生物技术通报 ›› 2020, Vol. 36 ›› Issue (10): 191-199.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0385
收稿日期:
2020-04-05
出版日期:
2020-10-26
发布日期:
2020-11-02
作者简介:
陈璇,女,研究方向:植物逆境生理;E-mail: 基金资助:
CHEN Xuan1(), LIU Xiang-long1, TANG Ting1,2()
Received:
2020-04-05
Published:
2020-10-26
Online:
2020-11-02
摘要:
随着人类活动加剧,重金属污染形势越来越严峻,重金属污染土壤的植物修复技术由于其成本低、环境友好且修复效率高等优点已然成为研究热点,然而此领域研究基本集中在被子植物。苔藓植物叶片仅单层细胞构成,角质层不发达但相对体表面积较大,有较好的静电吸附能力,其特殊生理构造和发育过程决定了其对环境重金属胁迫具有超强适应性。综述了重金属胁迫对苔藓植物的影响以及苔藓植物在各个水平对重金属胁迫的响应,并提出了苔藓植物在耐重金属胁迫机制上与其他陆生高等植物具有保守性,以期为重金属污染地区进行生态修复提供理想材料和生物监测方法。
陈璇, 刘祥龙, 唐婷. 苔藓植物响应重金属胁迫的研究进展[J]. 生物技术通报, 2020, 36(10): 191-199.
CHEN Xuan, LIU Xiang-long, TANG Ting. Advances of Bryophytes in Response to Heavy Metal Stress[J]. Biotechnology Bulletin, 2020, 36(10): 191-199.
[1] | Mohammed AS, Kapri A, Goel R. Heavy metal pollution:source, impact, and remedies[J]. Biomanagement of Metal-Contaminated Soils, 2011,20:1-28. |
[2] |
赖燕平, 李明顺, 杨胜香, 等. 广西锰矿恢复区食用农作物重金属污染评价[J]. 应用生态学报, 2007,18(8):1801-1806.
pmid: 17974248 |
Lai YP, Li MS, Yang SX, et al. Heavy metal concentrations and pollution assessment of edible crops grown on restored manganese mine lands in Guangxi, South China[J]. Chinese Journal of Applied Ecology, 2007,18(8):1801-1806.
URL pmid: 17974248 |
|
[3] |
Huang H, Zhao Y, Xu Z, et al. Physiological responses of Broussonetia papyrifera to manganese stress, a candidate plant for phytoremediation[J]. Ecotoxicology and Environmental Safety, 2019,181:18-25.
URL pmid: 31154116 |
[4] | 汪庆, 贺善安, 吴鹏程. 苔藓植物的多样性研究[J]. 生物多样性, 1999(4):332-339. |
Wang Q, He SA, Wu PC. The role of bryophytes in biodiversity[J]. Chinese Biodiversity, 1999(4):332-339. | |
[5] | Cameron AJ, Nickless G. Use of mosses as collectors of airborne heavy metals near a smelting complex[J]. Water Air and Soil Pollution, 1997,7(1):117-125. |
[6] | Zhou LY, Zhang ZH. Bryophytes in tangdan copper mine site in Yunnan Province[J]. Journal of Tropical and Subtropical Botany, 2007(1):82-85. |
[7] | 江洪, 张朝晖. 黔西南红土型金矿与云南东川拖布卡-播卡金矿苔藓植物比较研究[J]. 广东农业科学, 2012,39(23):179-182. |
Jiang H, Zhang CH. Comparative study on bryophytes between laterite gold deposit southwest Guizhou and Tuobuka-boka gold mine in Yunnan Province[J]. Guangdong Agricultural Sciences, 2012,39(23):179-182. | |
[8] |
Ouelhadj A, Kuschk P, Humbeck K. Heavy metal stress and leaf senescence induce the barley gene HvC2d1 encoding a calcium-dependent novel C2 domain-like protein[J]. New Phytologist, 2006,170(2):261-273.
URL pmid: 16608452 |
[9] | Berry J, Bjorkman O. Photosynthetic response and adaptation to temperature in higher plants[J]. Annual Review of Plant Physiology, 1980,31(1):491-543. |
[10] |
Chen YE, Wu N, Zhang ZW, et al. Perspective of monitoring heavy metals by moss visible chlorophyll fluorescence parameters[J]. Frontiers in Plant Science, 2019,10:10-35.
