再生作用的研究[D]. 长春: 吉林大学, 2015. |
Xu XW. Study on silica-based drug/gene-loaded composites for promting bone regeneration[D]. Changchun: Jilin University, 2015. | |
[42] | Buchman JT, Elmer WH, Ma CX, et al. Chitosan-coated mesoporous silica nanoparticle treatment of Citrullus lanatus(watermelon):enhanced fungal disease suppression and modulated expression of stress-related genes[J]. ACS Sustainable Chem Eng, 2019, 7 |
24):19649-19659. | |
[43] |
Hajiahmadi Z, Shirzadian-Khorramabad R, Kazemzad M, et al. Enhancement of tomato resistance to Tuta absoluta using a new efficient mesoporous silica nanoparticle-mediated plant transient gene expression approach[J]. Sci Hortic, 2019, 243:367-375.
doi: 10.1016/j.scienta.2018.08.040 URL |
[44] |
Yang H, Zheng K, Zhang ZM, et al. Adsorption and protection of plasmid DNA on mesoporous silica nanoparticles modified with various amounts of organosilane[J]. J Colloid Interface Sci, 2012, 369(1):317-322.
doi: 10.1016/j.jcis.2011.12.043 URL |
[45] |
孙国胜, 杨宇, 许可翠, 等. 纳米磁性颗粒介导的辣椒遗传转化体系建立[J]. 核农学报, 2021, 35(6):1307-1312.
doi: 10.11869/j.issn.100-8551.2021.06.1307 |
Sun GS, Yang Y, Xu KC, et al. Establishment of magnetic nanoparticles-mediated genetic transformation system in Capsicum annuum L[J]. J Nucl Agric Sci, 2021, 35(6):1307-1312. | |
[46] | 刘俊. 基于纳米颗粒的植物转基因及其检测研究[D]. 长沙: 湖南大学, 2005. |
Liu J. The study on gene transformation and detection mediated by nanoparticles in plant[D]. Changsha: Hunan University, 2005. | |
[47] |
Yin H, Kanasty RL, Eltoukhy AA, et al. Non-viral vectors for gene-based therapy[J]. Nat Rev Genet, 2014, 15(8):541-555.
doi: 10.1038/nrg3763 URL |
[48] |
Kim MH, Na HK, Kim YK, et al. Facile synthesis of monodispersed mesoporous silica nanoparticles with ultralarge pores and their application in gene delivery[J]. ACS Nano, 2011, 5(5):3568-3576.
doi: 10.1021/nn103130q URL |
[49] |
Zhang Y, Su JB, Duan S, et al. A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes[J]. Plant Methods, 2011, 7(1):30.
doi: 10.1186/1746-4811-7-30 pmid: 21961694 |
[50] |
Hajiahmadi Z, Shirzadian-Khorramabad R, Kazemzad M, et al. A novel, simple, and stable mesoporous silica nanoparticle-based gene transformation approach in Solanum lycopersicum[J]. 3 Biotech, 2020, 10(8):370.
doi: 10.1007/s13205-020-02359-2 pmid: 32832330 |
[51] |
Roy I, Ohulchanskyy TY, Bharali DJ, et al. Optical tracking of organically modified silica nanoparticles as DNA carriers:a nonviral, nanomedicine approach for gene delivery[J]. Proc Natl Acad Sci USA, 2005, 102(2):279-284.
doi: 10.1073/pnas.0408039101 URL |
[52] |
Harush-Frenkel O, Debotton N, Benita S, et al. Targeting of nanoparticles to the clathrin-mediated endocytic pathway[J]. Biochem Biophys Res Commun, 2007, 353(1):26-32.
doi: 10.1016/j.bbrc.2006.11.135 URL |
[53] |
Namgung R, Singha K, Yu MK, et al. Hybrid superparamagnetic iron oxide nanoparticle-branched polyethylenimine magnetoplexes for gene transfection of vascular endothelial cells[J]. Biomaterials, 2010, 31(14):4204-4213.
doi: 10.1016/j.biomaterials.2010.01.123 pmid: 20170956 |
[54] |
Nel AE, Mädler L, Velegol D, et al. Understanding biophysicochemical interactions at the nano-bio interface[J]. Nat Mater, 2009, 8(7):543-557.
doi: 10.1038/nmat2442 URL |
[55] |
Demirer GS, Zhang H, Matos JL, et al. High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants[J]. Nat Nanotechnol, 2019, 14(5):456-464.
doi: 10.1038/s41565-019-0382-5 pmid: 30804481 |
[56] |
Ogris M, Carlisle RC, Bettinger T, et al. Melittin enables efficient vesicular escape and enhanced nuclear access of nonviral gene delivery vectors[J]. J Biol Chem, 2001, 276(50):47550-47555.
