生物技术通报 ›› 2020, Vol. 36 ›› Issue (9): 64-74.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0746
• 根际微生物专题(专题主编:张瑞福 研究员) • 上一篇 下一篇
胡玉婕1, 朱秀玲1, 丁延芹1,2, 杜秉海1,2, 汪城墙1,2
收稿日期:
2020-06-17
出版日期:
2020-09-26
发布日期:
2020-09-30
作者简介:
胡玉婕,女,硕士研究生,研究方向:微生物分子生物学;E-mail:18854801559@163.com
基金资助:
HU Yu-jie1, ZHU Xiu-ling1, DING Yan-qin1,2, DU Bing-hai1,2, WANG Cheng-qiang1,2
Received:
2020-06-17
Published:
2020-09-26
Online:
2020-09-30
摘要: 土壤盐渍化严重制约着农业的发展,是我国亟待解决的问题之一。芽孢杆菌的抗逆性强并具有优良的耐盐特性,可缓解盐胁迫对植物造成的损伤,从而提高植株的耐盐生长能力。简要概述了芽孢杆菌的基本生物学特性与应用及其相关耐盐基因,并以盐胁迫对植物的影响为切入点,从7个方面综述了芽孢杆菌对植物的耐盐促生机制。另外也讨论了芽孢杆菌研究与应用中存在的一些问题,并展望了其作为植物根际促生细菌与植物、土壤间的相互作用,以期为盐碱地的改良、微生物菌种的应用及农作物促生方面提供理论参考。
胡玉婕, 朱秀玲, 丁延芹, 杜秉海, 汪城墙. 芽孢杆菌的耐盐促生机制研究进展[J]. 生物技术通报, 2020, 36(9): 64-74.
HU Yu-jie, ZHU Xiu-ling, DING Yan-qin, DU Bing-hai, WANG Cheng-qiang. Research Progress on Salt Tolerance and Growth-promoting Mechanism of Bacillus[J]. Biotechnology Bulletin, 2020, 36(9): 64-74.
[1] 李光超. 黄河三角洲土壤盐渍化研究综述[J]. 安徽农学通报, 2020, 26(Z1):113-115. Li GC.A summary on soil salinization of Yellow River Delta[J]. Anhui Agricilltarul Sciere Bulletin, 2020, 26(Z1):113-115. [2] 翟彩娇, 邓先亮, 张蛟, 等. 盐分胁迫对稻米品质性状的影响[J]. 中国稻米, 2020, 26(2):44-48. Zhai CJ, Deng XL, Zhang J, et al.Effects of salt stress on quality traits of japonica rice[J]. Chinese Rice, 2020, 26(2):44-48. [3] 努尔沙吾列·哈斯木汉. 新疆土壤盐渍化成因及其防治对策[J]. 科学技术创新, 2020(9):52-53. Nurshawulie KH.Causes of soil salinization in Xinjiang and its control measures[J]. Scientific and Technological Innovation, 2020(9):52-53. [4] 赵娇, 谢慧君, 张建. 黄河三角洲盐碱土根际微环境的微生物多样性及理化性质分析[J]. 环境科学, 2020, 41(3):1449-1455. Zhao J, Xie HJ, Zhang J.Microbial diversity and physicochemical properties of rhizosphere microenvironment in saline-alkali of the Yellow River Delta[J]. Environmental Science, 2020, 41(3):1449-1455. [5] Madhurankhi G, Suresh D.Plant growth-promoting rhizobacteria-alleviators of abiotic stresses in soil:a review[J]. Pedosphere, 2020, 30(1):40-61. [6] Wu TY, Wu XQ, Xu XQ, et al.Salt tolerance mechanism and species identification of the plant rhizosphere bacterium JYZ-SD2[J]. Curr Microbiol, 2020, 77(3):388-395. [7] Patel RR, Patel DD, Thakor P, et al.Alleviation of salt stress in germination of vigna radiataL. by two halotolerant Bacilli sp. isolated from saline habitats of Gujarat[J]. Plant Growth Regulation, 2015, 76(1):51-60. [8] Paul S, Aggarwal C, Thakur JK, et al.Induction of osmoadaptive mechanisms and modulation of cellular physiology help Bacillus licheniformis strain SSA61 adapt to salt stress[J]. Curr Microbiol, 2015, 70(4):610-617. [9] 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京:科学出版社, 2001. Dong XZ, Cai MY.Handbook of systematic identification of common bacteria[M]. Beijing:Science Press, 2001. [10] Marta T, Inmaculada L, Borja T, et al.Growth promotion on horticultural crops and antifungal activity of Bacillus velezensis XT1[J]. Applied Soil Ecology, 2020, 150:103453. [11] 翟世玉, 殷辉, 周建波, 等. 