生物技术通报 ›› 2020, Vol. 36 ›› Issue (10): 105-115.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0282
张林义1,2(), 宋晨3, 徐瑶瑶2, 王嘉宁2, 王进1, 岳正波1, 刘晓玲2()
收稿日期:
2020-03-16
出版日期:
2020-10-26
发布日期:
2020-11-02
作者简介:
张林义,男,硕士研究生,研究方向:环境微生物;E-mail: 基金资助:
ZHANG Lin-yi1,2(), SONG Chen3, XU Yao-yao2, WANG Jia-ning2, WANG Jin1, YUE Zheng-bo1, LIU Xiao-ling2()
Received:
2020-03-16
Published:
2020-10-26
Online:
2020-11-02
摘要:
以S2-离子为目标污染物,从北京东沙河黑臭水体中筛选分离得到一株具有高效S2-氧化功能的土著微生物。对其进行16S rRNA测序鉴定,结果显示,该菌株属于柠檬酸杆菌属(Citrobacter),命名为Citrobacter sp.sp1。菌株sp1的最适氧化条件为温度25℃,初始pH值7.0,初始葡萄糖浓度1.00 g/L和初始菌浓度1.00 g/L。在此最适条件下,菌株sp1对人工含硫废水中S2-的氧化率达到97.1%。在整个S2-氧化过程产生了S0、S2O32-、SO32-、S4O62-和SO42-这5种赋存形态的硫离子,且随着S2-浓度的持续下降SO42-浓度呈缓慢上升趋势。利用高通量测序技术推测菌株sp1通过副球菌硫氧化(Paracoccus sulfur oxidation,PSO)和副硫代硫酸盐代谢(S4 intermediate,S4I)这两条代谢途径将非稳定态的S2-逐步转化为稳定态的SO42-。在PSO途径中,一部分的S2-氧化为S0,生成的S0继续氧化为SO32-;而另一部分的S2-则直接氧化为SO32-,中间产物SO32-通过直接氧化途径与间接氧化途径氧化为SO42-。此外,在此途径中,S0亦可与SO32-自发反应生成S2O32-,而S2O32-发生歧化反应重新释放出SO32-和S0。在S4I途径中,一部分S2O32-转化为S4O62-;接着S4O62-被氧化为SO42-。
张林义, 宋晨, 徐瑶瑶, 王嘉宁, 王进, 岳正波, 刘晓玲. 一株高效硫氧化菌的筛选及其对S2-离子氧化途径的推测[J]. 生物技术通报, 2020, 36(10): 105-115.
ZHANG Lin-yi, SONG Chen, XU Yao-yao, WANG Jia-ning, WANG Jin, YUE Zheng-bo, LIU Xiao-ling. Screening of an Effective Sulfur-oxidizing Strain and Its Main Bio-oxidation Metabolic Pathway of S2-[J]. Biotechnology Bulletin, 2020, 36(10): 105-115.
基因 | 基因功能注释 |
---|---|
cysC | 腺苷酰硫酸激酶 |
sufES | 半胱氨酸脱硫酶 |
sat | 硫酸腺苷酰转移酶 |
cybB | 细胞色素b561 |
nqor | NAD(P)H-泛醌氧化还原酶 |
nuo | NADH-氧化还原酶 |
ato | 琥珀酰基醋酸酯辅酶A转移酶 |
paps | 磷酸腺苷磷酸硫酸还原酶 |
his | 磷酸核糖酸-AMP环化水解酶 |
ast | 芳基硫酸酯磺基转移酶 |
stp | 硫酸盐ABC转运体渗透酶 |
hdrA | 吡啶核苷酸二硫键氧化还原酶 |
yghu/hdrB | 二硫化物氧化还原酶 |
psrB | 4Fe-4S簇结合酶 |
hdrC | 铁硫簇结合蛋白 |
fisR | 转录调节因子 |
suox | 亚硫酸盐氧化酶 |
cysIJ | 亚硫酸盐还原酶 |
thiS | 硫载体蛋白腺苷酸转移酶 |
st | S-转移酶 |
sbp | 硫酸盐转运蛋白 |
cysAUW | 硫酸盐/硫代硫酸盐转运蛋白 |
tetH | 连四硫酸水解酶 |
Dsb/soxW | 硫醇二硫化物互换蛋白 |
trxB | 硫氧还蛋白还原酶 |
trxAC/soxV | 硫氧还蛋白 |
