生物技术通报 ›› 2021, Vol. 37 ›› Issue (2): 71-79.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0540
张静1,2(), 熊燕1,2(), 华永琳2, 郭玉2, 熊显荣1,2, 字向东1,2, 李键1,2()
收稿日期:
2020-05-07
出版日期:
2021-02-26
发布日期:
2021-02-26
作者简介:
张静,女,硕士研究生,研究方向:动物细胞与胚胎工程;E-mail: 基金资助:
ZHANG Jing1,2(), XIONG Yan1,2(), HUA Yong-lin2, GUO Yu2, XIONG Xian-rong1,2, ZI Xiang-dong1,2, LI Jian1,2()
Received:
2020-05-07
Published:
2021-02-26
Online:
2021-02-26
摘要:
旨在筛选定量PCR检测不同骨骼肌纤维类型的稳定内参基因,为骨骼肌的能量和糖代谢等功能研究提供基础数据。试验选用6周龄小鼠,采集腓肠肌(Gastrocnemius muscle,GAS)、比目鱼肌(Soleus,SOL)、胫骨前肌(Tibialis anterior muscle,TA)和趾长伸肌(Extensor digitorum longus,EDL)为试验材料。以荧光定量PCR法检测Gapdh、Actb、Rer1、Hprt1、Ppia、Rpl7、B2m、Sdha和Rpl27等9个内参基因的mRNA水平,并采用Delta CT、geNorm、NormFinder、BestKeeper和RefFinder五种方法对其表达稳定性进行评估。结果显示,Delta CT法分析稳定性前3个基因为Rpl7>Actb>Rer1,以NormFinder法分析稳定性前3个基因是Rpl7>Rer1>Actb,以BestKeeper法分析稳定性前3个基因是Rpl7>Gapdh> Actb,而以geNorm法分析稳定性前3个基因是Actb>B2m>Rpl27。最后通过RefFinder法综合分析Rpl7是最稳定的内参基因,且5种方法中Ppia均最不稳定。因此,Rpl7可作为小鼠骨骼肌纤维类型检测的稳定内参基因。
张静, 熊燕, 华永琳, 郭玉, 熊显荣, 字向东, 李键. 小鼠骨骼肌纤维类型定量PCR内参基因的筛选[J]. 生物技术通报, 2021, 37(2): 71-79.
ZHANG Jing, XIONG Yan, HUA Yong-lin, GUO Yu, XIONG Xian-rong, ZI Xiang-dong, LI Jian. Screening of Reference Genes for Quantitative PCR of Skeletal Muscle Fiber Types in Mice[J]. Biotechnology Bulletin, 2021, 37(2): 71-79.
基因 | 登陆号 | 引物序列(5'-3') | 产物长度/bp |
---|---|---|---|
Gapdh | NM_008084.3 | F:AGGTCGGTGTGAACGGATTTG R:TGTAGACCATGTAGTTGAGGTCA | 123 |
Actb | NM_007393.5 | F:GCCTCACTGTCCACCTTCCA R:GGGCCGGACTCATCGTACT | 62 |
Hprt1 | NM_013556.2 | F:AATTATGGACAGGACTGAACGTCTTGCT R:TCCAGCAGGTCAGCAAAGAATTTATAGC | 117 |
Ppia | NM_008907.2 | F:GCCAGGGTGGTGACTTTA R:AACTGGGAACCGTTTGTG | 151 |
Rer1 | NM_026395.2 | F:GCCTTGGGAATTTACCACCT R:CTTCGAATGAAGGGACGAAA | 137 |
Rpl7 | NM_025433.3 | F:ACGGTGGAGCCTTATGTGAC R:TCCGTCAGAGGGACTGTCTT | 110 |
B2m | NM_009735.3 | F:GAAGCCGAACATACTGAACTG R:CACATGTCTCGATCCCAGTAG | 246 |
Sdha | NM_023281.1 | F:GCGATATGACACCAGTTATTT R:TTGCTCTTATTCGGTGTATGGG | 122 |
Rpl27 | NM_011289.3 | F:AAGCCGTCATCGTGAAGAACA R:CTTGATCTTGGATCGCTTGGC | 143 |
Myh2 | NM_001039545.2 | F:AAGCGAAGAGTAAGGCTGTC R:CTTGCAAAGGAACTTGGGCTC | 136 |
Myh4 | NM_010855.3 | F:GAAGAGCCGAGAGGTTCACAC R:CAGGACAGTGACAAAGAACGTC | 108 |
Myh1 | NM_030679.2 | F:GAAGAGTGATTGATCCAAGTG R:TATCTCCCAAAGTTATGAGTACA | 98 |