枯草芽孢杆菌与钾联用对黑腐皮菌的抑制作用[J]. 山西农业科学, 2019, 47(4):660-664. Zhai SY, Yin H, Zhou JB, et al.Inhibitory effect of Bacillus subtilis combined with potassium against valsa mali[J]. Journal of Shanxi Agricultural Science, 2019, 47(4):660-664. [12] Azabou MC, Gharbi Y, Medhioub I, et al.The endophytic strain Bacillus velezensis OEE1:an efficient biocontrol agent against verticillium wilt of olive and a potential plant growth promoting bacteria[J]. Biological Control, 2020, 142:104168. [13] 徐宁, 程海娇, 刘清岱, 等. 细菌Na+/H+逆向转运蛋白的研究进展[J]. 微生物学通报, 2015, 42(10):2002-2011. Xu N, Cheng HJ, Liu QD, et al.Research progress of the Na+/H+ antiporters in bacteria[J]. Microbiology China, 2015, 42(10):2002-2011. [14] Ito M, Guffanti AA, Zemsky J, Ivey DM, et al.Role of the nhaC-encoded Na+/H+ antiporter of alkaliphilic Bacillus firmus OF4[J]. Bacteriol, 1997, 179(12):3851-3857. [15] Yang LF, Zhang B, Wang L, et al.The short C-terminal hydrophilic domain of NhaH Na+/H+ antiporter from Halobacillus dabanensis with roles in resistance to salt and in pH sensing[J]. Chinese Science Bulletin, 2008, 53(21):3311-3316. [16] Fujisawa M, Kusumoto A, Wada Y, et al.NhaK, a novel monovalent cation/H+ antiporter of Bacillus subtilis[J]. Archives of Microbiology, 2005, 183(6):411-420. [17] Morino M, Suzuki T, Ito M, et al.Purification and functional reconstitution of a seven-subunit mrp-type na+/h+ antiporter[J]. Journal of Bacteriology, 2014, 196(1):28-35. [18] Cheng B, Meng Y, Cui Y, et al.Alkaline response of a halotolerant alkaliphilic halomonas strain and functional diversity of its Na+(K+)/H+ antiporters[J]. Journal of Biological Chemistry, 2016, 291(50):26056-26065. [19] 张薇, 魏海雷, 高洪文, 等. 中度嗜盐菌四氢嘧啶合成基因的克隆与功能分析[J]. 生物工程学报, 2008(3):395-400. Zhang W, Wei HL, Gao HW, et al.Cloning and characterization of ectABC cluster from Bacillus alcalophilus DTY1[J]. Chinese Journal of Biotechnology, 2008(3):395-400. [20] 鞠建松, 徐书景, 宋瑞甜, 等. 一种合成四氢嘧啶的三基因共表达载体及应用:中国, CN201710820910. 8[P].2017-09-13. Ju JS, Xu SJ, Song RT, et al. Synthesis and application of three-gene co-expression vector of tetrahydropyrimidine:China, CN201710820910. 8[P].2017-09-13. [21] Brill J, Hoffmann T, Bleisteiner M, et al.Osmotically controlled synthesis of the compatible solute proline is critical for cellular defense of Bacillus subtilis against high osmolarity[J]. Journal of Bacteriology, 2011, 193(19):5335-5346. [22] Hoffmann T, Bleisteiner M, Sappa PK, et al.Synthesis of the compatible solute proline by Bacillus subtilis:point mutations rendering the osmotically controlled proHJ promoter hyperactive[J]. Environmental Microbiology, 2017, 19(9):3700-3720. [23] Hecker M, Völker U.General stress response of Bacillus