phs/soxZ | 硫代硫酸盐还原酶 |
doxAB | 硫代硫酸盐醌氧化还原酶 |
psr | 转录调节蛋白 |
tst | 硫代硫酸盐-硫转移酶 |
rhd | 硫代硫酸盐-氰化物硫转移酶 |
fcc | 黄素细胞色素c |
grx | 谷氧还蛋白 |
gst | 谷胱甘肽S-转移酶 |
gsr | 谷胱甘肽还原酶 |
gshp | 谷胱甘肽过氧化物酶 |
cydAB | 细胞色素d泛醌氧化酶 |
cyoABCD | 细胞色素o泛醌氧化酶 |
soxAX | 细胞色素c550 |
soxB | 硫酯酶 |
soxC | Mo-co蛋白 |
soxF | 黄素腺嘌呤二核苷酸 |
soxY | 硫代硫酸盐氧化载体蛋白 |
soxX | 细胞色素c |
表1 菌株sp1基因组中无机硫生物氧化过程相关基因
基因 | 基因功能注释 |
---|---|
cysC | 腺苷酰硫酸激酶 |
sufES | 半胱氨酸脱硫酶 |
sat | 硫酸腺苷酰转移酶 |
cybB | 细胞色素b561 |
nqor | NAD(P)H-泛醌氧化还原酶 |
nuo | NADH-氧化还原酶 |
ato | 琥珀酰基醋酸酯辅酶A转移酶 |
paps | 磷酸腺苷磷酸硫酸还原酶 |
his | 磷酸核糖酸-AMP环化水解酶 |
ast | 芳基硫酸酯磺基转移酶 |
stp | 硫酸盐ABC转运体渗透酶 |
hdrA | 吡啶核苷酸二硫键氧化还原酶 |
yghu/hdrB | 二硫化物氧化还原酶 |
psrB | 4Fe-4S簇结合酶 |
hdrC | 铁硫簇结合蛋白 |
fisR | 转录调节因子 |
suox | 亚硫酸盐氧化酶 |
cysIJ | 亚硫酸盐还原酶 |
thiS | 硫载体蛋白腺苷酸转移酶 |
st | S-转移酶 |
sbp | 硫酸盐转运蛋白 |
cysAUW | 硫酸盐/硫代硫酸盐转运蛋白 |
tetH | 连四硫酸水解酶 |
Dsb/soxW | 硫醇二硫化物互换蛋白 |
trxB | 硫氧还蛋白还原酶 |
trxAC/soxV | 硫氧还蛋白 |
phs/soxZ | 硫代硫酸盐还原酶 |
doxAB | 硫代硫酸盐醌氧化还原酶 |
psr | 转录调节蛋白 |
tst | 硫代硫酸盐-硫转移酶 |
rhd | 硫代硫酸盐-氰化物硫转移酶 |
fcc | 黄素细胞色素c |
grx | 谷氧还蛋白 |
gst | 谷胱甘肽S-转移酶 |
gsr | 谷胱甘肽还原酶 |
gshp | 谷胱甘肽过氧化物酶 |
cydAB | 细胞色素d泛醌氧化酶 |
cyoABCD | 细胞色素o泛醌氧化酶 |
soxAX | 细胞色素c550 |
soxB | 硫酯酶 |
soxC | Mo-co蛋白 |
soxF | 黄素腺嘌呤二核苷酸 |
soxY | 硫代硫酸盐氧化载体蛋白 |
soxX | 细胞色素c |
[1] | 刘晓玲, 徐瑶瑶, 宋晨, 等. 城市黑臭水体治理技术及措施分析[J]. 环境工程学报, 2019,13(3):519-529. |
Liu XL, Xu YY, Song C, et al. Analysis of treatment technologies and measures for the urban black-stinking water body[J]. Chinese Journal of Environmental Engineering, 2019,11(3):519-529. | |
[2] | Wei LF, Huang C, Wang ZX, et al. Monitoring of urban black-odor water based on nemerow index and gradient boosting decision tree regression using uav-borne hyperspectral imagery[J]. Remote Sensing, 2019,11(20):2042. |
[3] |
Liang ZW, Siegert M, Fang WW, et al. Blackening and odorization of urban rivers:a bio-geochemical process[J]. FEMS Microbiology Ecology, 2018, 94(3):UNSP fix180.
