生物技术通报 ›› 2022, Vol. 38 ›› Issue (3): 213-225.doi: 10.13560/j.cnki.biotech.bull.1985.2021-0811
收稿日期:
2021-06-26
出版日期:
2022-03-26
发布日期:
2022-04-06
作者简介:
杨露,女,硕士研究生,研究方向:园林植物生态修复;E-mail: 基金资助:
YANG Lu(), XIN Jian-pan, TIAN Ru-nan()
Received:
2021-06-26
Published:
2022-03-26
Online:
2022-04-06
摘要:
植物修复技术已成为重金属污染环境绿色修复的重要手段。在重金属胁迫下,根际微生物能够有效改善植物生长发育与生理代谢活动,并增强植物对重金属的吸收和富集能力。本文首先从根际微生物组成、根系-微生物相互作用两个方面进行阐述,并以此为基础分析植物根际促生菌、菌根真菌对植物重金属胁迫的缓解作用,同时从微生物、植物根系分泌物、植物乙烯合成、植物光合作用、植物抗氧化防御系统、植物水分与养分吸收、根际土壤微环境等方面论述了根际微生物缓解植物重金属胁迫的作用机制。最后,结合当前研究现状,提出进一步挖掘重金属胁迫下对植物生长有益的新菌种,探明重金属胁迫下植物根际区域不同微生物之间的相互作用,揭示重金属胁迫下植物根系-微生物互作体系的生理分子机制,以期为今后探索微生物辅助植物修复重金属污染环境的理论研究和实践提供指导。
杨露, 辛建攀, 田如男. 根际微生物对植物重金属胁迫的缓解作用及其机理研究进展[J]. 生物技术通报, 2022, 38(3): 213-225.
YANG Lu, XIN Jian-pan, TIAN Ru-nan. Research Progress in the Mitigative Effects of Rhizosphere Microorganisms on Heavy Metal Stress in Plants and Their Mechanisms[J]. Biotechnology Bulletin, 2022, 38(3): 213-225.
根际微生物 Rhizospheric microorganisms | 宿主植物 Host plants | 重金属 Heavy metal | 主要作用 Main functions | 文献来源 Reference |
---|---|---|---|---|
芽胞杆菌Paenibacillus mucilaginosus 根瘤菌Sinorhizobium meliloti | 紫花苜蓿Medicago sativa | Cu | 调控根际微生物群落结构,增加土壤养分的可利用性,促进植物生长 | [ |
粘质沙雷氏菌Serratia marcescens S2I7 | 水稻Oryza sativa | Cd | 促进P吸收、分泌铁载体和IAA,通过谷胱甘肽s-转移酶(GST)参与Cd解毒 | [ |
铜绿假单胞菌Pseudomonas aeruginosa 唐菖蒲伯克霍尔德菌Burkholderia gladioli | 番茄Solanum lycopersicum | Cd | 改变不同代谢物水平缓解重金属毒害 | [ |
根瘤菌Sinorhizobiumfredii S15 | 大豆G. max | Cd Pb | 促进P吸收、清除ROS,促进地上部对Cd、Pb的富集 | [ |
丛枝菌根真菌AMF | 蓖麻Ricinus communis 毒参Conium maculatum | Cr | 利用球囊素将重金属固定在根系,缓解重金属对植物地上部的毒害作用 | [ |
根瘤菌Rhizobium leguminosarum bv. viciae | 豌豆 Pisum sativum | Cd | 妨碍乙烯合成,促进植物生长 | [ |
根内根生囊霉Rhizophagus irregularis | 紫花苜蓿 M. sativa | Zn Cd | 提高植株含水量、叶绿素含量等,降低重金属富集 | [ |
球囊霉属菌根真菌Glomus spp. | 银白杨Populus alba | Zn Cu | 上调植物螯合蛋白和网格蛋白基因,增强植物重金属抗性,促进生长 | [ |
摩西球囊霉Glomus mosseae | 大豆G. max | Cd | 提高根重和光合速率,降低Cd毒性 | [ |
摩西管柄囊霉Funneliformis mosseae 根内根孢囊霉Rhizophagus intraradices | 水稻O. sativa | Cd | 改变Cd的亚细胞分布和化学形态 | [ |
卷边网褶菌Paxillus involutus | 银灰杨 Populus canescens | Pb | 调控相关蛋白影响次生代谢、氧化应激、能量供应等缓解重金属毒害 | [ |
根须腹菌属外生菌根Rhizopogon sp. | 阿勒颇松 Pinus halepensis | Pb Zn Cd | 促进植物对矿质养分的吸收,并将重金属固定于菌根 | [ |
土生空团菌Cenococcum geophilum 蜡蘑属真菌Laccaria sp. 豆马勃属真菌Pisolithus sp. | 樟子松 Pinus sylvestris | 废弃尾矿库 | 提高寄主生物量、光合作用和养分吸收等,将重金属滞留于根部,保护地上部 | [ |