subtilis and other bacteria[J]. Advances in Microbial Physiology, 2001, 44(4):35. [24] Krüger E, Völker U, Hecker M.Stress induction of clpC in Bacillus subtilis and its involvement in stress tolerance[J]. Journal of Bacteriology, 1994, 176(11):3360-3367. [25] Hantke I, Schäfer H, Janczikowski A, et al.YocM a small heat shock protein can protect Bacillus subtilis cells during salt stress[J]. Molecular Microbiology, 2019, 111(2):423-440. [26] Hecker M, Völker U.Non-specific, general and multiple stress resistance of growth-restricted Bacillus subtilis cells by the expression of the sigmaB regulon[J]. Molecular Microbiology, 1998, 29(5):1129-1136. [27] Hahne H, Mäder U, Otto A, et al.A comprehensive proteomics and transcriptomics analysis of Bacillus subtilis salt stress adaptation[J]. Bacteriol, 2010, 192(3):870-882. [28] Kunst F, Rapoport G.Salt stress is an environmental signal affecting degradative enzyme synthesis in Bacillus subtilis[J]. Bacteriol, 1995, 177(9):2403-2407. [29] Kaiumov AR, Balaban NP, Mardanova AM, et al.Biosynthesis of the subtilisin-like serine proteinase of Bacillus intermedius under salt stress conditions[J]. Mikrobiologiia, 2006, 75(5):642. [30] Dartois V, Débarbouillé M, Kunst F, et al.Characterization of a novel member of the DegS-DegU regulon affected by salt stress in Bacillus subtilis[J]. Bacteriol, 1998, 180(7):1855-1861. [31] Kharitonova MA, Kipenskaya LV, Ilinskaya ON.Activation of biosynthesis of guanyl-specific ribonuclease secreted by Bacillus circulans under salt stress[J]. Molecular Biology, 2016, 50(6):874-879. [32] Yin L, Xue Y, Ma Y.Global microarray analysis of alkaliphilic halotolerant bacterium Bacillus sp. N16-5 salt stress adaptation[J]. PLoS One, 2015, 10(6):e0128649. [33] Lee JM, Kim YR, Kim JK, et al.Characterization of salt-tolerant beta-glucosidase with increased thermostability under high salinity conditions from Bacillus sp SJ-10 isolated from jeotgal, a traditional Korean fermented seafood[J]. Bioprocess & Biosystems Engineering, 2015, 38(7):1335-1346. [34] Zhang W, Xu H, Wu Y, et al.A new cold-adapted, alkali-stable and highly salt-tolerant esterase from Bacillus licheniformis[J]. International Journal of Biological Macromolecules, 2018, 111:1183-1193. [35] Wang TT, Ding P, Chen P, et al.Complete genome sequence of endophyte Bacillus flexus KLBMP 4941 reveals its plant growth promotion mechanism and genetic basis for salt tolerance[J]. Journal of Biotechnology, 2017, 260:38-41. [36] 金河坡. 分离于酱油渣蜡样芽胞杆菌的耐盐机制研究[D]. 广州:华南理工大学, 2016. Jin HP.Isolation and salt tolerance mechanism of Bacillus cereus from soy bean sauce residue[D]. Guangzhou:South China University of Science and Engineering, 2016. [37] 江晓慧, 高阳, 王广帅, 等. 基于FvCB模型分析盐分胁迫对棉花叶片光合作用的影响[J]. 