URL pmid: 33068111 |
[4] | Sun SL, Sheng YQ, Sun RC, et al. Study on evolution and mechanism of river water black-odor and malodorous sulfide[J]. Environmental Science and Technology, 2018,41(3):15-22. |
[5] | 徐瑶瑶, 宋晨, 宋楠楠, 等. 复合菌对黑臭水体中S2-的氧化条件优化及动力学特性 [J]. 环境工程学报, 2019,13(3):530-540. |
Xu YY, Song C, Song NN, et al. Condition optimization and kinetic characteristics of S2- bio-oxidation in a black-stinking water bo-oxidation in a black-sinking water body by composite microorganisms[J]. Chinese Journal of Environmental Engineering, 2019,13(3):530-540. | |
[6] | 徐瑶瑶, 宋晨, 路金霞, 等. 寡养单胞菌对S2-氧化特性及主要代谢途径 [J]. 中国环境科学, 2019,39(8):3373-3382. |
Xu YY, Song C, Lu JX, et al. S2--oxidizing characteristics and main bio-oxidation metabolic pathway of Stenotrophomonas sp.sp3 [J]. China Environmental Science, 2019,39(8):3373-3382. | |
[7] |
Song C, Liu XL, Song YH, et al. Key blackening and stinking pollutants in dongsha river of beijing:spatial distribution and source identification[J]. Journal of Environmental Management, 2017,200:335-346.
URL pmid: 28595127 |
[8] |
Gagol M, Soltani RDC, Przyjazny A, et al. Effective degradation of sulfide ions and organic sulfides in cavitation-based advanced oxidation processes(AOPs)[J]. Ultrasonics Sonochemistry, 2019,58:104610.
URL pmid: 31450382 |
[9] |
Joshi DR, Zhang Y, Gao YX, et al. Biotransformation of nitrogen- and sulfur-containing pollutants during coking wastewater treatment:correspondence of performance to microbial community functional structure[J]. Water Research, 2017,121:338-348.
URL pmid: 28570873 |
[10] | Liu C, Shen Q, Zhou Q, et al. Precontrol of algae-induced black blooms through sediment dredging at appropriate depth in a typical eutrophic shallow lake[J]. Ecological Engineering, 2015,77:139-145. |
[11] |
Friedrich CG, Bardischewsky F, Rother D, et al. Prokaryotic sulfur oxidation[J]. Current Opinion in Microbiology, 2005,8(3):253-259.
URL pmid: 15939347 |
[12] | 谭文勃, 马晓丹, 黄聪, 等. 1株异养反硝化硫细菌的分离鉴定及代谢特性[J]. 环境科学, 2017,38(2):809-814. |
Tan WB, Ma XD, Huang C, et al. Isolation, identification and metabolic characteristics of a heterotrophic denitrifying sulfur bacterial strain[J]. Environmental Science, 2017,38(2):809-814. | |
[13] |
Feng SS, Lin X, Tong YJ, et al. Biodesulfurization of sulfide wastewater for elemental sulfur recovery by isolated Halothiobacillus neapolitanus in an internal airlift loop reactor[J]. Bioresource Technology, 2018,264:244-252.
URL pmid: 29843112 |
[14] |
Chang CY, Chen SY, Klipkhayai P, et al. Bioleaching of heavy metals from harbor sediment using sulfur-oxidizing microflora acclimated from native sediment and exogenous soil[J]. Environmental Science and Pollution Research, 2018,26(7):6818-6828.
URL pmid: 30635877 |
[15] | Gholipour S, Mehrkesh P, Azin E, et al. Biological treatment of toxic refinery spent sulfidic caustic at low dilution by sulfur-oxidizing fungi[J]. Journal of Environmental Chemical Engineering, 2018,6(2):2762-2767. |
[16] |
Hou NK, Xia YZ, Wang X, et al. H2S biotreatment with sulfide-oxidizing heterotrophic bacteria[J]. Biodegradation, 2018,29(6):511-524.