表1 9个候选内参基因的引物序列
基因 | 登陆号 | 引物序列(5'-3') | 产物长度/bp |
---|---|---|---|
Gapdh | NM_008084.3 | F:AGGTCGGTGTGAACGGATTTG R:TGTAGACCATGTAGTTGAGGTCA | 123 |
Actb | NM_007393.5 | F:GCCTCACTGTCCACCTTCCA R:GGGCCGGACTCATCGTACT | 62 |
Hprt1 | NM_013556.2 | F:AATTATGGACAGGACTGAACGTCTTGCT R:TCCAGCAGGTCAGCAAAGAATTTATAGC | 117 |
Ppia | NM_008907.2 | F:GCCAGGGTGGTGACTTTA R:AACTGGGAACCGTTTGTG | 151 |
Rer1 | NM_026395.2 | F:GCCTTGGGAATTTACCACCT R:CTTCGAATGAAGGGACGAAA | 137 |
Rpl7 | NM_025433.3 | F:ACGGTGGAGCCTTATGTGAC R:TCCGTCAGAGGGACTGTCTT | 110 |
B2m | NM_009735.3 | F:GAAGCCGAACATACTGAACTG R:CACATGTCTCGATCCCAGTAG | 246 |
Sdha | NM_023281.1 | F:GCGATATGACACCAGTTATTT R:TTGCTCTTATTCGGTGTATGGG | 122 |
Rpl27 | NM_011289.3 | F:AAGCCGTCATCGTGAAGAACA R:CTTGATCTTGGATCGCTTGGC | 143 |
Myh2 | NM_001039545.2 | F:AAGCGAAGAGTAAGGCTGTC R:CTTGCAAAGGAACTTGGGCTC | 136 |
Myh4 | NM_010855.3 | F:GAAGAGCCGAGAGGTTCACAC R:CAGGACAGTGACAAAGAACGTC | 108 |
Myh1 | NM_030679.2 | F:GAAGAGTGATTGATCCAAGTG R:TATCTCCCAAAGTTATGAGTACA | 98 |
基因 | 标准曲线方程 | 斜率 | 扩增效 率/% | 决定系数R2 |
---|---|---|---|---|
Gapdh | y = -3.2786x + 32.42 | -3.278 6 | 101.8 | 0.994 5 |
Actb | y = -3.3303x + 38.42 | -3.330 3 | 99.7 | 0.992 7 |
Hprt1 | y = -3.3956x + 41.68 | -3.395 6 | 97.0 | 0.996 5 |
Ppia | y = -3.4648x + 42.49 | -3.464 8 | 94.4 | 0.982 6 |
Rer1 | y = -3.0843x + 37.46 | -3.084 3 | 111.0 | 0.992 8 |
Rpl7 | y = -3.0167x + 38.19 | -3.016 7 | 114.5 | 0.992 6 |
B2m | y = -3.0289x + 18.30 | -3.028 9 | 113.9 | 0.990 7 |
Sdha | y = -3.1061x + 38.727 | -3.106 1 | 110.0 | 0.986 0 |
Rpl27 | y = -3.346x + 37.30 | -3.346 0 | 99.0 | 0.990 8 |
表2 内参基因标准曲线方程、决定系数R2和扩增效率
基因 | 标准曲线方程 | 斜率 | 扩增效 率/% | 决定系数R2 |
---|---|---|---|---|
Gapdh | y = -3.2786x + 32.42 | -3.278 6 | 101.8 | 0.994 5 |
Actb | y = -3.3303x + 38.42 | -3.330 3 | 99.7 | 0.992 7 |
Hprt1 | y = -3.3956x + 41.68 | -3.395 6 | 97.0 | 0.996 5 |
Ppia | y = -3.4648x + 42.49 | -3.464 8 | 94.4 | 0.982 6 |
Rer1 | y = -3.0843x + 37.46 | -3.084 3 | 111.0 | 0.992 8 |
Rpl7 | y = -3.0167x + 38.19 | -3.016 7 | 114.5 | 0.992 6 |
B2m | y = -3.0289x + 18.30 | -3.028 9 | 113.9 | 0.990 7 |
Sdha | y = -3.1061x + 38.727 | -3.106 1 | 110.0 | 0.986 0 |
Rpl27 | y = -3.346x + 37.30 | -3.346 0 | 99.0 | 0.990 8 |
Genes | Delta CT | geNorm | NormFinder | BestKeeper | RefFinder |
