生物技术通报 ›› 2020, Vol. 36 ›› Issue (9): 75-87.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0511
• 根际微生物专题(专题主编:张瑞福 研究员) • 上一篇 下一篇
潘晶1,2, 黄翠华1, 彭飞1, 尤全刚1, 刘斐耀1,2, 薛娴1
收稿日期:
2020-04-30
出版日期:
2020-09-26
发布日期:
2020-09-30
作者简介:
潘晶,女,博士研究生,研究方向:荒漠化防治;E-mail:panjing@lzb.ac.cn
基金资助:
PAN Jing1,2, HUANG Cui-hua1, PENG Fei1, YOU Quan-gang1, LIU Fei-yao1,2, XUE Xian1
Received:
2020-04-30
Published:
2020-09-26
Online:
2020-09-30
摘要: 土壤盐渍化是全球性土地荒漠化的主要表现形式之一。在自然和人类活动的不断干扰下,受盐渍化影响的土地面积不断增加,严重制约着农业发展,威胁着生态安全。植物根际促生菌(PGPR)是指生活在根际土壤或依附于植物根系的有益细菌,它既可提高植物的耐盐性使其适应盐渍生境,又可利用其与宿主植物间的相互作用来改良盐渍化土地。阐述了盐胁迫下PGPR对植物生长的促进作用,并分析了PGPR诱导植物耐盐性的相关机制,最后基于以上讨论对今后的发展趋势进行了展望,旨在服务于盐渍土的改良和盐渍生境的生态恢复与重建。
潘晶, 黄翠华, 彭飞, 尤全刚, 刘斐耀, 薛娴. 植物根际促生菌诱导植物耐盐促生作用机制[J]. 生物技术通报, 2020, 36(9): 75-87.
PAN Jing, HUANG Cui-hua, PENG Fei, YOU Quan-gang, LIU Fei-yao, XUE Xian. Mechanisms of Salt Tolerance and Growth Promotion in Plant Induced by Plant Growth-Promoting Rhizobacteria[J]. Biotechnology Bulletin, 2020, 36(9): 75-87.
[1] Zhang H, Xiang Y, Irving LJ, et al.Nitrogen addition can improve seedling establishment of N-sensitive species in degraded saline soils[J]. Land Degradation and Development, 2019, 30:119-127. [2] Egamberdieva D, Wirth S, Bellingrath-Kimura SD, et al.Salt-Tolerant Plant growth promoting rhizobacteria for enhancing crop productivity of saline soils[J]. Front Microbiol, 2019, 10:2791. [3] Sardo V, Hamdy A.Halophytes-A previous resource[M]. Hamdy A. Non-conventional water use:WASAMED project. Bari:CIHEAM / EU DG Research, 2005. [4] Kosová K, Vítámvás PA, Urban AMO, et al.Plant proteome responses to salinity stress - comparison of glycophytes and halophytes[J]. Functional Plant Biology, 2013, 40:775-786. [5] Anik AR, Ranjan R, Ranganathan T.Estimating the impact of salinity stress on livelihood choices and incomes in Rural Bangladesh[J]. Journal of International Development, 2018, 30(8):1414-1438. [6] Estrada B, Aroca R, Azcón-Aguilar C, et al.Importance of native arbuscular mycorrhizal inoculation in the halophyte Asteriscus maritimus for successful establishment and growth under saline conditions[J]. Plant Soil, 2013, 370(1-2):175-185. [7] Bharti N, Barnawal D, Awasthi A, et al.Plant growth promoting rhizobacteria alleviate salinity induced negative effects on growth, oil content and physiological status in Mentha arvensis[J]. Acta Physiologiae Plantarum, 2014, 36:45-60. [8] 李建国, 濮励杰, 朱明, 等. 土壤盐渍化研究现状及未来研究热点[J]. 地理学报, 2012, 67(9):1233-1245. Li JG, Pu LJ, Zhu M, et al.The present situation and hot issues in the salt-affected soil research[J]. Acta Geographica Sinica, 2012, 67(9):1233-1245. [9] 胡涛, 张鸽香, 郑福超, 等. 植物盐胁迫响应的研究进展[J]. 分子植物育种, 2018, 16(9):264-273. Hu T, Zhang GX, Zheng FC, Cao Y.Research progress in plant salt stress response[J]. Molecular Plant Breeding, 2018, 16(9):264-273. [10] Qadir M, Quillérou E, Nangia V, et al.Economics of salt-induced land degradation and restoration[J]. Natural Resources Forum, 2014, 38(4):282-295. [11] Hasanuzzaman M, Nahar K, Alam MM, et al.Potential use of halophytes to remediate saline soils[J]. Journal of Biomedicine and Biotechnology, 2014, 2014(8):589341. [12] 郧文聚, 杨劲松, 鞠正山. 