表1 根际微生物对重金属胁迫下植物生长与生理代谢促进作用
Table 1 Effects of rhizosphere microorganisms on plant growth and physiological metabolism under heavy metal stress
根际微生物 Rhizospheric microorganisms | 宿主植物 Host plants | 重金属 Heavy metal | 主要作用 Main functions | 文献来源 Reference |
---|---|---|---|---|
芽胞杆菌Paenibacillus mucilaginosus 根瘤菌Sinorhizobium meliloti | 紫花苜蓿Medicago sativa | Cu | 调控根际微生物群落结构,增加土壤养分的可利用性,促进植物生长 | [ |
粘质沙雷氏菌Serratia marcescens S2I7 | 水稻Oryza sativa | Cd | 促进P吸收、分泌铁载体和IAA,通过谷胱甘肽s-转移酶(GST)参与Cd解毒 | [ |
铜绿假单胞菌Pseudomonas aeruginosa 唐菖蒲伯克霍尔德菌Burkholderia gladioli | 番茄Solanum lycopersicum | Cd | 改变不同代谢物水平缓解重金属毒害 | [ |
根瘤菌Sinorhizobiumfredii S15 | 大豆G. max | Cd Pb | 促进P吸收、清除ROS,促进地上部对Cd、Pb的富集 | [ |
丛枝菌根真菌AMF | 蓖麻Ricinus communis 毒参Conium maculatum | Cr | 利用球囊素将重金属固定在根系,缓解重金属对植物地上部的毒害作用 | [ |
根瘤菌Rhizobium leguminosarum bv. viciae | 豌豆 Pisum sativum | Cd | 妨碍乙烯合成,促进植物生长 | [ |
根内根生囊霉Rhizophagus irregularis | 紫花苜蓿 M. sativa | Zn Cd | 提高植株含水量、叶绿素含量等,降低重金属富集 | [ |
球囊霉属菌根真菌Glomus spp. | 银白杨Populus alba | Zn Cu | 上调植物螯合蛋白和网格蛋白基因,增强植物重金属抗性,促进生长 | [ |
摩西球囊霉Glomus mosseae | 大豆G. max | Cd | 提高根重和光合速率,降低Cd毒性 | [ |
摩西管柄囊霉Funneliformis mosseae 根内根孢囊霉Rhizophagus intraradices | 水稻O. sativa | Cd | 改变Cd的亚细胞分布和化学形态 | [ |
卷边网褶菌Paxillus involutus | 银灰杨 Populus canescens | Pb | 调控相关蛋白影响次生代谢、氧化应激、能量供应等缓解重金属毒害 | [ |
根须腹菌属外生菌根Rhizopogon sp. | 阿勒颇松 Pinus halepensis | Pb Zn Cd | 促进植物对矿质养分的吸收,并将重金属固定于菌根 | [ |
土生空团菌Cenococcum geophilum 蜡蘑属真菌Laccaria sp. 豆马勃属真菌Pisolithus sp. | 樟子松 Pinus sylvestris | 废弃尾矿库 | 提高寄主生物量、光合作用和养分吸收等,将重金属滞留于根部,保护地上部 | [ |
[1] |
Etesami H. Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues:Mechanisms and future prospects[J]. Ecotoxicol Environ Saf, 2018, 147:175-191.
doi: 10.1016/j.ecoenv.2017.08.032 URL |
[2] |
Gao PP, Xue PY, Dong JW, et al. Contribution of PM2. 5-Pb in atmospheric fallout to Pb accumulation in Chinese cabbage leaves via stomata[J]. J Hazard Mater, 2021, 407:124356.
doi: 10.1016/j.jhazmat.2020.124356 URL |
[3] |
Zhang HH, Li X, Xu ZS, et al. Toxic effects of heavy metals Pb and Cd on mulberry(Morus alba L.)seedling leaves:Photosynthetic function and reactive oxygen species(ROS)metabolism responses[J]. Ecotoxicol Environ Saf, 2020, 195:110469.