---|---|---|---|---|---|
Actb | 1.11(2) | 0.49(1) | 0.54(3) | 0.53(3) | 2.21(2) |
Gapdh | 1.46(7) | 0.80(7) | 1.13(8) | 0.46(2) | 5.29(6) |
Ppia | 3.33(9) | 1.49(9) | 3.26(9) | 2.92(9) | 9.00(9) |
B2m | 1.19(4) | 0.49(2) | 0.72(5) | 0.55(5) | 3.16(3) |
Hprt1 | 1.63(8) | 0.97(8) | 1.09(7) | 1.32(8) | 7.74(8) |
Sdha | 1.30(6) | 0.71(6) | 0.73(6) | 0.86(7) | 6.24(7) |
Rpl7 | 1.07(1) | 0.58(4) | 0.16(1) | 0.45(1) | 1.41(1) |
Rpl27 | 1.20(5) | 0.53(3) | 0.71(4) | 0.53(4) | 3.66(5) |
Rer1 | 1.12(3) | 0.64(5) | 0.30(2) | 0.69(6) | 3.66(4) |
表3 九种候选内参基因在小鼠骨骼肌组织中的表达稳定性
Genes | Delta CT | geNorm | NormFinder | BestKeeper | RefFinder |
---|---|---|---|---|---|
Actb | 1.11(2) | 0.49(1) | 0.54(3) | 0.53(3) | 2.21(2) |
Gapdh | 1.46(7) | 0.80(7) | 1.13(8) | 0.46(2) | 5.29(6) |
Ppia | 3.33(9) | 1.49(9) | 3.26(9) | 2.92(9) | 9.00(9) |
B2m | 1.19(4) | 0.49(2) | 0.72(5) | 0.55(5) | 3.16(3) |
Hprt1 | 1.63(8) | 0.97(8) | 1.09(7) | 1.32(8) | 7.74(8) |
Sdha | 1.30(6) | 0.71(6) | 0.73(6) | 0.86(7) | 6.24(7) |
Rpl7 | 1.07(1) | 0.58(4) | 0.16(1) | 0.45(1) | 1.41(1) |
Rpl27 | 1.20(5) | 0.53(3) | 0.71(4) | 0.53(4) | 3.66(5) |
Rer1 | 1.12(3) | 0.64(5) | 0.30(2) | 0.69(6) | 3.66(4) |
[1] |
Blaauw B, Schiaffino S, Reggiani C. Mechanisms modulating skeletal muscle phenotype[J]. Compr Physiol, 2013,3(4):1645-1687.
doi: 10.1002/cphy.c130009 URL pmid: 24265241 |
[2] |
Bakou SN, Nteme Ella GS, Aoussi S, et al. Fiber composition of the grasscutter(thryonomys swinderianus, temminck 1827)thigh muscle:an enzyme-histochemical study[J]. J Cytol Histol, 2015,6(2):311.
doi: 10.4172/2157-7099.1000311 URL pmid: 26167391 |
[3] |
Cretoiu D, Pavelescu L, Duica F, et al. Myofibers[J]. Adv Exp Med Biol, 2018,1088:23-46.
doi: 10.1007/978-981-13-1435-3_2 URL pmid: 30390246 |
[4] |
Song S, Ahn CH, Kim GD. Muscle fiber typing in bovine and porcine skeletal muscles using immunofluorescence with monoclonal antibodies specific to myosin heavy chain isoforms[J]. Food Sci Anim Resour, 2020,40(1):132-144.
doi: 10.5851/kosfa.2019.e97 URL pmid: 31970337 |
[5] |
Qaisar R, Renaud G, Hedstrom Y, et al. Hormone replacement therapy improves contractile function and myonuclear organization of single muscle fibres from postmenopausal monozygotic female twin pairs[J]. J Physiol, 2013,591(9):2333-2344.