以科技创新对接国家战略——聚焦“一带一路”沿线盐碱地治理[J]. 国土资源, 2015, 9:44-46. Yun WJ, Yang JS, Ju ZS.Docking national strategy with scientific and technological innovation — Focusing on the treatment of saline and alkaline land along the “Belt and Road”[J]. Land and Resources, 2015, 9:44-46. [13] De-Bashan LE, Hernandez JP, Bashan Y.The potential contribution of plant growth-promoting bacteria to reduce environmental degradation-a comprehensive evaluation[J]. Applied Soil Ecology, 2012, 61:171-189. [14] Dodd IC, Perez-Alfocea F.Microbial amelioration of crop salinity stress[J]. J Exp Bot, 2012, 63:3415-3428. [15] Lau JA, Lennon JT.Evolutionary ecology of plant-microbe interactions:soil microbial structure alters selection on plant traits[J]. New Phytol, 2011, 192(1):215-224. [16] 刘少芳, 王若愚. 植物根际促生细菌提高植物耐盐性研究进展[J]. 中国沙漠, 2019, 39(2):1-12. Liu SF, Wang RY.Advance in research on plant salt tolerance improved by plant-growth-promoting rhizobacteria[J]. Journal of desert research, 2019, 39(2):1-12. [17] 潘晶, 黄翠华, 罗君, 等. 盐胁迫对植物的影响及AMF提高植物耐盐性的机制[J]. 地球科学进展, 2018, 33(4):361-372. Pan J,Huang CH,Luo J,et al.Effects of salt stress on plant and the mechanism of Arbuscular Mycorrhizal Fungi enhancing salt tolerance of plants[J]. Advances in earth science, 2018, 33(4):361-372. [18] Pan J, Peng F, Xue X, et al.The growth promotion of two salt-tolerant plant groups with PGPR inoculation:a meta-analysis[J]. Sustainability, 2019, 11(2):378. [19] 康贻军, 程洁, 梅丽娟, 等. 植物根际促生菌作用机制研究进展[J]. 应用生态学报, 2010, 21(1):232-238. Kang YJ, Cheng J, Mei LJ, et al.Action mechanisms of plant growth-promoting rhizobacteria (PGPR):A review[J]. Chinese Journal of Applied Ecology, 2010, 21(1):232-238. [20] Wansik S, Siddikee MA, Joe MM, et al.Halotolerant plant growth promoting bacteria mediated salinity stress amelioration in plants[J]. Korean Journal of Soil Science and Fertilizer, 2016, 49(4):355-367. [21] Munns R, Gilliham M.Salinity tolerance of crops - what is the cost?[J]. New Phytologist 2015, 208(3):668-673. [22] Munns R, Tester M.Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59:651-681. [23] Ilangumaran G, Smith DL.Plant growth promoting rhizobacteria in amelioration of salinity stress:a systems biology perspective[J]. Frontiers in Plant Science, 2017, 8:1768. [24] Ahmad P, Azooz MM, Prasad MNV.Ecophysiology and responses of plants under salt stress[M]. Springer New York Heidelberg Dordrecht London, 2013. [25] Habib SH, Kausar H, Saud H.Plant growth-promoting rhizobacteria enhance salinity stress tolerance in Okra through ROS-scavenging enzymes[J]. Biomed Research International, 2016(1-4):1-10. [26] Gomes-Filho E, Lima CR, Costa JH, et al.Cowpea ribonuclease:properties and effect of NaCl-salinity on its activation during seed germination and seedling establishment[J]. Plant Cell Reports, 2008, 27(1):147-157. [27] Dantas BF, Ribeiro LdS, Aragão CA. Germination, initial growth and cotyledon protein content of bean cultivars under salinity stress[J]. Revista Brasileira de Sementes, 2007, 29(2):106-110. [28] 严青青, 张巨松, 李星星, 等. 盐碱胁迫对海岛棉种子萌发及幼苗根系生长的影响[J]. 