doi: 10.1016/j.ecoenv.2020.110469 URL |
[4] |
Mukhopadhyay M, Mondal TK. Effect of zinc and boron on growth and water relations of Camellia sinensis(L.)O. kuntze cv. T-78[J]. Natl Acad Sci Lett, 2015, 38(3):283-286.
doi: 10.1007/s40009-015-0381-5 URL |
[5] |
Elbaz A, Wei YY, Meng Q, et al. Mercury-induced oxidative stress and impact on antioxidant enzymes in Chlamydomonas reinhardtii[J]. Ecotoxicology, 2010, 19(7):1285-1293.
doi: 10.1007/s10646-010-0514-z URL |
[6] |
Kollmeier M, Felle HH, Horst WJ. Genotypical differences in aluminum resistance of maize are expressed in the distal part of the transition zone. is reduced basipetal auxin flow involved in inhibition of root elongation by aluminum?[J]. Plant Physiol, 2000, 122(3):945-956.
pmid: 10712559 |
[7] |
Ha S, Vankova R, Yamaguchi-Shinozaki K, et al. Cytokinins:metabolism and function in plant adaptation to environmental stresses[J]. Trends Plant Sci, 2012, 17(3):172-179.
doi: 10.1016/j.tplants.2011.12.005 URL |
[8] | 汪鹏, 王静, 陈宏坪, 等. 我国稻田系统镉污染风险与阻控[J]. 农业环境科学学报, 2018, 37(7):1409-1417. |
Wang P, Wang J, Chen HP, et al. Cadmium risk and mitigation in paddy systems in China[J]. J Agro Environ Sci, 2018, 37(7):1409-1417. | |
[9] | 周启星, 唐景春, 魏树和. 环境绿色修复的地球化学基础与相关理论探讨[J]. 生态与农村环境学报, 2020, 36(1):1-10. |
Zhou QX, Tang JC, Wei SH. Discussion on geochemical bases and relevant theories of environmental green remediation[J]. J Ecol Rural Environ, 2020, 36(1):1-10. | |
[10] | Nihorimbere V, Ongena M, Smargiassi M, et al. Beneficial effect of the rhizosphere microbial community for plant growth and health[J]. Biotechnol Agron Soc Environ, 2011, 15(2):327-337. |
[11] |
Huang XF, Chaparro JM, Reardon KF, et al. Rhizosphere interactions:root exudates, microbes, and microbial communities[J]. Botany, 2014, 92(4):267-275.
doi: 10.1139/cjb-2013-0225 URL |
[12] | 曾加会, 李元媛, 阮迪申, 等. 植物根际促生菌及丛枝菌根真菌协助植物修复重金属污染土壤的机制[J]. 微生物学通报, 2017, 44(5):1214-1221. |
Zeng JH, Li YY, Ruan DS, et al. Phytoremediation of heavy metal contaminated soils by plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi[J]. Microbiol China, 2017, 44(5):1214-1221. | |
[13] | 李明亮, 李欢, 王凯荣, 等. Cd胁迫下丛枝菌根对花生生长、光合生理及Cd吸收的影响[J]. 环境化学, 2016, 35(11):2344-2352. |
Li ML, Li H, Wang KR, et al. Effect of arbuscular mycorrhizae on the growth, photosynthetic characteristics and cadmium uptake of peanut plant under cadmium stress[J]. Environ Chem, 2016, 35(11):2344-2352. | |
[14] |
Galloway JN, Townsend AR, Erisman JW, et al. Transformation of the nitrogen cycle:recent trends, questions, and potential solutions[J]. Science, 2008, 320(5878):889-892.
doi: 10.1126/science.1136674 pmid: 18487183 |
[15] |
White J, Kingsley K, Verma S, et al. Rhizophagy cycle:an oxidative process in plants for nutrient extraction from symbiotic microbes[J]. Microorganisms, 2018, 6(3):95.
doi: 10.3390/microorganisms6030095 URL |
[16] |
陆玉芳, 施卫明. 根际化学信号物质与土壤养分转化[J]. 生物技术通报, 2020, 36(9):14-24.
doi: 10.13560/j.cnki.biotech.bull.1985.2020-0703 |
Lu YF, Shi WM. Rhizospheric chemical signals and soil nutrient transformation[J]. Biotechnol Bull, 2020, 36(9):14-24. | |
[17] |
Spence C, Alff E, Johnson C, et al. Natural rice rhizospheric microbes suppress rice blast infections[J]. BMC Plant Biol, 2014, 14:130.