URL pmid: 30141069 |
[17] |
Watling HR, Collinson DM, Corbett MK, et al. Saline-water bioleaching of chalcopyrite with thermophilic, iron(II)and sulfur-oxidizing microorganisms[J]. Research in Microbiology, 2016,167(7):546-554.
URL pmid: 27212381 |
[18] | Semrany S, Favier L, Djelal H, et al. Bioaugmentation:possible solution in the treatment of bio-refractory organic compounds(bio-rocs)[J]. Biochemical Engineering Journal, 2012,69(51):75-86. |
[19] | 杜聪, 冯胜, 张毅敏, 等. 微生物菌剂对黑臭水体水质改善及生物多样性修复效果研究[J]. 环境工程, 2018,36(8):1-7. |
Du C, Feng S, Zhang YM, et al. Study on the improvement of water quality and biological diversity of black and odorous water by microbial inoculants[J]. Environmental Engineering, 2018,36(8):1-7. | |
[20] | Chen JN, Zhan P, Koopman B, et al. Bioaugmentation with gordonia strain JW8 in treatment of pulp and paper wastewater[J]. Clean Technologies and Environmental Policy, 2012,14(5):899-904. |
[21] | Hong P, Wu XQ, Shu YL, et al. Bioaugmentation treatment of nitrogen-rich wastewater with a denitrifier with biofilm-formation and nitrogen-removal capacities in a sequencing batch biofilm reactor[J]. Bioresource Technology, 2020,303:122905. |
[22] | 王海珊, 邹平, 付先萍, 等. 黑臭水体组合生物净化技术研究进展[J]. 环境工程技术学报, 2020,10(1):56-62. |
Wang HS, Zou P, Fu XP, et al. Research progress on combined biological purification technologies for black and smelly water bodies[J]. Journal of Environmental Engineering Technology, 2020,10(1):56-62. | |
[23] | Li SY, Zhang QF. Risk assessment and seasonal variations of dissolved trace elements and heavy metals in the upper han river, China[J]. Journal of Hzardous Materials, 2010,181(1-3):1051-1058. |
[24] |
Lee EY, Lee NY, Cho K, et al. Removal of hydrogen sulfide by sulfate-resistant acidithiobacillus thiooxidans AZ11[J]. Journal of Bioscience and Bioengineering, 2006,101(4):309-314.
doi: 10.1263/jbb.101.309 URL pmid: 16716938 |
[25] |
Slobodkina GB, Baslerov RV, Novikov AA, et al. Inmirania thermothiophila gen. nov. , sp nov. , a thermophilic, facultatively autotrophic, sulfur-oxidizing gammaproteobacterium isolated from a shallow-sea hydrothermal vent[J]. International Journal of Systematic and Evolutionary Microbiology, 2016,66:701-706.
URL pmid: 26582356 |
[26] | Zhuang R, Lou Y, Qiu X, et al. Identification of a yeast strain able to oxidize and remove sulfide high efficiently[J]. Applied Microbiology and Biotechnology, 2017,101(1):391-400. |
[27] |
Peng Y, Leung H, Yiu SM, et al. Idba-ud:a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth[J]. Bioinformatics, 2012,28(11):1420-1428.
doi: 10.1093/bioinformatics/bts174 URL pmid: 22495754 |
[28] |
Delcher AL, Bratke KA, Powers EC, et al. Identifying bacterial genes and endosymbiont DNA with glimmer[J]. Bioinformatics, 2007,23(6):673-679.