作物学报, 2019, 45(1):104-114. Yan QQ, Zhang JS, Li XX, et al.Effects of salinity stress on seed germination and root growth of seedlings in island cotton[J]. Acta Agronomica Sinica, 2019, 45(1):104-114. [29] Jalili F, Khavazi K, Pazira E, et al.Isolation and characterization of acc deaminase-producing fluorescent pseudomonads, to alleviate salinity stress on canola(Brassica napus L.)growth[J]. Journal of Plant Physiology, 2009, 166(6):667-674. [30] Waheed QA, Nasim SA.Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress[J]. Brazilian Journal of Microbiology, 2012, 43(3):1183-1191. [31] Storey R, Walker RR.Citrus and salinity:a review[J]. Scientia Horticulturae, 1999, 78(1):39-81. [32] Osman KT.Saline and sodic soils[M]. Switzeland:Springer International Publishing AG, 2018. [33] Pan J, Huang C. Peng F, et al.Effect of arbuscular mycorrhizal fungi(AMF)and plant growth-promoting bacteria(PGPR)inoculations on Elaeagnus Angustifolia L. in saline soil[J]. Applied Sciences, 2020, 10:945. [34] 井大炜, 马海林, 刘方春, 等. 盐胁迫环境下接种根际促生细菌对白蜡树根际生物学特征及其生长的影响[J]. 水土保持通报, 2018, 38(1):76-81. Jing DW, Ma HL, Liu FC, et al.Effects of inoculating plant growth-promoting rhizobacteria on biological characteristics of rhizosphere and growth of Fraxinus chinensis under salt stress[J]. Bulletin of Soil and Water Conservation, 2018, 38(1):76-81. [35] Kumari S, Vaishnav A, Jain S, et al.Bacterial-mediated induction of systemic tolerance to salinity with expression of stress alleviating enzymes in Soybean(Glycine max L. Merrill)[J]. Journal of Plant Growth Regulation, 2015, 34(3):558-573. [36] Liu S, Hao H, Lu X, et al.Transcriptome profiling of genes involved in induced systemic salt tolerance conferred by Bacillus amyloliquefaciens FZB42 in Arabidopsis thaliana[J]. Scientific Reports, 2017, 7(1):10795. [37] Abeer H, Abd_Allah EF, Alqarawi AA, et al. Induction of osmoregulation and modulation of salt stress in Acacia gerrardii Benth. by arbuscular mycorrhizal fungi and Bacillus subtilis(BERA 71)[J]. Biomed Research International, 2016, 1:1-11. [38] Jha Y, Subramanian RB.Rhizobacteria enhance oil content and physiological status of Hyptis suaveolens under salinity stress[J]. Rhizosphere, 2016(1):33-35. [39] Nadeem SM, Zahir ZA, Naveed M, et al.Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity[J]. Canadian Journal of Microbiology, 2007, 53:1141-1149. [40] Karlidag H, Yildirim E, Turan M, et al.Plant growth-promoting rhizobacteria mitigate deleterious effects of salt stress on strawberry plants(Fragaria × ananassa)[J]. Hortscience A Publication of the American Society for Horticultural Science, 2013, 5(48):563-567. [41] Arora NK, Tewari S, Singh S, et al.PGPR for protection of plant health under saline conditions[M]. Maheshwari DK, Bacteria in Agrobiology:Stress Management. Springer Berlin Heidelberg, 2012. [42] Auge RM, Toler HD, Saxton AM.Arbuscular mycorrhizal symbiosis and osmotic adjustment in response to NaCl stress:a meta-analysis[J]. Frontiers in Plant Science, 2014, 5:562. [43] Mohamed HI, Gomaa EZ.Effect of plant growth promoting Bacillus subtilis and Pseudomonas fluorescens on growth and pigment composition of radish plants(Raphanus sativus)under NaCl stress[J]. Photosynthesis, 2012, 50(2):263-272. [44] Hidri R, Barea