doi: 10.1113/jphysiol.2012.250092 URL pmid: 23459759 |
[6] |
Bloemberg D, Quadrilatero J. Rapid determination of myosin heavy chain expression in rat, mouse, and human skeletal muscle using multicolor immunofluorescence analysis[J]. PLoS One, 2012,7(4):e35273.
doi: 10.1371/journal.pone.0035273 URL pmid: 22530000 |
[7] |
Ferraro E, Giammarioli AM, Chiandotto S, et al. Exercise-induced skeletal muscle remodeling and metabolic adaptation:redox signaling and role of autophagy[J]. Antioxid Redox Signal, 2014,21(1):154-176.
doi: 10.1089/ars.2013.5773 URL pmid: 24450966 |
[8] |
Bustin SA, Beaulieu JF, Huggett J, et al. MIQE precis:Practical implementation of minimum standard guidelines for fluorescence-based quantitative real-time PCR experiments[J]. BMC Mol Biol, 2010,11:74.
doi: 10.1186/1471-2199-11-74 URL pmid: 20858237 |
[9] | 许晴, 林森, 朱江江, 等. 山羊肌内前体脂肪细胞诱导分化过程中内参基因的表达稳定性分析[J]. 畜牧兽医学报, 2018,49(5):907-918. |
Xu Q, Lin S, Zhu JJ, et al. The expression stability analysis of reference genes in the process of goat intramuscular preadipocytes differentiation in goat[J]. Acta Veterinariaet Zootechnica Sinic, 2018,49(5):907-918. | |
[10] |
Andrusiewicz M, Slowikowski B, Skibinska I, et al. Selection of reliable reference genes in eutopic and ectopic endometrium for quantitative expression studies[J]. Biomed Pharmacother, 2016,78:66-73.
doi: 10.1016/j.biopha.2015.12.028 URL pmid: 26898426 |
[11] |
Kaur R, Sodhi M, Sharma A, et al. Selection of suitable reference genes for normalization of quantitative RT-PCR(RT-qPCR)expression data across twelve tissues of riverine buffaloes(Bubalus bubalis)[J]. PLoS One, 2018,13(3):e0191558.
doi: 10.1371/journal.pone.0191558 URL pmid: 29509770 |
[12] |
Nazari F, Parham A, Maleki AF. GAPDH, beta-actin and beta2-microglobulin, as three common reference genes, are not reliable for gene expression studies in equine adipose- and marrow-derived mesenchymal stem cells[J]. J Anim Sci Technol, 2015,57:18.
doi: 10.1186/s40781-015-0050-8 URL pmid: 26290738 |
[13] |
Thomas KC, Zheng XF, Garces Suarez F, et al. Evidence based selection of commonly used RT-qPCR reference genes for the analysis of mouse skeletal muscle[J]. PLoS One, 2014,9(2):e88653.
doi: 10.1371/journal.pone.0088653 URL pmid: 24523926 |
[14] |
Hildyard JCW, Taylor-Brown F, Massey C, et al. Determination of qPCR reference genes suitable for normalizing gene expression in a canine model of duchenne muscular dystrophy[J]. J Neuromuscul Dis, 2018,5(2):177-191.
URL pmid: 29614692 |
[15] |
McBryan J, Hamill RM, Davey G, et al. Identification of suitable reference genes for gene expression analysis of pork meat quality and analysis of candidate genes associated with the trait drip loss[J]. Meat Sci, 2010,86(2):436-439.
URL pmid: 20579813 |
[16] | Ju W, Smith AO, Sun T, et al. Validation of housekeeping genes as reference for reverse-transcription-qPCR analysis in busulfan-injured microvascular endothelial cells[J]. Biomed Res Int, 2018: 4953806. DOI: 10.1155/2015/4953806. |
[17] |
Wang X, Zhao H, Ni J, et al. Identification of suitable reference genes for gene expression studies in rat skeletal muscle following sciatic nerve crush injury[J]. Mol Med Rep, 2019,19(5):4377-4387.
doi: 10.3892/mmr.2019.10102 URL pmid: 30942461 |
[18] | Vandesompele J, De Preter K, Pattyn F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes[J]. Genome Biol, 2002,3(7):34. |
[19] |
Moura MT, Silva RLO, Nascimento PS, et al. Inter-genus gene expression analysis in livestock fibroblasts using reference gene validation based upon a multi-species primer set[J]. PLoS One, 2019,14(8):e0221170.