URL pmid: 30766542 |
[11] |
Liu P, Huang R, Hu X, et al. Physiological responses and proteomic changes reveal insights into Stylosanthes response to manganese toxicity[J]. BMC Plant Biology, 2019,19(1):212.
URL pmid: 31113380 |
[12] | Annika JG, Gaku K. Short-term responses in maximum quantum yield of PSII(Fv/Fm)to ex situ temperature treatment of populations of bryophytes originating from different sites in Hokkaido, Northern Japan[J]. Plants, 2016,5(2):22. |
[13] |
Esposito S, Loppi S, Monaci F, et al. In-field and in-vitro study of the moss Leptodictyum riparium as bioindicator of toxic metal pollution in the aquatic environment:Ultrastructural damage, oxidative stress and HSP70 induction[J]. PLoS One, 2018,13(4):e0195717.
URL pmid: 29649272 |
[14] | 杨国远, 万凌琳, 雷学青 等. 重金属铅、铬胁迫对斜生栅藻的生长、光合性能及抗氧化系统的影响[J]. 环境科学学报, 2014,34(6):1606-1614. |
Yang GY, Wan LL, Lei XQ, et al. Effects of lead and chromium on the growth, photosynthetic performance, and antioxidant activity of Scenedesmus obliquus[J]. Acta Scientiae Circumstantiae, 2014,34(6):1606-1614. | |
[15] | 赵会君, 梁昕昕, 魏玉清. 不同浓度的Cu、Mn、Zn胁迫对商陆叶片光合系统参数及抗氧化酶系统的影响[J]. 北方园艺, 2020(3):120-127. |
Zhao HJ, Liang XX, Wei YQ. Effect of different concentrations of Cu, Zn and Mn on the photosynthetic and antioxidative system of Phytolaccca americana[J]. Northern Horticulture, 2020(3):120-127. | |
[16] | Gong SJ, Ma TW, Li J, et al. Leaf cell damage and changes in photosynthetic pigment contents of three moss species under cadmium stress[J]. The Journal of Applied Ecology, 2010,21(10):2671-2676. |
[17] | Chettri MK, Cook CM, Vardaka E, et al. The effect of Cu, Zn and Pb on the chlorophyll content of the lichens Cladonia convoluta and Cladonia rangiformis[J]. Environmental and Experimental Botany, 1998,39(1):1-10. |
[18] |
Nakajima H, Itoh K. Relationship between metal and pigment concentrations in the Fe-hyperaccumulator moss Scopelophila ligulata[J]. Journal of Plant Research, 2017,130(1):135-141.
URL pmid: 27761669 |
[19] |
Iwai M, Grob P, Iavarone AT, et al. A unique supramolecular organization of photosystem I in the moss Physcomitrella patens[J]. Nature Plants, 2018,4(11):904-909.
URL pmid: 30374090 |
[20] | 王强. 重金属对苔藓植物影响的研究进展[J]. 北方园艺, 2014(10):169-173. |
Wang Q. Advance in the effects of heavy metals on bryophytes[J]. Northern Horticulture, 2014(10):169-173. | |
[21] |
Cortis P, Vannini C, Cogoni A, et al. Chemical, molecular, and proteomic analyses of moss bag biomonitoring in a petrochemical area of Sardinia(Italy)[J]. Environmental Science and Pollution Research, 2016,23(3):2288-2300.
URL pmid: 26408120 |
[22] | Vecchia FD, Rocca NL, Moro I, et al. Morphogenetic, ultrastructural and physiological damages suffered by submerged leaves of Elodea canadensis exposed to cadmium[J]. Plant Science, 2004,168(2):329-338. |
[23] | 娄玉霞. 苔藓植物对重金属污染的响应机理和生物指示的研究[D]. 上海:上海师范大学, 2013. |
Lou YX. Study of response mechanism and bioindication of bryophytes to heavy metal pollution[D]. Shanghai:Shanghai Normal University, 2013. | |
[24] |
Esposito S, Sorbo S, Conte B, et al. Effects of heavy metals on ultrastructure and HSP70s induction in the aquatic moss Leptodictyum Riparium Hedw[J]. International Journal of Phytoremediation, 2012,14(4):443-455.
