生物技术通报 ›› 2022, Vol. 38 ›› Issue (11): 269-276.doi: 10.13560/j.cnki.biotech.bull.1985.2022-0329
收稿日期:
2022-03-19
出版日期:
2022-11-26
发布日期:
2022-12-01
作者简介:
张晨,女,硕士研究生,研究方向:蛋白纯化;Email:基金资助:
ZHANG Chen1,2(), ZHANG Tong-tong2,3, LIU Hai-ping2,3()
Received:
2022-03-19
Published:
2022-11-26
Online:
2022-12-01
摘要:
乙烯合成酶(ethylene-forming enzyme,EFE)是潜在的乙烯生物合成关键酶,酶的高活性和高热稳定性是工业化应用的必要基础。根据进化树选取了6种乙烯合成酶候选基因,成功地进行了表达纯化并测定其活性和热稳定性。最终筛选到来源于Streptomyces bottropensis和 Streptomyces turgidiscabies的乙烯合成酶SbEFE和StEFE具有较高活性和热稳定性,酶比活分别是已报道的乙烯合成酶PsEFE的3.23和4.23倍。35℃水浴30 min后,酶活性仍可保留95.73%和88.22%,而PsEFE在相同条件下完全失活。酶动力学分析表明,SbEFE和StEFE催化反应的副产物也明显低于PsEFE。因此,SbEFE和StEFE是目前已发现的具有最高活性和热稳定性的乙烯合成酶,为深入研究乙烯合成酶的催化机制和应用工艺提供了新的基础。
张晨, 张佟佟, 刘海萍. 高活性和高热稳定性乙烯合成酶的筛选和鉴定[J]. 生物技术通报, 2022, 38(11): 269-276.
ZHANG Chen, ZHANG Tong-tong, LIU Hai-ping. Screening and Identification of Ethylene-forming Enzymes with High Activity and Thermostability[J]. Biotechnology Bulletin, 2022, 38(11): 269-276.
蛋白名称 Protein | 种属名称 Species | 蛋白分子量 Molecular weight/kD |
---|---|---|
CgEFE | Colletotrichum gloeosporioides | 46.94 |
ChEFE | Colletotrichum higginsianum | 47.00 |
GgEFE | Glomerella graminicola | 46.30 |
SbEFF | Streptomyces bottropensis | 38.52 |
StEFE | Streptomyces turgidiscabies | 38.55 |
SsvEFE | Streptomyces sviceus | 39.61 |
表1 EFE种属来源
Table 1 Species of EFEs
蛋白名称 Protein | 种属名称 Species | 蛋白分子量 Molecular weight/kD |
---|---|---|
CgEFE | Colletotrichum gloeosporioides | 46.94 |
ChEFE | Colletotrichum higginsianum | 47.00 |
GgEFE | Glomerella graminicola | 46.30 |
SbEFF | Streptomyces bottropensis | 38.52 |
StEFE | Streptomyces turgidiscabies | 38.55 |
SsvEFE | Streptomyces sviceus | 39.61 |
图2 各种属EFE酶比活的比较 误差线表示标准差,*表示差异显著(P <0.05),***表示差异极其显著(P <0.001),下同
Fig. 2 Comparison of the specific activities of EFEs from various species The error bars represent the standard deviation,* represents significant difference(P<0.05),and *** represents extremely significant difference(P<0.001),The same below
蛋白Protein | 底物 Substrate | Km/(μmol·L-1) | Kcat/min-1 | Kcat/Km /(L·μmmol-1·min-1) |
---|---|---|---|---|
PsEFE | 2-OG1 | 26.41±10.06 | 39.55±5.86 | 1.50 |
L-Arg1 | 38.18±4.79 | 35.23±1.86 | 0.92 | |
L-Arg2 | 101.30±31.60 | 0.92±0.14 | 0.009 | |
SbEFE | 2-OG1 | 116.60±23.66 | 145.20±15.33 | 1.25 |
L-Arg1 | 27.26±5.17 | 135.35±9.29 | 4.97 | |
L-Arg2 | 96.16±32.68 | 1.70±0.27 | 0.018 | |
StEFE | 2-OG1 | 261.30±192.40 | 298.78±149.68 | 1.14 |
L-Arg1 | 24.04±8.29 | 132.82±17.54 | 5.52 | |
L-Arg2 | 92.89±34.28 | 1.61±0.28 | 0.017 |
表2 SbEFE和StEFE对底物2-OG和L-Arg的动力学参数
Table 2 Kinetic parameters of SbEFE and StEFE for subs-trate 2-OG and L-Arg
蛋白Protein | 底物 Substrate | Km/(μmol·L-1) | Kcat/min-1 | Kcat/Km /(L·μmmol-1·min-1) |
---|---|---|---|---|
PsEFE | 2-OG1 | 26.41±10.06 | 39.55±5.86 | 1.50 |
L-Arg1 | 38.18±4.79 | 35.23±1.86 | 0.92 | |
L-Arg2 | 101.30±31.60 | 0.92±0.14 | 0.009 | |
SbEFE | 2-OG1 | 116.60±23.66 | 145.20±15.33 | 1.25 |
L-Arg1 | 27.26±5.17 | 135.35±9.29 | 4.97 | |
L-Arg2 | 96.16±32.68 | 1.70±0.27 | 0.018 | |