doi: 10.1186/1471-2229-14-130 pmid: 24884531 |
[18] |
Berendsen RL, Pieterse CMJ, Bakker PAHM. The rhizosphere microbiome and plant health[J]. Trends Plant Sci, 2012, 17(8):478-486.
doi: 10.1016/j.tplants.2012.04.001 pmid: 22564542 |
[19] |
Turner TR, James EK, Poole PS. The plant microbiome[J]. Genome Biol, 2013, 14(6):209.
doi: 10.1186/gb-2013-14-6-209 URL |
[20] |
Li C, Jia Z, Peng X, et al. Functions of mineral-solubilizing microbes and a water retaining agent for the remediation of abandoned mine sites[J]. Sci Total Environ, 2021, 761:143215.
doi: 10.1016/j.scitotenv.2020.143215 URL |
[21] | 杜聪, 冯胜, 张毅敏, 等. 微生物菌剂对黑臭水体水质改善及生物多样性修复效果研究[J]. 环境工程, 2018, 36(8):1-7. |
Du C, Feng S, Zhang YM, et al. Study on the improvement of water quality and biological diversity of black and odorous water by microbial inoculants[J]. Environ Eng, 2018, 36(8):1-7. | |
[22] |
Hakim S, Naqqash T, Nawaz MS, et al. Rhizosphere engineering with plant growth-promoting microorganisms for agriculture and ecological sustainability[J]. Front Sustain Food Syst, 2021, 5:617157. DOI: 10.3389/fsufs.2021.617157.
doi: 10.3389/fsufs.2021.617157 URL |
[23] | 沈萍, 陈向东. 微生物学[M]. 8版. 北京: 高等教育出版社, 2016. |
Shen P, Chen XD. Microbiology[M]. 8th ed. Beijing: Higher Education Press, 2016. | |
[24] |
Mendes R, Garbeva P, Raaijmakers JM. The rhizosphere microbiome:significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms[J]. FEMS Microbiol Rev, 2013, 37(5):634-663.
doi: 10.1111/1574-6976.12028 URL |
[25] |
Bonkowski M, Villenave C, Griffiths B. Rhizosphere fauna:the functional and structural diversity of intimate interactions of soil fauna with plant roots[J]. Plant Soil, 2009, 321(1/2):213-233.
doi: 10.1007/s11104-009-0013-2 URL |
[26] |
Buée M, Boer W, Martin F, et al. The rhizosphere zoo:an overview of plant-associated communities of microorganisms, including phages, bacteria, Archaea, and fungi, and of some of their structuring factors[J]. Plant Soil, 2009, 321(1/2):189-212.
doi: 10.1007/s11104-009-9991-3 URL |
[27] |
Ma Y. Editorial:biotechnological potential of plant-microbe interactions in environmental decontamination[J]. Front Plant Sci, 2019, 10:1519.
doi: 10.3389/fpls.2019.01519 URL |
[28] |
de Zelicourt A, Al-Yousif M, Hirt H. Rhizosphere microbes as essential partners for plant stress tolerance[J]. Mol Plant, 2013, 6(2):242-245.
doi: 10.1093/mp/sst028 pmid: 23475999 |
[29] |
El-Maraghy SS, Tohamy TA, Hussein KA. Role of plant-growth promoting fungi(PGPF)in defensive genes expression of Triticum aestivum against wilt disease[J]. Rhizosphere, 2020, 15:100223.
doi: 10.1016/j.rhisph.2020.100223 URL |
[30] |
Naziya B, Murali M, Amruthesh KN. Plant growth-promoting fungi(PGPF)instigate plant growth and induce disease resistance in Capsicum annuum L. upon infection with Colletotrichum capsici(syd. )butler & bisby[J]. Biomolecules, 2019, 10(1):41.
doi: 10.3390/biom10010041 URL |
[31] |
Benidire L, Madline A, Pereira SIA, et al. Synergistic effect of organo-mineral amendments and plant growth-promoting rhizobacteria(PGPR)on the establishment of vegetation cover and amelioration of mine tailings[J]. Chemosphere, 2021, 262:127803.
doi: 10.1016/j.chemosphere.2020.127803 URL |
[32] |
Abdelkrim S, Jebara SH, Saadani O, et al. In situ effects of Lathyrus sativus-PGPR to remediate and restore quality and fertility of Pb and Cd polluted soils[J]. Ecotoxicol Environ Saf, 2020, 192:110260.
doi: 10.1016/j.ecoenv.2020.110260 URL |
[33] |
Doornbos RF, Loon LC, Bakker PAHM. Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review[J]. Agron Sustain Dev, 2012, 32(1):227-243.