JM, Mahmoud MB, et al.Impact of microbial inoculation on biomass accumulation by Sulla carnosa provenances, and in regulating nutrition, physiological and antioxidant activities of this species under non-saline and saline conditions[J]. Journal of Plant Physiology, 2016, 201:28-41. [45] Younesi O, Moradi A.Effects of plant growth-promoting rhizobacterium(PGPR)and arbuscular mycorrhizal fungus(AMF)on antioxidant enzyme activities in salt-stressed bean(Phaseolus vulgaris L.)[J]. Agriculture, 2014, 60(1):10-21. [46] Rojas-Tapias D, Moreno-Galván A, Pardo-Díaz S, et al.Effect of inoculation with plant growth-promoting bacteria(PGPB)on amelioration of saline stress in maize(Zea mays)[J]. Applied Soil Ecology, 2012, 61:264-272. [47] Hamdia MAES, Shaddad MAK, Doaa MM.Mechanisms of salt tolerance and interactive effects of Azospirillum brasilense inoculation on maize cultivars grown under salt stress conditions[J]. Plant Growth Regulation, 2004, 44:165-174. [48] Singh RP, Jha PN.A halotolerant bacterium Bacillus licheniformis HSW-16 augments induced systemic tolerance to salt stress in wheat plant(Triticum aestivum)[J]. Frontiers in Plant Science, 2016(7):1890. [49] Jha Y, Subramanian RB, Patel S.Combination of endophytic and rhizospheric plant growth promoting rhizobacteria in Oryza sativa shows higher accumulation of osmoprotectant against saline stress[J]. Acta Physiologiae Plantarum, 2010, 33(3):797-802. [50] Ashraf M, Harris PJC.Potential biochemical indicators of salinity tolerance in plants[J]. Plant Science, 2004, 166:3-16. [51] Zhang H, Kim MS, Sun Y, et al.Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1[J]. Molecular Plant-Microbe Interactions, 2008, 21:737-744. [52] Egamberdieva D, Kucharova Z.Selection for root colonising bacteria stimulating wheat growth in saline soils[J]. Biology and Fertility of Soils, 2009, 45:563-571. [53] Raheem A, Ali B.Halotolerant rhizobacteria:beneficial plant metabolites and growth enhancement of Triticum aestivum L. in salt-amended soils[J]. Archives of Agronomy and Soil Science, 2015, 61:1691-1705. [54] Islam F, Yasmeen T, Arif MS, et al.Plant growth promoting bacteria confer salt tolerance in Vigna radiata by up-regulating antioxidant defense and biological soil fertility[J]. Plant Growth Regulation, 2016, 80:23-36. [55] Marulanda A, Azcón R, Chaumont F, et al.Regulation of plasma membrane aquaporins by inoculation with a Bacillus megateriumstrain in maize(Zea mays L.)plants under unstressed and salt-stressed conditions[J]. Planta, 2010, 232(2):533-543. [56] 王文铖, 崔克辉. 非生物逆境对植物水孔蛋白表达调控的研究进展[J]. 植物生理学报, 2016, 52(4):423-430. Wang WC, Cui KH.Research progress in the expression and regulation of aquaporins under abiotic stresses[J]. Plant Physiology Journal, 2016, 52(4):423-430. [57] Eida AA, Hirt H, Saad MM.Challenges faced in field application of phosphate-solubilizing bacteria[M]. Mehnaz S. Rhizotrophs:Plant growth promotion to bioremediation. Springer Nature Singapore Pte Ltd, 2017:125-143. [58] Hashem A, Abd Allah EF, Alqarawi AA, et al.The interaction between arbuscular mycorrhizal fungi and endophytic bacteria enhances plant growth of Acacia gerrardii under salt stress[J]. Front Microbiol, 2016, 7:1089. [59] 卢翔, 王若愚. 