URL pmid: 17237039 |
[29] | 冯玉雪, 毛缜, 吕蒙蒙. 一株DDT降解菌的筛选及其降解特性[J]. 中国环境科学, 2018,38(5):1935-1942. |
Feng YX, Mao Z, Lv MM. Screening and degradation characteristics of a DDT-degrading bacteria[J]. China Environmental Science, 2018,38(5):1935-1942. | |
[30] | 东秀珠, 蔡妙英. 常见细菌系统鉴定乎册[M]. 北京: 科学出版社, 2002. |
Dong XZ, Cai MY. Systematic identification of common bacteria[M]. Beijing: Science Press, 2002. | |
[31] |
Venkidusamy K, Hari AR, Megharaj MP. Fe(III)reducing exoelectrogen Citrobacter sp. KVM11, isolated from hydrocarbon fed microbial electrochemical remediation systems[J]. Frontiers in Microbiology, 2018,9:349.
URL pmid: 29593662 |
[32] |
Shahryari Z, Gheisari K, Motamedi H. Effect of sulfate reducing Citrobacter sp. strain on the corrosion behavior of api X70 microalloyed pipeline steel[J]. Materials Chemistry and Physics, 2019, 236:UNSP 121799.
URL pmid: 20824196 |
[33] | Shan SP, Guo ZH, Lei P. Increased biomass and reduced tissue cadmium accumulation in rice via indigenous Citrobacter sp. XT1-2-2 and its mechanisms[J]. Science of The Total Environment, 2020,708:135224. |
[34] | Peter AG, Roger JDV. Metabolic uncouplers for controlling biomass accumulation in biological waste treatment systems[J]. Reviews in Environmental Science and Bio/Technology, 2017,17:1-18. |
[35] | 陈小红. 一株分离自网箱养殖区沉积物的硫氧化菌B1-1的鉴定及其硫氧化特性[J]. 微生物学通报, 2018,45(10):2082-2090. |
Chen XH. Identification and characterization of a sulfur-oxidizing bacterium B1-1 isolated from the sediment of marine cage culture area[J]. Microbiology China, 2018,45(10):2082-2090. | |
[36] | 庞博文. 用于黑臭水体修复的硫氧化菌师选与特性研究[D]. 北京:清华大学, 2017. |
Pang BW. Isolation and characteristics of sulfide oxidizing bacteria used for bioremediation of odorous river[D]. Beijing:Tsinghua University, 2017. | |
[37] | Jaffer YD, Kumar HS, Vinothkumar R, et al. Isolation and characterization of heterotrophic nitrification-aerobic denitrification and sulphur-oxidizing bacterium Paracoccus saliphilus strain SPUM from coastal shrimp ponds[J]. Aquaculture International, 2019,27(5):1513-1524. |
[38] | 刘阳, 姜丽晶, 邵宗泽. 硫氧化细菌的种类及硫氧化途径的研究进展[J]. 微生物学报, 2018,58(2):191-201. |
Liu Y, Jiang LJ, Shao ZZ. Advances in sulfur-oxidizing bacterial taxa and their sulfur oxidation pathways[J]. Acta Microbiologica Sinica, 2018,38(2):191-201. | |
[39] |
Ghosh W, Dam B. Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea[J]. FEMS Microbiology Reviews, 2009,33(6):999-1043.
URL pmid: 19645821 |
[40] | Imhoff JF, Thiel V. Phylogeny and taxonomy of chlorobiaceae[J]. Photosynjournal Research, 2010,104(2-3):123-136. |
[41] | Kelly DP, Shergill JK, Lu WP, et al. Oxidative metabolism of inorganic sulfur compounds by bacteria[J]. Antonie van Leeuwenhoek, 1997,71(1-2):95-107. |
[42] |
Tan T, Liu C, Liu L, et al. Hydrogen sulfide formation as well as ethanol production in different media by cysND- and/or cysIJ -inactivated mutant strains of Zymomonas mobilis ZM4[J]. Bioprocess Biosyst Eng, 2013,36(10):1363-1373.
URL pmid: 23086550 |
[43] | Quatrini R, Appia AC, Denis Y, et al. Extending the models for iron and sulfur oxidation in the extreme acidophile Acidithiobacillus ferrooxidans[J]. BMC Genomics, 2009,10(1):394-412. |
[44] | Toghrol F, Southerland WM. Purification of Thiobacillus novellus sulfite oxidase. Evidence for the presence of heme and molybdenum[J]. The Journal of Biological Chemistry, 1983,258(11):6762-6766. |
[45] |
Bruser T, Selmer T, Dahl C. “ADP sulfurylase” from Thiobacillus denitrificans is an adenylylsulfate:phosphate adenylyltransferase and belongs to a new family of nucleotidyltransferases[J]. The Journal of Biological Chemistry, 2000,275(3):1691-1698.