doi: 10.1007/s13593-011-0028-y URL |
[34] |
Drogue B, Doré H, Borland S, et al. Which specificity in cooperation between phytostimulating rhizobacteria and plants?[J]. Res Microbiol, 2012, 163(8):500-510.
doi: 10.1016/j.resmic.2012.08.006 URL |
[35] |
Akiyama K, Matsuzaki K, Hayashi H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi[J]. Nature, 2005, 435(7043):824-827.
doi: 10.1038/nature03608 URL |
[36] |
Venturi V, Keel C. Signaling in the rhizosphere[J]. Trends Plant Sci, 2016, 21(3):187-198.
doi: 10.1016/j.tplants.2016.01.005 URL |
[37] |
Lebeis SL, Paredes SH, Lundberg DS, et al. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa[J]. Science, 2015, 349(6250):860-864.
doi: 10.1126/science.aaa8764 pmid: 26184915 |
[38] |
Vora SM, Joshi P, Belwalkar M, et al. Root exudates influence chemotaxis and colonization of diverse plant growth promoting rhizobacteria in the pigeon pea - maize intercropping system[J]. Rhizosphere, 2021, 18:100331.
doi: 10.1016/j.rhisph.2021.100331 URL |
[39] | Tedersoo L, Bahram M, Zobel M. How mycorrhizal associations drive plant population and community biology[J]. Science, 2020,367(6480):eaba1223. |
[40] |
Goh HH, Sloan J, Malinowski R, et al. Variable expansin expression in Arabidopsis leads to different growth responses[J]. J Plant Physiol, 2014, 171(3/4):329-339.
doi: 10.1016/j.jplph.2013.09.009 URL |
[41] |
Herrera Medina MJ, Gagnon H, Piché Y, et al. Root colonization by arbuscular mycorrhizal fungi is affected by the salicylic acid content of the plant[J]. Plant Sci, 2003, 164(6):993-998.
doi: 10.1016/S0168-9452(03)00083-9 URL |
[42] |
Blilou I, Ocampo JA, García-Garrido JM. Resistance of pea roots to endomycorrhizal fungus or Rhizobium correlates with enhanced levels of endogenous salicylic acid[J]. J Exp Bot, 1999, 50(340):1663-1668.
doi: 10.1093/jxb/50.340.1663 URL |
[43] |
Oldroyd GE. Speak, friend, and enter:signalling systems that promote beneficial symbiotic associations in plants[J]. Nat Rev Microbiol, 2013, 11(4):252-263.
doi: 10.1038/nrmicro2990 pmid: 23493145 |
[44] |
Pieterse CMJ, Zamioudis C, Berendsen RL, et al. Induced systemic resistance by beneficial microbes[J]. Annu Rev Phytopathol, 2014, 52(1):347-375.
doi: 10.1146/phyto.2014.52.issue-1 URL |
[45] |
Vos IA, Pieterse CMJ, van Wees SCM. Costs and benefits of hormone-regulated plant defences[J]. Plant Pathol, 2013, 62:43-55.
doi: 10.1111/ppa.2013.62.issue-S1 URL |
[46] |
Luo ZB, Janz D, Jiang X, et al. Upgrading root physiology for stress tolerance by ectomycorrhizas:insights from metabolite and transcriptional profiling into reprogramming for stress anticipation[J]. Plant Physiol, 2009, 151(4):1902-1917.
doi: 10.1104/pp.109.143735 URL |
[47] |
Zamioudis C, Korteland J, van Pelt JA, et al. Rhizobacterial volatiles and photosynjournal-related signals coordinate MYB 72 expression in Arabidopsis roots during onset of induced systemic resistance and iron-deficiency responses[J]. Plant J, 2015, 84(2):309-322.
doi: 10.1111/tpj.2015.84.issue-2 URL |
[48] |
Vaishnav A, Kumari S, Jain S, et al. Putative bacterial volatile-mediated growth in soybean(Glycine max L. Merrill)and expression of induced proteins under salt stress[J]. J Appl Microbiol, 2015, 119(2):539-551.
doi: 10.1111/jam.12866 pmid: 26042866 |
[49] |
Chagas FO, Pessotti RC, Caraballo-Rodríguez AM, et al. Chemical signaling involved in plant-microbe interactions[J]. Chem Soc Rev, 2018, 47(5):1652-1704.