doi: 10.1371/journal.pone.0221170 URL pmid: 31412093 |
[20] |
Wang C, Yue F, Kuang S. Muscle histology characterization using H&E staining and muscle fiber type classification using immunofluorescence staining[J]. Bio Protoc, 2017,7(10):e2279.
doi: 10.21769/BioProtoc.2279 URL pmid: 28752107 |
[21] |
Edmunds RC, McIntyre JK, Luckenbach JA, et al. Toward enhanced MIQE compliance:reference residual normalization of qPCR gene expression data[J]. J Biomol Tech, 2014,25(2):54-60.
doi: 10.7171/jbt.14-2502-003 URL pmid: 24982597 |
[22] |
Jose S, Abbey J, Jaakola L, et al. Selection and validation of reliable reference genes for gene expression studies from Monilinia vaccinii-corymbosi infected wild blueberry phenotypes[J]. Sci Rep, 2020,10(1):11688.
doi: 10.1038/s41598-020-68597-9 URL pmid: 32678232 |
[23] |
Derveaux S, Vandesompele J, Hellemans J. How to do successful gene expression analysis using real-time PCR[J]. Methods, 2010,50(4):227-230.
doi: 10.1016/j.ymeth.2009.11.001 URL |
[24] |
Molina CE, Jacquet E, Ponien P, et al. Identification of optimal reference genes for transcriptomic analyses in normal and diseased human heart[J]. Cardiovasc Res, 2018,114(2):247-258.
URL pmid: 29036603 |
[25] |
Andersen CL, Jensen JL, Orntoft TF. Normalization of real-time quantitative reverse transcription-PCR data:a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets[J]. Cancer Res, 2004,64(15):5245-5250.
URL pmid: 15289330 |
[26] |
Pfaffl MW, Tichopad A, Prgomet C, et al. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity:BestKeeper--Excel-based tool using pair-wise correlations[J]. Biotechnol Lett, 2004,26(6):509-515.
doi: 10.1023/b:bile.0000019559.84305.47 URL pmid: 15127793 |
[27] |
Singh V, Kaul SC, Wadhwa R, et al. Evaluation and selection of candidate reference genes for normalization of quantitative RT-PCR in Withania somnifera(L.)Dunal[J]. PLoS One, 2015,10(3):e0118860.
URL pmid: 25769035 |
[28] |
Wang Q, Ishikawa T, Michiue T, et al. Stability of endogenous reference genes in postmortem human brains for normalization of quantitative real-time PCR data:comprehensive evaluation using geNorm, NormFinder, and BestKeeper[J]. Int J Legal Med, 2012,126(6):943-952.
doi: 10.1007/s00414-012-0774-7 URL pmid: 23010907 |
[29] |
Meyuhas O, Klein A. The mouse ribosomal protein L7 gene. Its primary structure and functional analysis of the promoter region[J]. J Biol Chem, 1990,265(20):11465-1473.
URL pmid: 2365680 |
[30] |
Chou CW, Tai LR, Kirby R, et al. Importin beta3 mediates the nuclear import of human ribosomal protein L7 through its interaction with the multifaceted basic clusters of L7[J]. FEBS Lett, 2010,584(19):4151-4156.
URL pmid: 20828572 |
[31] |
Lauranzano E, Pozzi S, Pasetto L, et al. Peptidylprolyl isomerase A governs TARDBP function and assembly in heterogeneous nuclear ribonucleoprotein complexes[J]. Brain, 2015,138(4):974-991.
doi: 10.1093/brain/awv005 URL |
[32] |
Gong H, Sun L, Chen B, et al. Evaluation of candidate reference genes for RT-qPCR studies in three metabolism related tissues of mice after caloric restriction[J]. Sci Rep, 2016,6:38513.
doi: 10.1038/srep38513 URL pmid: 27922100 |
[33] |
Nakao R, Okauchi H, Hashimoto C, et al. Determination of reference genes that are independent of feeding rhythms for circadian studies of mouse metabolic tissues[J]. Mol Genet Metab, 2017,121(2):190-197.
