[1] Rao D, Rao KV, Reddy TP, et al. Molecular characterization, physic-ochemical properties, known and potential applications of phytases:an overview[J]. Crit Rev Biotechnol, 2009, 2:182-198. [2]Bhavsar K. Current research and future perspectives of phytase bioprocessing[J]. RSC Advances, 2014, 4(51):26677-26691. [3]Yao MZ, Zhang YH, Lu WL, et al. Phytases:crystal structures, protein engineering and potential biotechnological applications[J]. Journal of Applied Microbiology, 2012, 112(1):1-14. [4]Chen CC, Cheng KJ, Ko TP, et al. Current progresses in phytase research:three-dimensional structure and protein engineering[J]. ChemBioEng Reviews, 2015, 2(2):76-86. [5]Greiner R, Konietzny U. Update on characteristics of commercial phytases[C]. Rome:International Phytase Symposium, 2012. [6]Jain J, Singh B. Characteristics and biotechnological applications of bacterial phytases[J]. Process Biochemistry, 2016, 51(2):159-169. [7]Singh B, Kunze G, Satyanarayana T. Developments in biochemical aspects and biotechnological applications of microbial phytases[J]. Biotechnol Mol Biol Rev, 2011, 6(3):69-87. [8]Shivange A V, Schwaneberg U. Recent advances in directed phytase evolution and rational phytase engineering[M]//Directed Enzyme Evolution:Advances and Applications. Springer International Publishing, 2017:145-172. [9]Ushasree M V, Shyam K, Vidya J, et al. Microbial phytase:impact of advances in genetic engineering in revolutionizing its properties and applications[J]. Bioresour Technol, 2017, 245(ptB):1790-1799. [10]Huang H, Luo H, Yang P, et al. A novel phytase with preferable characteristics from Yersinia intermedia[J]. Biochemical and Biophysical Research Communications, 2006, 350(4):884-889. [11]Huang H, Luo H, Wang Y, et al. A novel phytase from Yersinia rohdei with high phytate hydrolysis activity under low pH and strong pepsin conditions[J]. Appl Microbiol Biotechnol, 2008, 80(3):417-426. [12]Shivange AV, Serwe A, Dennig A, et al. Directed evolution of a highly active Yersinia mollaretii phytase[J]. Appl Microbiol Biotechnol, 2012, 95(2):405-418. [13]Fu D, et al. A highly pH-stable phytase from Yersinia kristeensenii:cloning, expression, and characterization[J]. Enzyme Microb Technol, 2008, 42(6):499-505. [14]Fu D, Li Z, Huang H, et al. Catalytic efficiency of HAP phytases is determined by a key residue in close proximity to the active site[J]. Appl Microbiol Biotechnol, 2011, 90(4):1295-1302. [15]Ariza A, Moroz OV, Blagova EV, et al. Degradation of phytate by the 6-phytase from Hafnia alvei:a combined structural and solution study[J]. PLoS One, 2013, 8(5):e65062. [16]Green MR, Sambrook J. Molecular cloning:a laboratory manual[M]. New York:Cold Spring Harbor Laboratory Press, 2012. [17]Farhat A, Chouayekh H, Farhat MB, et al. Gene cloning and characterization of a thermostable phytase from Bacillus subtilis US417 and assessment of its potential as a feed additive in comparison with a commercial enzyme[J]. Molecular Biotechnology, 2008, 40(2):127. [18]Anagnostopoulos C, Spizizen J. Requirements for transformation in Bacillus subtilis[J]. J Bacteriol, 1961, 81(5):741. [19]Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4[J]. Nature, 1970, 227:680-685. [20]Zhang W, et al. Adopting selected hydrogen bonding and ionic interactions from Aspergillus fumigatus phytase structure improves the thermostability of Aspergillus niger PhyA phytase[J]. Appl Environ Microbiol, 2007, 9:3069-3076. [21]Kim MS, Lei XG. Enhancing thermostability of Escherichia coli phytase AppA2 by error-prone PCR[J]. Appl Microbiol Biotechnol, 2008, 79(1):69-75. [22]Sanchez-Romero I, Ariza A, Wilson K S, et al. Mechanism of protein kinetic stabilization by engineered disulfide crosslinks[J]. PLoS One, 2013, 8(7):e70013. [23]Tian YS, Peng RH, Xu J, et al. Semi-rational site-directed mutagenesis of phyI1s from Aspergillus niger 113 at two residue to improve its phytase activity[J]. Molecular Biology Reports, 2011, 38(2):977-982. [24]Ushasree MV, Vidya J, Pandey A. Replacement P212H altered the pH-temperature profile of phytase from Aspergillus niger NII 08121[J]. App Biochem Biotechnol, 2015, 175(6):3084-3092. [25] Mehta D, Satyanarayana T. Biochemical and molecular characteriz-ation of recombinant acidic and thermostable raw-starch hydrolys-ing α-amylase from an extreme thermophile Geobacillus thermoleov-orans[J]. J Mol Catal B Enzym, 2013, 85:229-238. [26]Boraston AB, Bolam DN, Gilbert HJ, et al, Carbohydrate-binding modules:fine-tuning polysaccharide recognition[J]. Biochemical Journal, 2004, 382(3):769-781. [27]Bo?i? N, Lon?ar N, Slavi? M?, et al. Raw starch degrading α-amylases:an unsolved riddle[J]. Amylase, 2017, 1:12-25. [28]M?ller MS, Svensson B. Structural biology of starch-degrading enzymes and their regulation[J]. Curr Opin Structural Biol, 2016, 40:33-42. [29]Cockburn D, Svensson B. Structure and functional roles of surface binding sites in amylolytic enzymes[M]. Understanding Enzymes:Function, Design, Engineering, and Analysis, Pan Stanford Publishing, 2016:267-296. [30]Mehta D, Satyanarayana T. Domain C of thermostable α-amylase of Geobacillus thermoleovorans mediates raw starch adsorption[J]. Appl Microbiol Biotechnol, 2014, 98(10):4503-4519. [31]Peng H, Zheng Y, Chen M, et al, A starch-binding domain identified in α-amylase(AmyP)represents a new family of carbohydrate-binding modules that contribute to enzymatic hydrolysis of soluble starch[J]. FEBS Letters, 2014, 588(7):1161-1167. [32]Hua YW, Chi MC, Lo HF, et al. Fusion of Bacillus stearothermop-hilus leucine aminopeptidase II with the raw-starch-binding domain of Bacillus sp. strain TS-23 α-amylase generates a chimeric enzyme with enhanced thermostability and catalytic activity[J]. J Ind Microbiol Biotechnol, 2004, 31(6):273-277. |