应用生态学报, 2020, 31(5):1653-1659. Jiang XH, Gao Y, Wang GS, et al.Examining effects of salt stress on leaf photosynthesis of cotton based on the FvCB model[J]. Chinese Journal of Applied Ecology, 2020, 31(5):1653-1659. [38] 李有芳, 王石平, 丁金金, 等. 盐胁迫对小麦根系氧化损伤及细胞程序性死亡的影响[J]. 麦类作物学报, 2019, 39(11):1326-1332. Li YF, Wang YS, Ding JJ, et al.Effect of salt stress on oxidative damage and programmed cell death in wheat roots[J]. Journal of Triticeae Crops, 2019, 39(11):1326-1332. [39] 徐曼, 王茜, 王奕骁, 等. 不同盐胁迫对长穗偃麦草种子萌发及幼苗生长的影响[J]. 中国草地学报, 2020, 42(1):15-20. Xu M, Wang Q, Wang YX, et al.Effects of different salt stress on seed germination and seedling growth of elytrigia elongate[J]. Chinese Journal of Grassland, 2020, 42(1):15-20. [40] 纪超, 王晓辉, 刘训理. 盐胁迫环境下植物促生菌的作用机制研究进展[J]. 生物技术通报, 2020, 36(4):131-143. Ji C, Wang XH, Liu XL.Research progress on the action mechanism of plant growth-promoting bacteria under salt stress[J]. Biotechnology Bulletin, 2020, 36(4):131-143. [41] Woo O, Kim H, Kim JS, et al.Bacillus subtilis strain GOT9 confers enhanced tolerance to drought and salt stresses in arabidopsis thaliana and brassica campestris[J]. Plant Physiol Biochem, 2020, 148:359-367. [42] Yasmin H, Naeem S, Bakhtawar M, et al.Halotolerant rhizobacteria pseudomonas pseudoalcaligenes and Bacillus subtilis mediate systemic tolerance in hydroponically grown soybean(Glycine max L.)against salinity stress[J]. PLoS One, 2020, 15(4):e0231348. [43] 徐瑛, 郭晓农, 蔡德育. 解淀粉芽孢杆菌GB03对藜麦生长影响的初探[J]. 大麦与谷类科学, 2019, 36(5):10-14. Xu Y, Guo XN, Cai DY.Preliminary study on the effects of Bacillus amyloliquefaciens GB03 on the growth of Chenopodium quinoa Willd[J]. Barley and Cereal Sciences, 2019, 36(5):10-14. [44] Lorena RC, Erika B.Microbial volatile organic compounds produced by Bacillus amyloliquefaciens GB03 ameliorate the effects of salt stress in mentha piperita principally through acetoin emission[J]. Journal of Plant Growth Regulation, 2019. [45] 刘环. 促进玉米耐盐碱细菌的分离筛选及其作用研究[D]. 银川:北方民族大学, 2019. Liu H.Isolation and characterization of bacteria mitigating saline-alkine stress on zea mays[D]. Yinchuan:North Minzu University, 2019. [46] Chauhan PS, Lata C, Tiwari S, et al.Transcriptional alterations reveal Bacillus amyloliquefaciens-rice cooperation under salt stress[J]. Scientific Reports, 2019, 9(1):11912. [47] Chen L, Liu Y, Wu G, et al.Induced maize salt tolerance by rhizosphere inoculation of Bacillus amyloliquefaciens SQR9[J]. Physiologia Plantarum, 2016, 158(1):34-44. [48] 袁海, 何鹏飞, 吴毅歆, 等. 盐胁迫下益生菌对玉米的促生效应研究[J]. 玉米科学, 2019, 27(1):69-74. Yuan H, He PF, Wu YX, et al.Effects of the beneficial bacteria promoting maize growth under salt stress[J]. Journal of Maize Sciences, 2019, 27(1):69-74. [49] 钱兰华, 钱玮, 沈雪林, 等. 耐盐促生菌的筛选鉴定及其对黄瓜的促生作用[J]. 