干旱对解淀粉芽孢杆菌(Bacillus amylolique-faciens)FZB42生物被膜的形成及根际定殖能力的影响[J]. 中国沙漠, 2019, 39(3):199-205. Lu X, Wang RY.Effects of drought stress on the biofilm formation and root colonization ability of Bacillus amyloliquefaciens FZB42[J]. Journal of Desert Research, 2019, 39(3):199-205. [60] Sandhya V, Ali SZ, Grover M, et al.Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45[J]. Biology and Fertility of Soils, 2009, 46(1):17-26. [61] Kohler J, Caravaca F, Carrasco L, et al.Contribution of Pseudomonas mendocina and Glomus intraradices to aggregate stabilization and promotion of biological fertility in rhizosphere soil of lettuce plants under field conditions[J]. Soil Use and Management, 2006, 22(3):298-304. [62] Dodd IC, Zinovkina NY, Safronova VI, et al.Rhizobacterial mediation of plant hormone status[J]. Annals of Applied Biology, 2010, 157:361-379. [63] El-Samad HA, El-Komy HM.Effect of salinity, gibberellic acid and Azospirillum inoculation on growth and nitrogen uptake of Zea mays[J]. Biologia Plantarum, 1997, 41(1):109-120. [64] 连宾, 傅平秋, 莫德明, 等. 硅酸盐细菌解钾作用机理的综合效应[J]. 矿物学报, 2002, 22(2):179-183. Lian B, Fu PQ, Mo DM, et al.A Comprehensive review of the mechanism of potassium releasing by silicate bacteria[J]. Acta Mineralogica Sinica, 2002, 22(2):179-183. [65] Jha Y, Subramanian RB.Regulation of plant physiology and antioxidant enzymes for alleviating salinity stress by potassium-mobilizing bacteria[M]. Meena VS. Potassium solubilizing microorganisms for sustainable agriculture. Springer India, 2016:149-162. [66] Bai L, Wang P, Song CP.Reactive oxygen species(ROS)and ABA signaling[M]. Zhang DP. Abscisic acid:metabolism, transport and signaling. Springer, 2014:191-223. [67] Egamberdieva D, Wirth S, Jabborova D, et al.Coordination between Bradyrhizobium and Pseudomonas alleviates salt stress in soybean through altering root system architecture[J]. Journal of Plant Interaction, 2017, 12:100-107. [68] Irizarry I, White JF.Application of bacteria from non-cultivated plants to promote growth, alter root architecture and alleviate salt stress of cotton[J]. Journal of Applied Microbiology, 2017, 122(4):1110-1120. [69] Berg G, Alavi M, Schmidt CS, et al.Biocontrol and osmoprotection for plants under saline conditions[M]. de Bruijn FJ. Molecular Microbial Ecology of the Rhizosphere. Wiley -Blackwell, 2013:587-592. [70] Mirza BS, Mirza MS, Bano A, et al.Coinoculation of chickpea with rhizobium isolates from roots and nodules and phytohormone-producing enterobacter strains[J]. Australian Journal of Experimental Agriculture, 2007, 47(8):1008-1015. [71] 郑小兰, 王瑞娇, 赵群法, 等. 根际氧含量影响植物生长的生理生态机制研究进展[J]. 植物生态学报, 2017, 41(7):805-814. Zheng XL, Wang RJ, Zhao QF, et al.Ecophysiological mechanisms of plant growth under the influence of rhizosphere oxygen concentration:A review[J]. Chinese Journal of Plant Ecology, 2017, 41(7):805-814. [72] 李敏, 张鹏鹏, 刘凯, 等. 几株烟草根际促生细菌的挥发性物质对拟南芥根构型的影响[J]. 