doi: 10.1080/15226514.2011.620904 URL pmid: 22567723 |
[25] | Choudhury S, Panda SK. Toxic effects, oxidative stress and ultrastructural changes in moss Taxithelium Nepalense(Schwaegr. )Broth. under chromium and lead phytotoxicity[J]. Water, Air and Soil Pollution, 2005,167(1):73-90. |
[26] | Bellini E, Maresca V, Betti C, et al. The moss Leptodictyum riparium counteracts severe cadmium stress by activation of glutathione transferase and phytochelatin synthase, but slightly by phytochelatins[J]. International Journal of Molecular Sciences, 2020,21(5):1583. |
[27] |
Küpper H, Andresen E. Mechanisms of metal toxicity in plants[J]. Metallomics, 2016,8(3):269-285.
URL pmid: 26837424 |
[28] | 陈少裕. 膜脂过氧化与植物逆境胁迫[J]. 植物学通报, 1989(4):211-217. |
Chen SY. Membrane lipid peroxidation and plant stress[J]. Chinese Bulletin of Botany, 1989(4):211-217. | |
[29] | 徐燕云, 吴晓梅, 沈秋仙, 等. 铅胁迫对大灰藓几种生理指标的影响[J]. 武汉植物学研究, 2010,28(5):606-611. |
Xu YY, Wu XM, Shen QX, et al. Effect of Pb stress on some physiological indices of Hypnum plumaeforme[J]. Journal of Wuhan Botanical Researches, 2010,28(5):606-611. | |
[30] | Sun SQ, He M, Cao T, et al. Antioxidative responses related to H2O2 depletion in Hypnum plumaeforme under the combined stress induced by Pb and Ni[J]. Environmental Monitoring and Assessment, 2010,163(1-3):303-312. |
[31] | 孙守琴. 苔藓对重金属的吸附特性及其在大气监测中的应用[D]. 重庆:西南农业大学, 2005. |
Sun SQ. Study on bryophytes’ adsorption character to heavy metal and it’s use in atmospheric environment monitoring[D]. Chongqing:Southwest University, 2005. | |
[32] | 孙守琴, 王定勇. 苔藓植物对大气污染指示作用的研究进展[J]. 四川环境 2004,5:37-41. |
Sun SQ, Wang DY. Advance in indication function of bryophytes to air pollution[J]. Sichuan Environment, 2004,5:37-41. | |
[33] | Bleuel C, Wesenberg D, Sutter K, et al. The use of the aquatic moss Fontinalis antipyretica L. ex Hedw. as a bioindicator for heavy metals[J]. Science of the Total Environment, 2004,345(1):13-21. |
[34] | 李进猛, 王定勇, 陈益, 等. 重庆市不同功能区苔藓植物重金属含量及吸附特性研究[J]. 西南师范大学学报:自然科学版, 2012,37(9):68-73. |
Li JM, Wang DY, Chen Y, et al. Heavy metal contents of bryophytes and their adsorption characteristics in different functional zones of Chongqing[J]. Journal of Southwest China Normal University:Natural Science Edition, 2012,37(9):68-73. | |
[35] |
Ares á, Itouga M, Kato Y, et al. Differential metal tolerance and accumulation patterns of Cd, Cu, Pb and Zn in the liverwort Marchantia polymorpha L.[J]. Bulletin of Environmental Contamination and Toxicology, 2018,100(3):444-450.
doi: 10.1007/s00128-017-2241-0 URL pmid: 29243209 |
[36] |
Jin HP, Lee SJ, Lee ME, et al. Comparison of heavy metal immobilization in contaminated soils amended with peat moss and peat moss-derived biochar[J]. Environmental Science Processes & Impacts, 2016,18(4):514-520.
doi: 10.1039/c6em00098c URL pmid: 27055368 |
[37] |
Balestri M, Bottega S, Spanò C. Response of Pteris vittata to different cadmium treatments[J]. Acta Physiologiae Plantarum, 2014,36(3):767-775.
doi: 10.1007/s11738-013-1454-z URL |
[38] |
Huang Y, Zhu Z, Wu X, et al. Lower cadmium accumulation and higher antioxidative capacity in edible parts of Brassica campestris L. seedlings applied with glutathione under cadmium toxicity[J]. Environmental Science and Pollution Research International, 2019,26(13):13235-13245.
doi: 10.1007/s11356-019-04745-7 URL pmid: 30900120 |
[39] |
Zhu Z, Huang Y, Wu X, et al. Increased antioxidative capacity and decreased cadmium uptake contribute to hemin-induced alleviation of cadmium toxicity in Chinese cabbage seedlings[J]. Ecotoxicology and Environmental Safety, 2019,177:47-57.