doi: 10.1074/jbc.M108331200 pmid: 11600500 |
[57] | 史勇, 金维环, 刘姣姣, 等. 一种改良的拟南芥原生质体的制备和转化方法[J]. 生物技术, 2019, 29(2):147-152, 170. |
Shi Y, Jin WH, Liu JJ, et al. An improved method for Arabidopsis mesophyll protoplast isolation and transformation[J]. Biotechnology, 2019, 29(2):147-152, 170. | |
[58] | 丁子寒, 邱华. 纳米二氧化硅改性水性聚氨酯防水透湿涂层织物的制备及其性能[J]. 纺织学报, 2021, 42(3):130-135. |
Ding ZH, Qiu H. Preparation and performance of nano-silica modified water-based polyurethane waterproof and moisture-permeable coated fabrics[J]. J Text Res, 2021, 42(3):130-135. |
[1] | 李焕敏, 高峰涛, 李伟忠, 王金庆, 封佳丽. 天然生物质材料作为固定化载体的研究应用进展[J]. 生物技术通报, 2023, 39(7): 105-112. |
[2] | 张曼, 张叶卓, 何其邹洪, 鄂一岚, 李晔. 植物细胞壁结构及成像技术研究进展[J]. 生物技术通报, 2023, 39(7): 113-122. |
[3] | 黄文莉, 李香香, 周炆婷, 罗莎, 姚维嘉, 马杰, 张芬, 沈钰森, 顾宏辉, 王建升, 孙勃. 利用CRISPR/Cas9技术靶向编辑青花菜BoZDS[J]. 生物技术通报, 2023, 39(2): 80-87. |
[4] | 周家燕, 邹建, 陈卫英, 吴一超, 陈奚潼, 王倩, 曾文静, 胡楠, 杨军. 植物多基因干扰载体体系构建与效用分析[J]. 生物技术通报, 2023, 39(1): 115-126. |
[5] | 孙威, 张艳, 王聿晗, 徐僡, 徐小蓉, 鞠志刚. 马缨杜鹃Rd3GT1的克隆及对矮牵牛花色形成的影响[J]. 生物技术通报, 2022, 38(9): 198-206. |
[6] | 黎智康, 刘晨雪璇, 谭楚敏, 熊盛, 谢秋玲. MFG-E8作为外泌体载体蛋白的作用与功能[J]. 生物技术通报, 2022, 38(4): 288-294. |
[7] | 邹雪峰, 李铭刚, 包玲风, 陈齐斌, 赵江源, 汪林, 濮永瑜, 郝大程, 张庆, 杨佩文. 一株分泌型铁载体真菌分离鉴定及生物活性研究[J]. 生物技术通报, 2022, 38(3): 130-138. |
[8] | 杨佳慧, 孙玉萍, 陆雅宁, 刘欢, 卢存福, 陈玉珍. 拟南芥AtTERT对大肠杆菌非生物胁迫抗性的影响[J]. 生物技术通报, 2022, 38(2): 1-9. |
[9] | 刘萌萌, 韩立军, 刘宝玲, 薛金爱, 李润植. 陆地棉GhSDP1及其启动子的克隆与表达分析[J]. 生物技术通报, 2022, 38(2): 34-43. |
[10] | 党瑗, 李维, 苗向, 修宇, 林善枝. 山杏油体蛋白基因PsOLE4克隆及其调控油脂累积功能分析[J]. 生物技术通报, 2022, 38(11): 151-161. |
[11] | 吴坤坤, 徐行, 季策, 任建峰, 李伟明, 张庆华. 斑马鱼notch3基因真核表达载体的构建及其表达分析[J]. 生物技术通报, 2022, 38(1): 179-186. |
[12] | 高启禹, 徐光翠, 崔彩霞, 张文博. 微生物铁蛋白的研究进展[J]. 生物技术通报, 2022, 38(1): 269-277. |
[13] | 胡子曜, 代培红, 刘超, 玛迪娜·木拉提, 王倩, 吾尕力汗·阿不都维力, 赵燚, 孙玲, 徐诗佳, 李月. 陆地棉小GTP结合蛋白基因GhROP3的克隆、表达及VIGS载体的构建[J]. 生物技术通报, 2021, 37(9): 106-113. |
[14] | 高鹏飞, 席飞虎, 张泽宇, 胡凯强, 陈凯, 魏文桃, 丁家治, 顾连峰. 植物VIGS技术及其在林业科学中的研究进展[J]. 生物技术通报, 2021, 37(5): 141-153. |
[15] | 崔祥华, 陶南, 程波普, 赵永昌, 陈卫民, 李靖. 柱状田头菇遗传转化体系启动子的筛选[J]. 生物技术通报, 2021, 37(5): 259-266. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||