江苏农业科学, 2019, 47(18):160-163. Qian LH, Qian W, Shen XL, et al.Screening and identification of salt-tolerant bacteria and its promoting effect on cucumber[J]. Jiangsu Agricultural Sciences, 2019, 47(18):160-163. [50] Xiong YW, Li XW, Wang TT, et al.Root exudates-driven rhizosphere recruitment of the plant growth-promoting rhizobacterium Bacillus flexus KLBMP 4941 and its growth-promoting effect on the coastal halophyte Limonium sinense under salt stress[J]. Ecotoxi Environ Safety, 2020, 194:110374. [51] Zhang Z, Yin L, Li X, et al.Analyses of the complete genome sequence of the strain Bacillus pumilus ZB201701 isolated from rhizosphere soil of maize under drought and salt stress[J]. Microbes Environ, 2019, 34(3):310-315. [52] Singh RP, Jha PN.A halotolerant bacterium Bacillus licheniformis HSW-16 augments induced systemic tolerance to salt stress in wheat plant(Triticum aestivum)[J]. Frontiers in Plant Science, 2016, 7(1252):1890. [53] Misra S, Chauhan PS.ACC deaminase-producing rhizosphere competent Bacillus sp. mitigate salt stress and promote zea mays growth by modulating ethylene metabolism[J]. 3 Biotech, 2020, 10(3):119. [54] Wang W, Wu Z, He Y, et al.Plant growth promotion and alleviation of salinity stress in capsicum annuum L. by Bacillus isolated from saline soil in Xinjiang[J]. Ecotoxicology & Environmental Safety, 2018, 164:520-529. [55] El-Esawi MA, Alaraidh IA, Alsahli AA, et al.Bacillus firmus(SW5)augments salt tolerance in soybean(Glycine max L.)by modulating root system architecture, antioxidant defense systems and stress-responsive genes expression[J]. Plant Physiology & Biochemistry, 2018, 132:375-384. [56] Rafiq K, Sohail Akram M, Shahid M, et al.Enhancement of salt tolerance in maize(Zea mays L.)using locally isolated Bacillus sp. SR-2-1/1[J]. Biologia, 2020, 75:1425-1436. [57] Baek D, Rokibuzzaman M, Khan A, et al.Plant-growth promoting Bacillus oryzicola YC7007 modulates stress-response gene expression and provides protection from salt stress[J]. Frontiers in Plant Science, 2020, 10:1646. [58] Orozco-Mosqueda MDC, Glick BR, Santoyo G.ACC deaminase in plant growth-promoting bacteria(PGPB):an efficient mechanism to counter salt stress in crops[J]. Microb Res, 2020, 235:126439. [59] 刘珂. 转蜡样芽孢杆菌acdS基因改善烟草耐盐性研究[D]. 郑州:郑州大学, 2017. Liu K.The research of cloning the acdS gene of Bacillus cereus into tobacco to improve its salt tolerance[D]. Zhengzhou:Zhengzhou University, 2017. [60] 姚强, 董晓霞, 宫志远, 等. 滨海盐碱地产ACC脱氨酶细菌的筛选及根际促生研究[J]. 山东农业科学, 2020, 52(2):54-58. Yao Q, Dong XX, Gong ZY, et al.Screening and rhizosphere promotion of bacteria producing ACC deaminase in coastal saline-alkali land[J]. Shandong Agricultural Sciences, 2020, 52(2):54-58. [61] Amna, Ud Din B, Sarfraz S, et al. Mechanistic elucidation of germination potential and growth of wheat inoculated with exopolysaccharide and ACC- deaminase producing Bacillus strains under induced salinity stress[J]. Ecotoxi Environ Safety, 2019, 183:109466. [62] Bokhari A, Essack M, Lafi FF, et al.Bioprospecting desert plant Bacillus endophytic strains for their potential to enhance plant stress tolerance[J]. Scientific Reports, 2019, 9(1):18154. [63] Bokhari A, Essack M, Lafi FF, et al.Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats[J]. Springerplus, 2013, 2(1):6. [64] Khan N, Bano A, Ali S, et al.Crosstalk amongst phytohormones from planta and PGPR under biotic and abiotic stresses[J]. Plant Growth Regulation, 2020, 90:189-203. [65] 李海洋, 李爱学, 王成, 等. 盐胁迫对苗期向日葵内源激素含量的影响[J]. 干旱地区农业研究, 2018, 36(6):92-97. Li HY, Li AX, Wang C, et al.Effects of salt stress on endogenous hormone contents in sunflower seedlings[J]. Agricultural Research in Arid Areas, 2018, 36(6):92-97. [66] 涂文文. NaCl处理对酸枣幼苗内源激素含量的影响及转录组测序分析[D]. 石河子:石河子大学, 2019. Tu WW.Effect of NaCl treatment on the content of endogenous hormones in jujube seedings and the analysis of transcription group sequencing[D]. Shihezi:Shihezi University, 2019. [67] 魏士平, 刘贝贝. 产生生长素的类短短芽孢杆菌及其应用:中国, CN201910507692. 1[P].2019-11-01. Wei SP, Liu BB. Application of a Bacillus brevis strain producing auxin:China, CN201910507692. 1[P].2019-11-01. [68] 汪钱龙, 张德智, 王菊芬, 等. 不同植物促生细菌对玉米生长的影响及其生长素分泌能力研究[J]. 云南农业大学学报:自然科学, 2015, 30(4):494-498. Wang QL, Zhang DZ, Wang JF, et al.Effects of plant growth-promoting bacterial on the growth of maize and the IAA secrete ability detection[J]. Journal of Yunnan Agricultural University:Natural Science, 2015, 30(4):494-498. [69] Khan AM, Asaf S, Khan AL, et al.Halotolerant rhizobacterial strains mitigate the adverse effects of NaCl stress in soybean seedlings[J]. Biomed Research International, 2019, 2019:9530963. [70] 王磊, 冯二梅, 宿红艳. 烟台海域一株中度嗜盐芽孢杆菌YTM-5的鉴定及其耐盐机制研究[J]. 新乡学院学报:自然科学版, 2010, 27(3):50-55. Wang L, Feng EM, Su HY.Identification of a moderately halophilic Bacillus Strain YTM-5 in Yantai sea area and the preliminary study of its salt-tolerant mechanism[J]. Journal of Xinxiang University:Natural Science Edition, 2010, 27(3):50-55. [71] Xu Y, Zhang D, Dai L, et al.Influence of salt stress on growth of spermosphere bacterial communities in different peanut(Arachis hypogaea L.)cultivar[J]. International Journal of Molecular Sciences, 2020, 21(6):2131. [72] 郭英, 刘栋, 赵蕾. 生防枯草芽孢杆菌胞外植酸酶对小麦耐盐性的影响[J]. 应用与环境生物学报, 2009, 15(1):39-43. Guo Y, Liu D, Zhao L.Effect of extracellular phytase produced by Bacillus subtilis T2 on salt tolerance of wheat seedlings[J]. Chinese Journal of Applied & Environmental Biology, 2009, 15(1):39-43. [73] Boukhris I, Farhat-Khemakhem A, Blibech M, et al.Characteriza-tion of an extremely salt-tolerant and thermostable phytase from Bacillus amyloliquefaciens US573[J]. International Journal of Biological Macromolecules, 2015, 80:581-587. [74] Lee S, Trinh CS, Lee