[1] Ellington AD, Szostak JW.In vitro selection of RNA molecules that bind specific ligands[J]. Nature, 1990, 346(6287):818. [2] White R, Rusconi C, Scardino E, et al.Generation of species cross-reactive aptamers using “toggle” SELEX[J]. Molecular Therapy, 2001, 4(6):567-573. [3] Mendonsa SD, Bowser MT.In vitro evolution of functional DNA using capillary electrophoresis[J]. J Am Chem Soc, 2004, 126(1):20-21. [4] Qian J, Lou X, Zhang Y, et al.Generation of highly specific aptamers via micromagnetic selection[J]. Anal Chem, 2009, 81(13):5490-5495. [5] Lee JF, Stovall GM, Ellington AD.Aptamer therapeutics advance[J]. Curr Opin Chem Biol, 2006, 10(3):282-289. [6] Ulrich H, Magdesian MH, Alves MJM, et al.In vitro selection of RNA aptamers that bind to cell adhesion receptors of trypanosoma cruzi and inhibit cell invasion[J]. J Biol Chem, 2002, 277(23):20756-20762. [7] Bagalkot V, Zhang L, Levy-Nissenbaum E, et al.Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer[J]. Nano Lett, 2007, 7(10):3065-3070. [8] Tang Z, Shangguan D, Wang K, et al.Selection of aptamers for molecular recognition and characterization of cancer cells[J]. Anal Chem, 2007, 79(13):4900-4907. [9] Breaker RR, Joyce GF.A DNA enzyme that cleaves RNA[J]. Chemistry and Biology, 1994, 1(4):223-229. [10] Zheng H, Shabalin IG, Handing KB, et al.Magnesium-binding architectures in RNA crystal structures:validation, binding preferences, classification and motif detection[J]. Nucleic Acids Res, 2015, 43(7):3789-3801. [11] Li J, Zheng W, Kwon AH, et al.In vitro selection and characteriza-tion of a highly efficient Zn(II)-dependent RNA-cleaving deoxyribozyme[J]. Nucleic Acids Res, 2000, 2:481-488. [12] Ali MM, Aguirre SD, Lazim H, et al.Fluorogenic DNAzyme probes as bacterial indicators[J]. Angew Chem Int Ed Engl, 2011, 50(16):3751-3754. [13] Ye S, Guo Y, Xiao J, et al.A sensitive SERS assay of L-histidine via a DNAzyme-activated target recycling cascade amplification strategy[J]. Chem Commun, 2013, 49(35):3643-3645. [14] Kolb HC, Finn MG, Sharpless KB.Click chemistry:diverse chemical function from a few good reactions[J]. Cheminform, 2001, 32(35):2004-2021. [15] Ge C, Luo Q, Wang D, et al.Colorimetric detection of copper(II)ion using click chemistry and hemin/G-quadruplex horseradish peroxidase-mimicking DNAzyme[J]. Anal Chem, 2014, 86(13):6387-6392. [16] Shen Q, Li W, Tang S, et al.A simple “clickable” biosensor for colorimetric detection of copper(II)ions based on unmodified gold nanoparticles[J]. Biosens Bioelectron, 2013, 1:663-668. [17] Stobiecka M, Molinero AA, Chałupa A, et al.Mercury/Homocyste-ine ligation-induced ON/OFF-switching of a T-T mismatch-based oligonucleotide molecular beacon[J]. Analytical Ahemistry, 2012, 84(11):4970-4978. [18] Li T, Shi L, Wang E, et al.Silver-ion-mediated DNAzyme switch for the ultrasensitive and selective colorimetric detection of aqueous Ag+ and cysteine[J]. Chemistry, 2010, 15(14):3347-3350. [19] Dirks RM, Pierce NA.Triggered amplification by hybridization chain reaction[J]. Proc Natl Acad Sci USA, 2004, 101(43):15275-15278. [20] Zhang DY, Winfree E.Control of DNA strand displacement kinetics using toehold exchange[J]. J Am Chem Soc, 2009, 131(47):17303. [21] Xia F, White RJ, Zuo X, et al.An electrochemical supersandwich assay for sensitive and selective DNA detection in complex matrices[J]. J Am Chem Soc, 2010, 41:14346-14348. [22] Chen X, Lin Y-H, Li J, et al.A simple and ultrasensitive electrochemical DNA biosensor based on DNA concatamers[J]. Chem Commun, 2011, 47(44):12116-12118. [23] Notomi T, Okayama H, Masubuchi H, et al.Loop-mediated isothermal amplification of DNA[J]. Nucleic Acids Res, 2000, 28(12):e63-e63. [24] Tomita N, Mori Y, Kanda H, et al.Loop-mediated isothermal amplification(LAMP)of gene sequences and simple visual detection of products[J]. Nature Protocols, 2008, 3(5):877. [25] Fang X, Chen H, Yu S, et al.Predicting viruses accurately by a multiplex microfluidic loop-mediated isothermal amplification chip[J]. Anal Chem, 2010, 83(3):690-695. [26] Tanner NA, Zhang Y, Evans Jr TC.Simultaneous multiple target detection in real-time loop-mediated isothermal amplification[J]. Biotechniques, 2012, 53(2):81-89. [27] Chen Y, Cheng N, Xu Y, et al.Point-of-care and visual detection of P. aeruginosa and its toxin genes by multiple LAMP and lateral flow nucleic acid biosensor[J]. Biosens Bioelectron, 2016, 81:317-323. [28] Vincent M, Xu Y, Kong H.Helicase-dependent isothermal DNA amplification. EMBO Rep. 5:795-800[J]. Embo Reports, 2004, 5(8):795-800. [29] Kolm C, Mach R, Krska R, et al.A rapid DNA lateral flow test for the detection of transgenic maize by isothermal amplification of the 35S