URL pmid: 30959312 |
[40] | 孙卫红, 王伟青, 孟庆伟. 植物抗坏血酸过氧化物酶的作用机制、酶学及分子特性[J]. 植物生理学通讯, 2005(2):143-147. |
Sun WH, Wang WQ, Meng QW. Functional mechanism and enzymatic and molecular characteristic of ascorbate peroxidase in plants[J]. Plant Physiology Communications, 2005(2):143-147. | |
[41] |
Wu Z, Zhao X, Sun X, et al. Antioxidant enzyme systems and the ascorbate-glutathione cycle as contributing factors to cadmium accumulation and tolerance in two oilseed rape cultivars(Brassica napus L.)under moderate cadmium stress[J]. Chemosphere, 2015,138:526-536.
URL pmid: 26207887 |
[42] | 高可辉. 镉胁迫及缺硫对水稻非蛋白巯基物质含量和谷胱甘肽硫转移酶活性的影响[D]. 南京:南京农业大学, 2011. |
Gao KH. Effect of cadmium stress and sulfur deficiency on non-protein thiol content and glutathione S-transferase activity in rice[D]. Nanjing:Nanjing Agricultural University, 2011. | |
[43] |
Saxena A, Saxena A. Bioaccumulation and glutathione-mediated detoxification of copper and cadmium in Sphagnum squarrosum Crome Samml Environmental monitoring and assessment[J]. Environmental Monitoring and Assessment, 2012,184(7):4097-4103.
URL pmid: 21845367 |
[44] | Jespersen HM, Kjaersgrd IV, Ostergaard L, et al. From sequence analysis of three novel ascorbate peroxidases from Arabidopsis thaliana to structure, function and evolution of seven types of ascorbate peroxidase[J]. Biochemical Journal, 1997,326(2):305-310. |
[45] | 周长芳, 吴国荣, 施国新, 等. 水花生抗氧化系统在抵御Cu2+ 胁迫中的作用[J]. 植物学报 , 2001(4):389-394. |
Zhou CF, Wu GR, Shi GX, et al. The role of antioxidant systems in Cu2+ stress resistance in alternanthera philoxeroides[J]. Acta Botanica Sinica, 2001(4):389-394. | |
[46] |
Sun SQ, Wang GX, He M, et al. Effects of Pb and Ni stress on oxidative stress parameters in three moss species[J]. Ecotoxicology and Environmental Safety, 2011,74(6):1630-1635.
doi: 10.1016/j.ecoenv.2011.04.002 URL pmid: 21497399 |
[47] | 李亚敏, 肖红利. 2种藓类植物对Cd-Cu复合胁迫的生理响应[J]. 江苏农业科学, 2011,39(4):441-443. |
Li YM, Xiao HL. Physiological responses of two mosses to Cd-Cu stress[J]. Jiangsu Agricultural Sciences, 2011,39(4):441-443. | |
[48] |
Nagae M, Nakata M, Takahashi Y. Identification of negative cis-acting elements in response to copper in the chloroplastic iron superoxide dismutase gene of the moss Barbula unguiculata[J]. Plant Physiology, 2008,146(4):1687-1696.
doi: 10.1104/pp.107.114868 URL pmid: 18258690 |
[49] |
Zhang FQ, Wang YS, Lou ZP, et al. Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings(Kandelia candel and Bruguiera gymnorrhiza)[J]. Chemosphere, 2007,67(1):44-50.
doi: 10.1016/j.chemosphere.2006.10.007 URL pmid: 17123580 |
[50] |
Vidi PA, Kanwischer M, Baginsky S, et al. Tocopherol cyclase(VTE1)localization and vitamin E accumulation in chloroplast plastoglobule lipoprotein particles[J]. The Journal of Biological Chemistry, 2006,281(16):11225-11234.