doi: 10.1039/C7CS00343A URL |
[50] |
Saleem M, Naeem Asghar H, Ahmad Zahir Z, et al. Evaluation of lead tolerant plant growth promoting rhizobacteria for plant growth and phytoremediation in lead contamination[J]. Rev Int Contam Amb, 2019, 35(4):999-1009.
doi: 10.20937/RICA URL |
[51] | Liu ZF, Ge HG, Li C, et al. Enhanced phytoextraction of heavy metals from contaminated soil by plant co-cropping associated with PGPR[J]. Water Air Soil Pollut, 2015, 226(3):1-10. |
[52] |
Yu SM, Liang JS, Bai X, et al. Inoculation of plant growth-promoting bacteria Bacillus sp. YM-1 alleviates the toxicity of Pb to pakchoi[J]. Environ Sci Pollut Res Int, 2018, 25(28):28216-28225.
doi: 10.1007/s11356-018-2802-8 URL |
[53] |
Pramanik K, Mitra S, Sarkar A, et al. Alleviation of phytotoxic effects of cadmium on rice seedlings by cadmium resistant PGPR strain Enterobacter aerogenes MCC 3092[J]. J Hazard Mater, 2018, 351:317-329.
doi: 10.1016/j.jhazmat.2018.03.009 URL |
[54] |
Raklami A, Oufdou K, Tahiri AI, et al. Safe cultivation of Medicago sativa in metal-polluted soils from semi-arid regions assisted by heat- and metallo-resistant PGPR[J]. Microorganisms, 2019, 7(7):212.
doi: 10.3390/microorganisms7070212 URL |
[55] |
Mesa-Marín J, Del-Saz NF, Rodríguez-Llorente ID, et al. PGPR reduce root respiration and oxidative stress enhancing Spartina maritima root growth and heavy metal rhizoaccumulation[J]. Front Plant Sci, 2018, 9:1500.
doi: 10.3389/fpls.2018.01500 pmid: 30386359 |
[56] |
Kudoyarova GR, Vysotskaya LB, Arkhipova TN, et al. Effect of auxin producing and phosphate solubilizing bacteria on mobility of soil phosphorus, growth rate, and P acquisition by wheat plants[J]. Acta Physiol Plant, 2017, 39(11):1-8.
doi: 10.1007/s11738-016-2300-x URL |
[57] |
Kotoky R, Nath S, Kumar Maheshwari D, et al. Cadmium resistant plant growth promoting rhizobacteria Serratia marcescens S2I7 associated with the growth promotion of rice plant[J]. Environ Sustain, 2019, 2(2):135-144.
doi: 10.1007/s42398-019-00055-3 URL |
[58] |
Hadi SN, Fatichin, Fauzi A, et al. The role of phosphate solubilizing bacteria from Rhizosphere of upland rice in the growth and yield of upland rice on ultisol soil[J]. IOP Conf Ser:Earth Environ Sci, 2021, 653(1):012110.
doi: 10.1088/1755-1315/653/1/012110 URL |
[59] |
Pal A, Paul AK. Microbial extracellular polymeric substances:central elements in heavy metal bioremediation[J]. Indian J Microbiol, 2008, 48(1):49-64.
doi: 10.1007/s12088-008-0006-5 URL |
[60] |
Nomura M, Arunothayanan H, Van dao T, et al. Differential protein profiles of Bradyrhizobium japonicum USDA110 bacteroid during soybean nodule development[J]. Soil Sci Plant Nutr, 2010, 56(4):579-590.
doi: 10.1111/j.1747-0765.2010.00500.x URL |
[61] |
Kong Z, Mohamad OA, Deng Z, et al. Rhizobial symbiosis effect on the growth, metal uptake, and antioxidant responses of Medicago lupulina under copper stress[J]. Environ Sci Pollut Res Int, 2015, 22(16):12479-12489.
doi: 10.1007/s11356-015-4530-7 URL |
[62] |
Khanna K, Jamwal VL, Sharma A, et al. Supplementation with plant growth promoting rhizobacteria(PGPR)alleviates cadmium toxicity in Solanum lycopersicum by modulating the expression of secondary metabolites[J]. Chemosphere, 2019, 230:628-639.
doi: 10.1016/j.chemosphere.2019.05.072 URL |
[63] | 弓明钦. 菌根研究及应用[M]. 北京: 中国林业出版社, 1997. |
Gong MQ. Mycorrhizal research and application[M]. Beijing: China Forestry Publishing House, 1997. | |
[64] | Bandurska K, Krupa P, Berdowska A, et al. Adaptation of selected ectomycorrhizal fungi to increased concentration of cadmium and lead[J]. Ecol Chem Eng S, 2016, 23(3):483-491. |
[65] |
Shi L, Dong P, Song W, et al. Comparative transcriptomic analysis reveals novel insights into the response to Cr(VI)exposure in Cr(VI)tolerant ectomycorrhizal fungi Pisolithus sp. 1 LS-2017[J]. Ecotoxicol Environ Saf, 2020, 188:109935.