StEFE | 2-OG1 | 261.30±192.40 | 298.78±149.68 | 1.14 |
L-Arg1 | 24.04±8.29 | 132.82±17.54 | 5.52 | |
L-Arg2 | 92.89±34.28 | 1.61±0.28 | 0.017 |
图7 PsEFE,SbEFE和StEFE的酶活性曲线 A:PsEFE,SbEFE和StEFE随底物2-OG浓度变化生成乙烯的酶活曲线;B:PsEFE,SbEFE和StEFE随底物L-Arg浓度变化生成乙烯的酶活曲线;C:PsEFE,SbEFE和StEFE随底物L-Arg浓度变化生成P5C的酶活曲线
Fig. 7 Enzyme activities of PsEFE,SbEFE and StEFE A:Ethylene production by PsEFE,SbEFE and StEFE with different 2-OG concentration. B:Ethylene production by PsEFE,SbEFE and StEFE with different L-Arg concentration. C:P5C activity curve of PsEFE,SbEFE and StEFE with L-Arg concentration
图8 EFE蛋白序列比较 ▲表示参与金属螯合的氨基酸,●表示参与2-OG结合的氨基酸,★表示参与L-Arg结合的氨基酸
Fig. 8 Sequence alignment of EFEs ▲represents amino acids involved in metal chelation. ●represents amino acids involved in 2-OG binding,★represents amino acids involved in L-Arg binding
[1] | 夏春晖, 裴仁彦, 王辉, 等. 乙烯技术发展现状及展望[J]. 煤炭与化工, 2020, 43(1):131-134, 138. |
Xia CH, Pei RY, Wang H, et al. Development status and prospects of ethylene technology[J]. Coal Chem Ind, 2020, 43(1):131-134, 138. | |
[2] | Fan D, Dai DJ, Wu HS. Ethylene formation by catalytic dehydration of ethanol with industrial considerations[J]. Materials(Basel), 2012, 6(1):101-115. |
[3] |
Biale JB. Effect of emanations from several species of fungi on respiration and color development of Citrus fruits[J]. Science, 1940, 91(2367):458-459.
pmid: 17838924 |
[4] |
Schaller GE. Ethylene action in plants[J]. Ann Bot, 2007, 99(3):561.
doi: 10.1093/aob/mcm004 URL |
[5] | Wang KLC, Li H, Ecker JR. Ethylene biosynthesis and signaling networks[J]. Plant Cell, 2002, 14(Suppl):S131-S151. |
[6] |
Ghanta M, Fahey D, Subramaniam B. Environmental impacts of ethylene production from diverse feedstocks and energy sources[J]. Appl Petrochem Res, 2014, 4(2):167-179.
doi: 10.1007/s13203-013-0029-7 URL |
[7] | Dickey DS. Technology profile:‘green’ ethylene production[J]. Chemical Engineering, 2015, 122:40-47. |
[8] |
Eckert C, Xu W, Xiong W, et al. Ethylene-forming enzyme and bioethylene production[J]. Biotechnol Biofuels, 2014, 7(1):33.
doi: 10.1186/1754-6834-7-33 pmid: 24589138 |
[9] |
Fukuda H, Ogawa T, Ishihara K, et al. Molecular cloning in Escherichia coli, expression, and nucleotide sequence of the gene for the ethylene-forming enzyme of Pseudomonas syringae pv. phaseolicola PK2[J]. Biochem Biophys Res Commun, 1992, 188(2):826-832.
doi: 10.1016/0006-291X(92)91131-9 URL |
[10] |
Ishihara K, Matsuoka M, Inoue Y, et al. Overexpression and in vitro reconstitution of the ethylene-forming enzyme from Pseudomonas syringae[J]. J Ferment Bioeng, 1995, 79(3):205-211.
doi: 10.1016/0922-338X(95)90604-X URL |
[11] |
Young RE, Pratt HK, Biale JB. Identification of ethylene as a volatile product of the fungus Penicillium digitatum[J]. Plant Physiol, 1951, 26(2):304-310.
doi: 10.1104/pp.26.2.304 pmid: 16654368 |
[12] |
Lynch S, Eckert C, Yu JP, et al. Overcoming substrate limitations for improved production of ethylene in E. coli[J]. Biotechnol Biofuels, 2016, 9:3.