WJ, et al. Bacillus subtilis strain L1 promotes nitrate reductase activity in arabidopsis and elicits enhanced growth performance in arabidopsis, lettuce, and wheat[J]. Journal of Plant Research, 2020, 133(2):231-244. [75] Liang W, Ma X, Wan P, et al.Plant salt-tolerance mechanism:a review[J]. Biochemical and Biophysical Research Communications, 2018, 495(1):286-291. [76] Nautiyal CS, Srivastava S, Chauhan PS, et al.Plant growth-promoting bacteria Bacillus amyloliquefaciens NBRISN13 modulates gene expression profile of leaf and rhizosphere community in rice during salt stress[J]. Plant Physiol Biochem, 2013, 66:1-9. [77] Chen L, Liu Y, Wu G, et al.Beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 induces plant salt tolerance through spermidine production[J]. Molecular Plant Microbe Interactions, 2017, 30(5):423-432. [78] 蒲强. 多功能芽孢杆菌筛选及其促生长和吸附镉效果与机理研究[D]. 广州:华南农业大学, 2017. Pu Q.Study on screening of multifunctional Bacillus and its effect and mechanism on plant growth and biosorption of cadmium[D]. Guangzhou:South China Agricultural University, 2017. [79] 谢庆东, 何琳燕, 王琪, 等. 一株高效溶解钾长石芽孢杆菌的分离鉴定与生物学特性研究[J]. 土壤, 2017, 49(2):302-307. Xie QD, He LY, Wang Q, et al.Isolation and identification of a feldspar-dissolving Bacillus strain and its biological characteristics[J]. Soil, 2017, 49(2):302-307. |
[1] | 赵志祥, 王殿东, 周亚林, 王培, 严婉荣, 严蓓, 罗路云, 张卓. 枯草芽孢杆菌Ya-1对辣椒枯萎病的防治及其对根际真菌群落的影响[J]. 生物技术通报, 2023, 39(9): 213-224. |
[2] | 周嫒婷, 彭睿琦, 王芳, 伍建榕, 马焕成. 生防菌株DZY6715在不同生长期的代谢差异分析[J]. 生物技术通报, 2023, 39(9): 225-235. |
[3] | 苗永美, 苗翠苹, 于庆才. 枯草芽孢杆菌BBs-27发酵液性质及脂肽对黄色镰刀菌的抑菌作用[J]. 生物技术通报, 2023, 39(9): 255-267. |
[4] | 赵光绪, 杨合同, 邵晓波, 崔志豪, 刘红光, 张杰. 一株高效溶磷产红青霉培养条件优化及其溶磷特性[J]. 生物技术通报, 2023, 39(9): 71-83. |
[5] | 江润海, 姜冉冉, 朱城强, 侯秀丽. 微生物强化植物修复铅污染土壤的机制研究进展[J]. 生物技术通报, 2023, 39(8): 114-125. |
[6] | 褚睿, 李昭轩, 张学青, 杨东亚, 曹行行, 张雪艳. 黄瓜枯萎病拮抗芽孢杆菌的筛选、鉴定及其生防潜力[J]. 生物技术通报, 2023, 39(8): 262-271. |
[7] | 方澜, 黎妍妍, 江健伟, 成胜, 孙正祥, 周燚. 盘龙参内生真菌胞内细菌7-2H的分离鉴定和促生特性研究[J]. 生物技术通报, 2023, 39(8): 272-282. |
[8] | 王帅, 冯宇梅, 白苗, 杜维俊, 岳爱琴. 大豆GmHMGR基因响应外源激素及非生物胁迫功能研究[J]. 生物技术通报, 2023, 39(7): 131-142. |
[9] | 魏茜雅, 秦中维, 梁腊梅, 林欣琪, 李映志. 褪黑素种子引发处理提高朝天椒耐盐性的作用机制[J]. 生物技术通报, 2023, 39(7): 160-172. |
[10] | 马俊秀, 吴皓琼, 姜威, 闫更轩, 胡基华, 张淑梅. 蔬菜软腐病菌广谱拮抗细菌菌株筛选鉴定及防效研究[J]. 生物技术通报, 2023, 39(7): 228-240. |
[11] | 徐红云, 吕俊, 于存. 根际溶磷伯克霍尔德菌Paraburkholderia spp.对马尾松苗的促生作用[J]. 生物技术通报, 2023, 39(6): 274-285. |
[12] | 任沛东, 彭健玲, 刘圣航, 姚姿婷, 朱桂宁, 陆光涛, 李瑞芳. 沙福芽孢杆菌GX-H6的分离鉴定及对水稻细菌性条斑病的防病效果[J]. 生物技术通报, 2023, 39(5): 243-253. |
[13] | 车永梅, 郭艳苹, 刘广超, 叶青, 李雅华, 赵方贵, 刘新. 菌株C8和B4的分离鉴定及其耐盐促生效果和机制[J]. 生物技术通报, 2023, 39(5): 276-285. |
[14] | 罗义, 张丽娟, 黄伟, 王宁, 吾尔丽卡·买提哈斯木, 施宠, 王玮. 一株耐铀菌株的鉴定及其促生特性研究[J]. 生物技术通报, 2023, 39(5): 286-296. |
[15] | 李善家, 雷雨昕, 孙梦格, 刘海锋, 王兴敏. 种子内生细菌多样性与植物互馈作用研究进展[J]. 生物技术通报, 2023, 39(4): 166-175. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||