山东农业大学学报, 2015, 46(3):347-352. Li M, Zhang PP, Liu K, et al.Effects of volatiles produced by some plant growth-promoting rhizobacteria of tobacco on root architecture of Arabidopsis thaliana[J]. Journal of Shandong Agricultural University, 2015, 46(3):347-352. [73] Yang J, Kloepper JW, Ryu CM.Rhizosphere bacteria help plants tolerate abiotic stress[J]. Trends Plant Sci, 2009, 14(1):1-4. [74] Mittler R.Oxidative stress, antioxidants and stress tolerance[J]. Trends Plant Sci, 2002, 7(9):405-410. [75] Kaur N, Dhawan M, Sharma I, et al.Interdependency of reactive oxygen species generating and scavenging system in salt sensitive and salt tolerant cultivars of rice[J]. BMC Plant Biology, 2016, 16:131. [76] Panwar M, Tewari R, Nayyar H.Native halo-tolerant plant growth promoting rhizobacteria Enterococcus and Pantoea sp. improve seed yield of Mungbean(Vigna radiata L.)under soil salinity by reducing sodium uptake and stress injury[J]. Physiology and Molecular Biology of Plants, 2016, 22(4):445-459. [77] Naz R, Bano A.Influence of Exogenously applied salicylic acid and plant growth promotion rhizobacteria inoculation on the growth and physiology of sunflower(Helianthus annuus L.)under salt stress[J]. Pakistan Journal of Botany, 2013, 45(2):367-373. [78] Bose J, Rodrigo-Moreno A, Shabala S.ROS homeostasis in halophytes in the context of salinity stress tolerance[J]. J Exp Bot, 2014, 65(5):1241-1257. [79] Bharti N, Pandey SS, Barnawal D, et al.Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress[J]. Scientific Reports, 2016, 6:34768. [80] Singh RP, Jha PN.Analysis of fatty acid composition of PGPR Klebsiella sp. SBP-8 and its role in ameliorating salt stress in wheat[J]. Symbiosis, 2017, 73:213-222. [81] Bharti N, Yadav D, Barnawal D, et al.Exiguobacterium oxidotolerans, a halotolerant plant growth promoting rhizobacteria, improves yield and content of secondary metabolites in Bacopa monnieri(L.)Pennell under primary and secondary salt stress[J]. World Journal of Microbiology and Biotechnology, 2013, 29:379-387. [82] Ashraf M, Harris PJC.Photosynthesis under stressful environments:an overview[J]. Photosynthetica, 2013, 51(2):163-190. [83] Parida AK, Das AB.Salt tolerance and salinity effects on plants:a review[J]. Ecotoxi Environ Safety, 2005, 60(3):324-349. [84] Bano A, Fatima M.Salt tolerance in Zea mays L. following inoculation with Rhizobium and Pseudomonas[J]. Biology and Fertility of Soils, 2009, 45:405-413. [85] Murkute AA, Sharma S, Singh SK.Studies on salt stress tolerance of citrus rootstock genotypes with arbuscular mycorrhizal fungi[J]. Horticultural Science, 2006, 33(2):70-76. [86] Jha Y, Subramanian RB.Paddy physiology and enzymes level is regulated by rhizobacteria under saline stress[J]. Journal of Applied Botany and Food Quality, 2012, 85:168-173. [87] Barnawal D, Bharti N, Pandey SS, et al.Plant growth-promoting rhizobacteria enhance wheat salt and drought stress tolerance by altering endogenous phytohormone levels and TaCTR1 / TaDREB2 expression[J]. Physiologia Plantarum, 2017, 161:502-514. [88] Deinlein U, Stephan AB, Horie T, et al.Plant salt-tolerance mechanisms[J]. Trends Plant Sci, 2014, 19:371-379. [89] Omar MNA, Osman MEH, Kasim WA, et al.Improvement of salt tolerance mechanisms of barley cultivated under salt stress using Azospirillum brasilense[M]. Ashraf M. Salinity and Water Stress. Springer Netherlands, 2009:133-147. [90] Delel Amor FM, Cuadra-Crespo P.Plant growth-promoting bacteria as a tool to improve salinity tolerance in sweet pepper[J]. Functional Plant Biology, 2012 39:82-90. [91] Wong VNL, Greene RSB, Dalal RC, et al.Soil carbon dynamics in saline and sodic soils:a review[J]. Soil Use and Management, 2009, 26(1):2-11. [92] 孙真, 郑亮, 邱浩斌. 