doi: 10.1186/s13068-015-0413-x pmid: 26734073 |
[13] |
Pirkov I, Albers E, Norbeck J, et al. Ethylene production by metabolic engineering of the yeast Saccharomyces cerevisiae[J]. Metab Eng, 2008, 10(5):276-280.
doi: 10.1016/j.ymben.2008.06.006 pmid: 18640286 |
[14] | Chen X, Liang Y, Hua J, et al. Overexpression of bacterial ethylene-forming enzyme gene in Trichoderma reesei enhanced the production of ethylene[J]. Int J Biol Sci, 2010:96-106. |
[15] |
Fukuda H, Sakai M, Nagahama K, et al. Heterologous expression of the gene for the ethylene-forming enzyme from Pseudomonas syringae in the cyanobacteriumSynechococcus[J]. Biotechnol Lett, 1994, 16(1):1-6.
doi: 10.1007/BF01022614 URL |
[16] |
Ungerer J, Tao L, Davis M, et al. Sustained photosynthetic conversion of CO2 to ethylene in recombinant cyanobacterium Synechocystis 6803[J]. Energy Environ Sci, 2012, 5(10):8998.
doi: 10.1039/c2ee22555g URL |
[17] |
Zhu T, Xie XM, Li ZM, et al. Enhancing photosynthetic production of ethylene in genetically engineered Synechocystis sp. PCC 6803[J]. Green Chem, 2015, 17(1):421-434.
doi: 10.1039/C4GC01730G URL |
[18] |
Veetil VP, Angermayr SA, Hellingwerf KJ. Ethylene production with engineered Synechocystis sp PCC 6803 strains[J]. Microb Cell Fact, 2017, 16(1):34.
doi: 10.1186/s12934-017-0645-5 URL |
[19] |
Carbonell V, Vuorio E, Aro EM, et al. Enhanced stable production of ethylene in photosynthetic cyanobacterium Synechococcus elongatus PCC 7942[J]. World J Microbiol Biotechnol, 2019, 35(5):77.
doi: 10.1007/s11274-019-2652-7 URL |
[20] | Guerrero F, Carbonell V, Cossu M, et al. Ethylene synthesis and regulated expression of recombinant protein in Synechocystis sp. PCC 6803[J]. PLoS One, 2012, 7(11):e50470. |
[21] |
Wang B, Eckert C, Maness PC, et al. A genetic toolbox for modulating the expression of heterologous genes in the cyanobacterium Synechocystis sp. PCC 6803[J]. ACS Synth Biol, 2018, 7(1):276-286.
doi: 10.1021/acssynbio.7b00297 pmid: 29232504 |
[22] |
Nagahama K, Ogawa T, Fujii T, et al. Purification and properties of an ethylene-forming enzyme from Pseudomonas syringae pv. phaseolicola PK2[J]. J Gen Microbiol, 1991, 137(10):2281-2286.
pmid: 1770346 |
[23] |
Nagahama K, Yoshino K, Matsuoka M, et al. Site-directed mutagenesis of histidine residues in the ethylene-forming enzyme from Pseudomonas syringae[J]. J Ferment Bioeng, 1998, 85(3):255-258.
doi: 10.1016/S0922-338X(97)85671-1 URL |
[24] | 苏宾宾, 张佟佟, 刘海萍. 一种高活性乙烯合成酶的鉴定和性质研究[J]. 生物学杂志, 2021, 38(4):54-58. |
Su BB, Zhang TT, Liu HP. Identification and characterization of a highly active ethylene forming enzyme[J]. J Biol, 2021, 38(4):54-58. | |
[25] |
Martinez S, Hausinger RP. Biochemical and spectroscopic characterization of the non-heme Fe(II)- and 2-oxoglutarate-dependent ethylene-forming enzyme from Pseudomonas syringae pv. phaseolicola PK2[J]. Biochemistry, 2016, 55(43):5989-5999.
pmid: 27749027 |
[26] |
Petraco NDK, Proni G, Jackiw JJ, et al. Amino acid alanine reactivity with the fingerprint reagent ninhydrin. A detailed ab initio computational study[J]. J Forensic Sci, 2006, 51(6):1267-1275.
doi: 10.1111/j.1556-4029.2006.00271.x URL |
[27] |
Ravikumar H, Devaraju KS, Shetty KT. Effect of pH on spectral characteristics of P5C-ninhydrin derivative:application in the assay of ornithine amino transferase activity from tissue lysate[J]. Indian J Clin Biochem, 2008, 23(2):117-122.