URL pmid: 16414959 |
[51] |
Bréhélin C Kessler F van Wijk KJ. Plastoglobules:versatile lipoprotein aparticles in plastids[J]. Trends in Plant Science, 2007,12(6):260-266.
URL pmid: 17499005 |
[52] | 邬飞波, 张国平. 植物螯合肽及其在重金属耐性中的作用[J]. 应用生态学报, 2003(4):632-636. |
Wu FB, Zhang GP. Phytochelatin and its function in heavy metal tolerance of higher plants[J]. Chinese Journal of Applied Ecology, 2003(4):632-636. | |
[53] |
Zenk MH, Grill E, Winnacker EL. Phytochelatins:The principal heavy-metal complexing peptides of higher plants[J]. Science, 1985,230(4726):674-676.
URL pmid: 17797291 |
[54] | Clemens S, Peroh D. Multi-tasking phytochelatin synthases[J]. Plant Science, 2009,177(4):266-271. |
[55] |
Petraglia A, De Benedictis M, Degola F, et al. The capability to synthesize phytochelatins and the presence of constitutive and functional phytochelatin synthases are ancestral(plesiomorphic)characters for basal land plants[J]. Journal of Experimental Botany, 2014,65(4):1153-1163.
URL pmid: 24449382 |
[56] |
Antoine Z, Martine FTL. Metallothionein diversity and distribution in the tree of life:a multifunctional protein[J]. Metallomics:Integrated Biometal Science, 2018,10(11):1549-1559.
URL pmid: 30229264 |
[57] |
Kim YO, Kang H. Comparative expression analysis of genes encoding metallothioneins in response to heavy metals and abiotic stresses in rice(Oryza sativa)and Arabidopsis thaliana[J]. Bioscience, Biotechnology, and Biochemistry, 2018,82(9):1656-1665.
URL pmid: 29912641 |
[58] |
Pakdee O, Songnuan W, Panvisavas N, et al. Functional characterization of metallothionein-like genes from Physcomitrella patens:expression profiling, yeast heterologous expression, and disruption of PpMT1. 2a gene[J]. Planta, 2019,250(2):427-443.
URL pmid: 31037485 |
[59] |
Andrews GK. Regulation of metallothionein gene expression by oxidative stress and metal ions[J]. Biochemical Pharmacology, 2000,59(1):95-104.
URL pmid: 10605938 |
[60] |
Lee J, Shim D, Song WY, et al. Arabidopsis metallothioneins 2a and 3 enhance resistance to cadmium when expressed in Vicia faba guard cells[J]. Plant Molecular Biology, 2004,54(6):805-815.
URL pmid: 15604653 |
[61] |
Schiller M, Hegelund JN, Pedas P, et al. Barley metallothioneins differ in ontogenetic pattern and response to metals[J]. Plant, Cell and Environment, 2013,37(2):353-367.
doi: 10.1111/pce.12158 URL pmid: 23808399 |
[62] |
Xue T, Li X, Zhu W, et al. Cotton metallothionein GhMT3a, a reactive oxygen species scavenger, increased tolerance against abiotic stress in transgenic tobacco and yeast[J]. Journal of Experimental Botany, 2009,60(1):339-349.
doi: 10.1093/jxb/ern291 URL pmid: 19033550 |
[63] |
Zhou G, Xu Y, Li J, et al. Molecular analyses of the metallothionein gene family in rice(Oryza sativa L.)[J]. Journal of Biochemistry and Molecular Biology, 2006,39(5):595-606.
URL pmid: 17002881 |
[64] |
Zhou J, Goldsbrough PB. Functional homologs of fungal metallothionein genes from Arabidopsis[J]. Plant Cell, 1994,6(6):875-884.
URL pmid: 8061521 |
[65] |
Cho SH, Hoang QT, Kim YY, et al. Proteome analysis of gametophores identified a metallothionein involved in various abiotic stress responses in Physcomitrella patens[J]. Plant Cell Reports, 2006,25(5):475-488.
URL pmid: 16397781 |
[66] |
Wang W, Vinocur B, Shoseyov O, et al. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response[J]. Trends in Plant Science, 2004,9(5):244-252.