植物根际促生细菌定殖研究进展[J]. 生物技术通报, 2017, 33(2):8-15. Sun Z, Zheng L, Qiu HB.Research advances on colonization of plant growth-promoting rhizobacteria[J]. Biotechnology Bulletin, 2017, 33(2):8-15. [93] 吴林坤, 林向民, 林文雄. 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望[J]. 植物生态学报, 2014, 38(3):298-310. Wu LK, Lin XM, Lin WX.Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates[J]. Chinese Journal of Plant Ecology, 2014, 38(3):298-310. [94] 刘润进, 陈应龙. 菌根学[M]. 北京: 科学出版社, 2007. Liu RJ, Chen YL.Mycorrhizology[M]. Beijing:Science Press, 2007. [95] 龙伟文, 王平, 冯新梅, 等. PGPR与AMF相互关系的研究进展[J]. 应用生态学报, 2000, 11(2):311-314. Long WW, Wang P, Feng XM, et al.Research progress on PGPR/ AMF interactions[J]. Chinese Journal of Applied Ecology. 2000, 11(2):311-314. [96] Artursson V, Finlay RD, Jansson JK.Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth[J]. Environmental Microbiology, 2006, 8(1):1-10. [97] Richardson AE, Barea JM, McNeill AM, et al. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms[J]. Plant Soil, 2009, 321(1):305-339. [98] Xun F, Xie B, Liu S, et al.Effect of plant growth-promoting bacteria(PGPR)and arbuscular mycorrhizal fungi(AMF)inoculation on oats in saline-alkali soil contaminated by petroleum to enhance phytoremediation[J]. Environmental Science and Pollution Research, 2015, 22:598-608. |
[1] | 江润海, 姜冉冉, 朱城强, 侯秀丽. 微生物强化植物修复铅污染土壤的机制研究进展[J]. 生物技术通报, 2023, 39(8): 114-125. |
[2] | 王帅, 冯宇梅, 白苗, 杜维俊, 岳爱琴. 大豆GmHMGR基因响应外源激素及非生物胁迫功能研究[J]. 生物技术通报, 2023, 39(7): 131-142. |
[3] | 魏茜雅, 秦中维, 梁腊梅, 林欣琪, 李映志. 褪黑素种子引发处理提高朝天椒耐盐性的作用机制[J]. 生物技术通报, 2023, 39(7): 160-172. |
[4] | 罗义, 张丽娟, 黄伟, 王宁, 吾尔丽卡·买提哈斯木, 施宠, 王玮. 一株耐铀菌株的鉴定及其促生特性研究[J]. 生物技术通报, 2023, 39(5): 286-296. |
[5] | 王海龙, 李雨倩, 王勃, 邢国芳, 张杰伟. 谷子SiMAPK3基因的克隆和表达特性分析[J]. 生物技术通报, 2023, 39(3): 123-132. |
[6] | 杜清洁, 周璐瑶, 杨思震, 张嘉欣, 陈春林, 李娟起, 李猛, 赵士文, 肖怀娟, 王吉庆. 过表达CaCP1提高转基因烟草对盐胁迫的敏感性[J]. 生物技术通报, 2023, 39(2): 172-182. |
[7] | 汪明滔, 刘建伟, 赵春钊. 植物调控盐胁迫下细胞壁完整性的分子机制[J]. 生物技术通报, 2023, 39(11): 18-27. |
[8] | 张玉娟, 黎冬华, 宫慧慧, 崔新晓, 高春华, 张秀荣, 游均, 赵军胜. 芝麻NAC转录因子基因SiNAC77的克隆及耐盐功能分析[J]. 生物技术通报, 2023, 39(11): 308-317. |
[9] | 徐扬, 丁红, 张冠初, 郭庆, 张智猛, 戴良香. 盐胁迫下花生种子萌发期代谢组学分析[J]. 生物技术通报, 2023, 39(1): 199-213. |
[10] | 孙卓, 王妍, 韩忠明, 王云贺, 赵淑杰, 杨利民. 防风根际真菌的分离鉴定及其生防潜力评价[J]. 生物技术通报, 2023, 39(1): 264-273. |
[11] | 陈光, 李佳, 杜瑞英, 王旭. 水稻盐敏感突变体ss2的鉴定与基因功能分析[J]. 生物技术通报, 2022, 38(9): 158-166. |
[12] | 高晓蓉, 丁尧, 吕军. 芘降解菌Pseudomonas sp. PR3的植物促生特性及其对芘胁迫下水稻生长的影响[J]. 生物技术通报, 2022, 38(9): 226-236. |
[13] | 高亚慧, 姜明国, 丰景, 周桂. 产生促生挥发性物质的潜在PGPR菌株筛选及其促生特性研究[J]. 生物技术通报, 2022, 38(3): 103-112. |
[14] | 张斌, 杨昕霞. 水稻响应盐胁迫关键转录因子的鉴定[J]. 生物技术通报, 2022, 38(3): 9-15. |
[15] | 张业猛, 朱丽丽, 陈志国. 藜麦NHX基因家族鉴定及盐胁迫下表达分析[J]. 生物技术通报, 2022, 38(12): 184-193. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||