doi: 10.1016/j.ecoenv.2019.109935 URL |
[66] |
Ozcan S, Yildirim V, Kaya L, et al. Phanerochaete chrysosporium soluble proteome as a prelude for the analysis of heavy metal stress response[J]. Proteomics, 2007, 7(8):1249-1260.
doi: 10.1002/(ISSN)1615-9861 URL |
[67] |
Khullar S, Reddy MS. Ectomycorrhizal fungi and its role in metal homeostasis through metallothionein and glutathione mechanisms[J]. Curr Biotechnol, 2018, 7(3):231-241.
doi: 10.2174/2211550105666160531145544 URL |
[68] |
Tedersoo L, May TW, Smith ME. Ectomycorrhizal lifestyle in fungi:global diversity, distribution, and evolution of phylogenetic lineages[J]. Mycorrhiza, 2010, 20(4):217-263.
doi: 10.1007/s00572-009-0274-x pmid: 20191371 |
[69] |
Canton GC, Bertolazi AA, Cogo AJ, et al. Biochemical and ecophysiological responses to manganese stress by ectomycorrhizal fungus Pisolithus tinctorius and in association with Eucalyptus grandis[J]. Mycorrhiza, 2016, 26(5):475-487.
doi: 10.1007/s00572-016-0686-3 URL |
[70] |
Szuba A, Karliński L, Krzesłowska M, et al. Inoculation with a Pb-tolerant strain of Paxillus involutus improves growth and Pb tolerance of Populus×canescens under in vitro conditions[J]. Plant Soil, 2017, 412(1/2):253-266.
doi: 10.1007/s11104-016-3062-3 URL |
[71] | 张金秀, 湛方栋, 王灿, 等. AMF对铅锌矿区农田土壤部分理化性质、玉米生长和镉铅含量的影响[J]. 农业资源与环境学报, 2020, 37(5):727-735. |
Zhang Jx, Zhan Fd, Wang C, et al. Effects of arbuscular mycorrhizal fungi on soil physical and chemical properties, maize growth, cadmium, and lead content of farmland from a lead-zinc mine area[J]. Journal of Agricultural Resources and Environment, 2020, 37(5):727-735. | |
[72] |
Ghasemi Siani N, Fallah S, Pokhrel LR, et al. Natural amelioration of Zinc oxide nanoparticle toxicity in fenugreek(Trigonella foenum-gracum)by arbuscular mycorrhizal(Glomus intraradices)secretion of glomalin[J]. Plant Physiol Biochem, 2017, 112:227-238.
doi: 10.1016/j.plaphy.2017.01.001 URL |
[73] |
Handa Y, Nishide H, Takeda N, et al. RNA-seq transcriptional profiling of an arbuscular mycorrhiza provides insights into regulated and coordinated gene expression in Lotus japonicus and Rhizophagus irregularis[J]. Plant Cell Physiol, 2015, 56(8):1490-1511.
doi: 10.1093/pcp/pcv071 URL |
[74] |
Meier S, Borie F, Bolan N, et al. Phytoremediation of metal-polluted soils by arbuscular mycorrhizal fungi[J]. Crit Rev Environ Sci Technol, 2012, 42(7):741-775.
doi: 10.1080/10643389.2010.528518 URL |
[75] |
Gao X, Guo H, Zhang Q, et al. Arbuscular mycorrhizal fungi(AMF)enhanced the growth, yield, fiber quality and phosphorus regulation in upland cotton(Gossypium hirsutum L.)[J]. Sci Rep, 2020, 10(1):2084.
doi: 10.1038/s41598-020-59180-3 URL |
[76] |
Ju WL, Jin XL, Liu L, et al. Rhizobacteria inoculation benefits nutrient availability for phytostabilization in copper contaminated soil:Drivers from bacterial community structures in rhizosphere[J]. Appl Soil Ecol, 2020, 150:103450.