doi: 10.1007/s12291-008-0028-0 URL |
[28] |
Zhang ZH, Smart TJ, Choi H, et al. Structural and stereoelectronic insights into oxygenase-catalyzed formation of ethylene from 2-oxoglutarate[J]. PNAS, 2017, 114(18):4667-4672.
doi: 10.1073/pnas.1617760114 pmid: 28420789 |
[29] |
Martinez S, Fellner M, Herr CQ, et al. Structures and mechanisms of the non-heme Fe(II)- and 2-oxoglutarate-dependent ethylene-forming enzyme:substrate binding creates a twist[J]. J Am Chem Soc, 2017, 139(34):11980-11988.
doi: 10.1021/jacs.7b06186 pmid: 28780854 |
[30] |
Notredame C, Higgins DG, Heringa J. T-Coffee:a novel method for fast and accurate multiple sequence alignment[J]. J Mol Biol, 2000, 302(1):205-217.
doi: 10.1006/jmbi.2000.4042 pmid: 10964570 |
[31] | Robert X, Gouet P. Deciphering key features in protein structures with the new ENDscript server[J]. Nucleic Acids Res, 2014, 42(Web Server issue):W320-W324. |
[1] | 林蓉, 郑月萍, 徐雪珍, 李丹丹, 郑志富. 拟南芥ACOL8基因在乙烯合成与响应中的功能分析[J]. 生物技术通报, 2023, 39(1): 157-165. |
[2] | 王露露, 耿兴敏, 许世达. 乙烯受体在果实成熟及花衰老中的研究进展[J]. 生物技术通报, 2021, 37(3): 144-152. |
[3] | 陈春, 宿玲恰, 夏伟, 吴敬. 定向进化提高来源于Arthrobacter ramosus 的MTHase的热稳定性[J]. 生物技术通报, 2021, 37(3): 84-91. |
[4] | 王琪媛, 王甲辰, 叶磊, 姜帆. 含ACC脱氨酶的根际细菌提高植物抗盐性的研究进展[J]. 生物技术通报, 2021, 37(2): 174-186. |
[5] | 吴娇, 余桂珍, 袁航, 刘娴, 高艳秀, 龚明, 邹竹荣. 融合超嗜热菌Pyrococcus furiosus红素氧还蛋白可提高靶蛋白的热稳定性[J]. 生物技术通报, 2021, 37(10): 110-119. |
[6] | 高超, 郝孔利, 赵宇婷, 毛樱翔, 池明眼, 张杰. 一株能够降解聚乙烯的霍氏肠杆菌的鉴定及分析[J]. 生物技术通报, 2020, 36(10): 99-104. |
[7] | 孙熙麟, 蒋振彦, 刘志屹, 戴璐, 孙非, 黄伟. 氨基酸定点突变提高灵芝蛋白LZ-8热稳定性的研究[J]. 生物技术通报, 2020, 36(1): 23-28. |
[8] | 刘亚兰, 段梦洁, 林晓珊, 张毅. 聚乙烯醇降解细菌筛选及其降解特性[J]. 生物技术通报, 2019, 35(6): 91-98. |
[9] | 刘畅宇, 陈勋, 龙雨青, 陈娅, 刘湘丹, 周日宝. 乙烯生物合成及信号转导途径中介导花衰老相关基因的研究进展[J]. 生物技术通报, 2019, 35(3): 171-182. |
[10] | 王竹承, 刘辉, 李荣华, 陈新, 李欣, 路致远. 外源硫与乙烯缓解马齿苋镉胁迫的生理机制研究[J]. 生物技术通报, 2019, 35(10): 71-79. |
[11] | 华晨, 李新新, 涂涛, 杨虹, 罗会颖, 陈家明, 姚斌, 柏映国, 彭书传. 基于酶热稳定性系统计算的乳酸氧化酶热稳定性改造[J]. 生物技术通报, 2018, 34(8): 144-150. |
[12] | 窦悦, 刘美彤, 卢安娜, 吴佳洁, 王群青, 胥倩. 中介体亚基MED25调控植物激素信号转导的研究进展[J]. 生物技术通报, 2018, 34(7): 40-47. |
[13] | 袁林, 黄朝, 曾静, 郭建军, 张婷, 吕珺,. 植酸酶YiAPPA与生淀粉结合域SBD融合酶的构建及酶学性质分析[J]. 生物技术通报, 2018, 34(3): 200-207. |
[14] | 欧阳婧,孙园园,唐泽民,唐政山,李放军,杨寅柯. 慢病毒介导沉默PD-L1基因在乳腺癌细胞中的表达[J]. 生物技术通报, 2017, 33(9): 259-266. |
[15] | 曾静, 郭建军, 袁林, 杨罡, 陈俊. 极端嗜热α-淀粉酶ApkA的高温活性和热稳定性的优化研究[J]. 生物技术通报, 2017, 33(8): 192-198. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||