URL pmid: 28410879 |
[34] | 梁雄顺, 莫俊銮, 龚春梅, 等. 不同饲料硒水平饲养大鼠的多组织内参基因筛选[J]. 卫生研究, 2019,48(1):89-93, 98. |
Liang SX, Mo JL, Gong CM, et al. Screening for reference genes in various tissues of rats fed at different dietary selenium concentrations[J]. Journal of Hygiene Reseaech, 2019,48(1):89-93, 98. | |
[35] |
Sawano S, Komiya Y, Ichitsubo R, et al. A one-step immunostaining method to visualize rodent muscle fiber type within a single specimen[J]. PLoS One, 2016,11(11):e0166080.
doi: 10.1371/journal.pone.0166080 URL |
[1] | 姚姿婷, 曹雪颖, 肖雪, 李瑞芳, 韦小妹, 邹承武, 朱桂宁. 火龙果溃疡病菌实时荧光定量PCR内参基因的筛选[J]. 生物技术通报, 2023, 39(5): 92-102. |
[2] | 宋海娜, 吴心桐, 杨鲁豫, 耿喜宁, 张华敏, 宋小龙. 葱鳞葡萄孢菌诱导下韭菜RT-qPCR内参基因的筛选和验证[J]. 生物技术通报, 2023, 39(3): 101-115. |
[3] | 孙宝箴, 全龙萍, 康慧, 姚玉新, 沈甜, 陈卫平, 杜远鹏, 高振. 基于跨反向剪接位点引物特异性检测circRNA的PCR方法[J]. 生物技术通报, 2022, 38(5): 279-285. |
[4] | 丁亚群, 丁宁, 谢深民, 黄梦娜, 张昱, 张勤, 姜力. Vps28基因敲除小鼠模型的构建及其对泌乳和免疫性状影响的研究[J]. 生物技术通报, 2022, 38(3): 164-172. |
[5] | 徐圆圆, 赵国春, 郝颖颖, 翁学煌, 陈仲, 贾黎明. 无患子RT-qPCR内参基因的筛选与验证[J]. 生物技术通报, 2022, 38(10): 80-89. |
[6] | 范亚朋, 芮存, 张悦新, 陈修贵, 陆许可, 王帅, 张红, 徐楠, 王晶, 陈超, 叶武威. 陆地棉耐碱基因GHZAT12的克隆、表达及生物信息学分析[J]. 生物技术通报, 2021, 37(8): 121-130. |
[7] | 谢绍怡, 蒋璐蔓, 杨晓峰, 张仙玉, 吴珍芳, 李紫聪. 切割小鼠X染色体的CRISPR/Cas9系统表达载体的构建及验证[J]. 生物技术通报, 2021, 37(5): 67-75. |
[8] | 李恬静薇, 邹潇潇, 朱军, 鲍时翔. 长茎葡萄蕨藻胁迫条件下RT-qPCR内参基因的筛选与验证[J]. 生物技术通报, 2021, 37(10): 266-276. |
[9] | 潘沫晗, 陆添权, 田波. 滇牡丹种子实时荧光定量PCR分析中内参基因的筛选与验证[J]. 生物技术通报, 2020, 36(9): 218-226. |
[10] | 孔春艳, 陈永坤, 王莎莎, 郝大海, 杨宇, 龚明. 小桐子低温胁迫下microRNA实时荧光定量PCR内参的筛选与比较[J]. 生物技术通报, 2019, 35(7): 25-32. |
[11] | 王棋文, 李盼, 潘翠云, 韩芬霞. 乙二醇对体内外源基因表达的作用研究[J]. 生物技术通报, 2019, 35(4): 64-68. |
[12] | 王新艳, 张俊玲, 施志仪. 牙鲆cbx2基因的分子特征与组织表达[J]. 生物技术通报, 2019, 35(4): 69-75. |
[13] | 王杰, 张阳, 秦澎, 何茂兰, 李津, 辜运富, 曾先富, 向泉桔. pH对香菇多糖含量及合成关键酶基因转录水平的影响[J]. 生物技术通报, 2019, 35(2): 39-45. |
[14] | 张达秀, 贺双丽, 王倩, 蒲仕明, 吴琼. 青年和老年小鼠棕色脂肪来源间充质干细胞生物学特性比较[J]. 生物技术通报, 2019, 35(2): 137-142. |
[15] | 耿慧君, 邹伟, 崔惠敬, 李晓宇, 王丽丽, 徐永平. 基于转录组学的金黄色葡萄球菌噬菌体安全性评估[J]. 生物技术通报, 2019, 35(12): 64-75. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||