URL pmid: 10636864 |
[46] | Rohwerder T, Sand W. Oxidation of inorganic sulfur compounds in acidophilic prokaryotes[J]. Engineering in Life Sciences, 2007,7(4):301-309. |
[47] | Sakurai H, Ogawa T, Shiga M, et al. Inorganic sulfur oxidizing system in green sulfur bacteria[J]. Photosynjournal Research, 2010,104(2):163-176. |
[48] | Holden MTG, Titball RW, Peacock SJ, et al. Genornic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004,101(39):14240-14245. |
[49] |
Moller MC, Hederstedt L. Extracytoplasmic processes impaired by inactivation of trxA(thioredoxin gene)in Bacillus subtilis[J]. Journal of Bacteriology, 2008,190(13):4660-4665.
URL pmid: 18456801 |
[1] | 潘虎, 周子琼, 田云. 三株异菌脲高效降解菌株的筛选、鉴定及其降解特性分析[J]. 生物技术通报, 2023, 39(6): 298-307. |
[2] | 古丽加马力·艾萨, 邢军, 李安, 张瑞. 开菲尔粒中微生物对苯并(α)芘的非靶向代谢组学分析[J]. 生物技术通报, 2022, 38(5): 123-135. |
[3] | 马青云, 江旭, 李情情, 宋金龙, 周义清, 阮志勇. 烟嘧磺隆降解菌Chryseobacterium sp. LAM-M5的分离、鉴定及其降解机理研究[J]. 生物技术通报, 2022, 38(2): 113-122. |
[4] | 牛鸿宇, 舒倩, 杨海君, 颜智勇, 谭菊. 一株十二烷基硫酸钠高效降解菌的分离鉴定、降解特性及代谢途径研究[J]. 生物技术通报, 2022, 38(12): 287-299. |
[5] | 岳丽晓, 李登云, 张晶晶, 仝雷. 一株敌草隆降解菌的分离及其应用潜能探索[J]. 生物技术通报, 2020, 36(6): 110-119. |
[6] | 邱石正, 李佳益, 杨景辰, 刘长莉. 低成本合成聚羟基脂肪酸酯(PHAs)的研究进展[J]. 生物技术通报, 2019, 35(9): 45-52. |
[7] | 李冉, 黄玉清, 贾振华. 大肠杆菌代谢途径改造策略与应用研究进展[J]. 生物技术通报, 2019, 35(8): 232-237. |
[8] | 王嘉翼, 樊双虎, 任超, 王俊欢, 杨婷, 贾阳, 李先军, 闫艳春. 一株黄色杆菌的分离鉴定及对邻苯二甲酸酯的降解研究[J]. 生物技术通报, 2018, 34(10): 157-164. |
[9] | 马富强, 杨广宇. 基于液滴微流控技术的超高通量筛选体系及其在合成生物学中的应用[J]. 生物技术通报, 2017, 33(1): 83-92. |
[10] | 茅佳灵, 许琳, 严明. NADP(H)相关的体外合成乳酸途径构建以及性究[J]. 生物技术通报, 2016, 32(9): 260-266. |
[11] | 谢虹;杨兰;李忠光;. 脯氨酸在植物非生物胁迫耐性形成中的作用[J]. , 2011, 0(02): 23-27. |
[12] | 韩增叶;田平芳;. KEGG数据库在生物合成研究中的应用[J]. , 2011, 0(01): 76-82. |
[13] | 于妍;宋万坤;刘春燕;高运来;李文福;孙殿君;陈庆山;胡国华;. 植物天冬氨酸代谢途径关键酶基因研究进展[J]. , 2008, 0(S1): 7-11. |
[14] | 刘蓉;刘军万;. 生物信息学中途径研究进展[J]. , 2008, 0(01): 83-87. |
[15] | 周盛;武波;黄永春;. 通过基因工程对赖氨酸生产菌B66构建的研究[J]. , 2007, 0(06): 150-153. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||