promoter[J]. Analytical Methods, 2014, 7(1):129-134. [30] Tong Y, Lemieux B, Kong H.Multiple strategies to improve sensitivity, speed and robustness of isothermal nucleic acid amplification for rapid pathogen detection[J]. Bmc Biotechnology, 2011, 11(1):50. [31] Piepenburg O, Williams CH, Stemple DL, et al.DNA detection using recombination proteins[J]. PLoS Biol, 2006, 7:e204. [32] Tu PA, Shiu JS, Lee SH, et al.Development of a recombinase polymerase amplification lateral flow dipstick(RPA-LFD)for the field diagnosis of caprine arthritis-encephalitis virus(CAEV)infection[J]. J Virol Methods, 2017, 243:98-104. [33] Ahmed A, Linden HVD, Hartskeerl RA.Development of a recombinase polymerase amplification assay for the detection of pathogenic leptospira[J]. Int J Environ Res Public Health, 2014, 11(5):4953-4964. [34] Fang R, Li X, Hu L, et al.Cross-priming amplification for rapid detection of Mycobacterium tuberculosis in sputum specimens[J]. J Clin Microbiol, 2009, 47(3):845-847. [35] Wang Y, Wang Y, Zhang L, et al.Visual and multiplex detection of nucleic acid sequence by multiple cross displacement amplification coupled with gold nanoparticle-based lateral flow biosensor[J]. Sensors and Actuators B:Chemical, 2016, 241:1283-1293. [36] He Y, Zeng K, Zhang S, et al.Visual detection of gene mutations based on isothermal strand-displacement polymerase reaction and lateral flow strip[J]. Biosens Bioelectron, 2012, 31(1):310-315. [37] Xu W, Wang C, Zhu P, et al.Real-time quantitative nicking endonuclease-mediated isothermal amplification with small molecular beacons[J]. Analyst, 2016, 141(8):2542-2552. [38] Compton J.Nucleic acid sequence-based amplification[J]. Nature, 1991, 350(6313):91-92. [39] van Deursen PB, Gunther AW, Spaargaren-van Riel CC, et al. A novel quantitative multiplex NASBA method:application to measuring tissue factor and CD14 mRNA levels in human monocytes[J]. Nucleic Acids Res, 1999, 27(17):e15-i. [40] Greijer AE, Adriaanse HM, Dekkers CA, et al.Multiplex real-time NASBA for monitoring expression dynamics of human cytomegalovirus encoded IE1 and pp67 RNA[J]. Journal of Clinical Virology, 2002, 24(1):57-66. [41] Kaocharoen S, Wang B, Tsui KM, et al.Hyperbranched rolling circle amplification as a rapid and sensitive method for species identification within the Cryptococcus species complex[J]. Electrophoresis, 2008, 29(15):3183-3191. [42] Zhu X, Feng C, Zhang B, et al.A netlike rolling circle nucleic acid amplification technique[J]. Analyst, 2015, 140(1):74-78. [43] Lizardi PM, Huang X, Zhu Z, et al.Mutation detection and single-molecule counting using isothermal rolling-circle amplification[J]. Nature Genetics, 1998, 19(3):225. [44] Van Ness J, Van Ness LK, Galas DJ.Isothermal reactions for the amplificmation of oligonucleotides[J]. Proc Natl Acad Sci, 2003, 100(8):4504-4509. [45] Wang H, Wang H, Duan X, et al.Sensitive detection of mRNA by using specific cleavage-mediated isothermal exponential amplification reaction[J]. Sensors and Actuators B:Chemical, 2017, 252:215-221. [46] Walker GT, Fraiser MS, Schram JL, et al.Strand displacement amplification—an isothermal, in vitro DNA amplification technique[J]. Nucleic Acids Res, 1992, 20(7):1691-1696. [47] He JL, Wu ZS, Zhou H, et al.Fluorescence aptameric sensor for strand displacement amplification detection of cocaine[J]. Anal Chem, 2010, 82(4):1358-1364. [48] Dickinson LT, Mah DC, Poirier RT, et al.Genomic DNA detection using cycling probe technology and capillary gel electrophoresis with laser-induced fluorescence[J]. Molecular & Cellular Probes, 2004, 18(5):341. [49] Bollum F, Potter VR.Incorporation of thymidine into deoxyribonucleic acid by enzymes from rat tissues[J]. J Biology Chemistry. 1958, 233(2):478-482. [50] Liu Z, Li W, Nie Z, et al.Randomly arrayed G-quadruplexes for label-free and real-time assay of enzyme activity[J]. Chem Commun, 2014, 50(52):6875-6878. [51] Clegg RM.Fluorescence resonance energy transfer[J]. Current Opinion in Biotechnology, 1995, 6(1):103-110. [52] Wu LL, Wang LY, Xie ZJ, et al.Colorimetric assay of l-cysteine based on peroxidase-mimicking DNA-Ag/Pt nanoclusters[J]. Sensors and Actuators B:Chemical, 2016, 235:110-116. [53] Raman CV, Krishnan KS.Polarisation of scattered light-quanta[J]. Nature, 1928, 122(3066):169. [54] Qian Y, Fan T, Yao Y, et al.Label-free and Raman dyes-free surface-enhanced Raman spectroscopy for detection of DNA[J]. Sensors and Actuators B:Chemical, 2018, 254:483-489. [55] Wang Q, Liu R, Yang X, et al.Surface plasmon resonance biosensor for enzyme-free amplified microRNA detection based on gold nanoparticles and DNA supersandwich[J]. Sensors and Actuators B:Chemical, 2016, 223:613-620. |