URL pmid: 15130550 |
[67] | 周丽, 何非, 潘秋红, 等. 热休克蛋白在植物抗逆反应中的作用[J]. 热带生物学报, 2011,2(4):297-301. |
Zhou L, He F, Pan QH, et al. Role of heat shock proteins in plant response to environmental stresses[J]. Journal of Tropical Organisms, 2011,2(4):297-301. | |
[68] |
Basile A, Sorbo S, Conte B, et al. Ultrastructural changes and Heat Shock Proteins 70 induced by atmospheric pollution are similar to the effects observed under in vitro heavy metals stress in Conocephalum conicum(Marchantiales-Bryophyta)[J]. Environmental Pollution, 2013,182:209-216.
doi: 10.1016/j.envpol.2013.07.014 URL pmid: 23933125 |
[69] |
Esposito S, Sorbo S, Conte B, et al. Effects of heavy metals on ultrastructure and HSP70s induction in the aquatic moss Leptodictyum riparium Hedw[J]. International Journal of Phytoremediation, 2012,14(4):443-455.
URL pmid: 22567723 |
[70] |
Chen YE, Cui JM, Yang JC, et al. Biomonitoring heavy metal contaminations by moss visible parameters[J]. Journal of Hazardous Materials, 2015,296:201-109.
doi: 10.1016/j.jhazmat.2015.04.060 URL pmid: 25919648 |
[71] |
Cesa M, Bertossi A, Cherubini G, et al. Development of a standard protocol for monitoring trace elements in continental waters with moss bags:inter- and intraspecific differences[J]. Environmental Science and Pollution Research, 2015,22(7):5030-5040.
doi: 10.1007/s11356-015-4129-z URL pmid: 25647488 |
[72] | Vuković G, Urošević MA, Goryainova G, et al. Active moss biomonitoring for extensive screening of urban air pollution:Magnetic and chemical analyses[J]. Science of the Total Environment, 2015, 521-522:200-210. |
[73] | Kidron GJ . Do mosses serve as sink for rain in the Negev Desert? A theoretical and experimental approach[J]. Catena, 2014,121:31-39. |
[1] | 江润海, 姜冉冉, 朱城强, 侯秀丽. 微生物强化植物修复铅污染土壤的机制研究进展[J]. 生物技术通报, 2023, 39(8): 114-125. |
[2] | 陈宏艳, 李小二, 李忠光. 糖信号及其在植物响应逆境胁迫中的作用[J]. 生物技术通报, 2022, 38(7): 80-89. |
[3] | 李一涵, 于浪柳, 李春燕, 张蒙蒙, 张晓勤, 方云霞, 薛大伟. 大麦NRAMP全基因组鉴定及重金属胁迫下基因表达分析[J]. 生物技术通报, 2022, 38(6): 103-111. |
[4] | 杨露, 辛建攀, 田如男. 根际微生物对植物重金属胁迫的缓解作用及其机理研究进展[J]. 生物技术通报, 2022, 38(3): 213-225. |
[5] | 胡华冉, 杜磊, 张芮豪, 钟秋月, 刘发万, 桂敏. 辣椒适应非生物胁迫的研究进展[J]. 生物技术通报, 2022, 38(12): 58-72. |
[6] | 吉米拉木·加马力, 美合日班·阿不力米提, 古海尼沙·买买提, 艾尼瓦尔·吐米尔. 两种地衣共生藻对铜和锌的耐受性及吸附特性研究[J]. 生物技术通报, 2019, 35(6): 69-75. |
[7] | 毛晓洁, 王新民, 赵英, 周义清, 孙建光. 多功能固氮菌筛选及其在土壤生态修复中的应用[J]. 生物技术通报, 2017, 33(10): 148-155. |
[8] | 刘功良;王菊芳;李志勇;梁世中;. 铅螯合物人工抗原的制备与鉴定[J]. , 2009, 0(11): 158-162. |
[9] | 汪开治;. 海洋生物药研发现状综述[J]. , 2006, 0(04): 133-138. |
[10] | . 农业其它[J]. , 1986, 0(07): 84-84. |
[11] | 郭殿瑞;. 光合作用的遗传和分子分析[J]. , 1985, 0(01): 128-128. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||