doi: 10.1016/j.apsoil.2019.103450 URL |
[77] | 张静, 张亚见, 周倩倩, 等. Sinorhizobiumfredii S15阻控大豆吸收镉、铅的效果及作用机制研究[J]. 大豆科学, 2020, 39(5):767-774. |
Zhang J, Zhang YJ, Zhou QQ, et al. Effects and mechanism of sinorhizobiumfredii S15 in reducing cadmium and lead uptake of soybean[J]. Soybean Sci, 2020, 39(5):767-774. | |
[78] |
Gil-Cardeza ML, Ferri A, Cornejo P, et al. Distribution of chromium species in a Cr-polluted soil:presence of Cr(III)in glomalin related protein fraction[J]. Sci Total Environ, 2014, 493:828-833.
doi: 10.1016/j.scitotenv.2014.06.080 URL |
[79] |
Belimov AA, Zinovkina NY, Safronova VI, et al. Rhizobial ACC deaminase contributes to efficient symbiosis with pea(Pisum sativum L.)under single and combined cadmium and water deficit stress[J]. Environ Exp Bot, 2019, 167:103859.
doi: 10.1016/j.envexpbot.2019.103859 URL |
[80] |
Raklami A, El Gharmali A, Ait Rahou Y, et al. Compost and mycorrhizae application as a technique to alleviate Cd and Zn stress in Medicago sativa[J]. Int J Phytoremediation, 2021, 23(2):190-201.
doi: 10.1080/15226514.2020.1803206 URL |
[81] |
Cicatelli A, Lingua G, Todeschini V, et al. Arbuscular mycorrhizal fungi modulate the leaf transcriptome of a Populus alba L. clone grown on a zinc and copper-contaminated soil[J]. Environ Exp Bot, 2012, 75:25-35.
doi: 10.1016/j.envexpbot.2011.08.012 URL |
[82] | Pireh P, Yadavi A, Balouchi H. Effect of cadmium chloride on soybean in presence ofarbuscular mycorrhiza and vermicompost[J]. Legume Res Int J, 2017, 40(1):63-68. |
[83] |
Li H, Luo N, Zhang LJ, et al. Do arbuscular mycorrhizal fungi affect cadmium uptake kinetics, subcellular distribution and chemical forms in rice?[J]. Sci Total Environ, 2016, 571:1183-1190.
doi: 10.1016/j.scitotenv.2016.07.124 URL |
[84] |
Szuba A, Marczak Ł, Kozłowski R. Role of the proteome in providing phenotypic stability in control and ectomycorrhizal poplar plants exposed to chronic mild Pb stress[J]. Environ Pollut, 2020, 264:114585.
doi: 10.1016/j.envpol.2020.114585 URL |
[85] |
Hachani C, Lamhamedi MS, Cameselle C, et al. Effects of ectomycorrhizal fungi and heavy metals(pb, zn, and Cd)on growth and mineral nutrition of Pinus halepensis seedlings in north Africa[J]. Microorganisms, 2020, 8(12):2033.
doi: 10.3390/microorganisms8122033 URL |
[86] |
Liu B, Wang S, Wang J, et al. The great potential for phytoremediation of abandoned tailings pond using ectomycorrhizal Pinus sylvestris[J]. Sci Total Environ, 2020, 719:137475.
doi: 10.1016/j.scitotenv.2020.137475 URL |
[87] | Scott JA, Sage GK, Palmer SJ, et al. Metal immobilization by microbial capsular coatings[J]. Biorecovery, 1988, 1(1):51-58. |
[88] | Silver S, Ji G. Newer systems for bacterial resistances to toxic heavy metals[J]. Environ Heal Perspect, 1994, 102(suppl 3):107-113. |
[89] |
McEntee JD, Woodrow JR, Quirk AV. Investigation of cadmium resistance in an Alcaligenes sp[J]. Appl Environ Microbiol, 1986, 51(3):515-520.
doi: 10.1128/aem.51.3.515-520.1986 URL |
[90] |
Silver S, Nucifora G, Chu L, et al. Bacterial resistance ATPases:primary pumps for exporting toxic cations and anions[J]. Trends Biochem Sci, 1989, 14(2):76-80.
pmid: 2523097 |
[91] |
Murata K, Fukuda Y, Shimosaka M, et al. Phenotype character of the methylglyoxal resistance gene in Saccharomyces cerevisiae:expression in Escherichia coli and application to breeding wild-type yeast strains[J]. Appl Environ Microbiol, 1985, 50(5):1200-1207.
doi: 10.1128/aem.50.5.1200-1207.1985 URL |
[92] |
Misra TK. Bacterial resistances to inorganic mercury salts and organomercurials[J]. Plasmid, 1992, 27(1):4-16.
pmid: 1311113 |
[93] | 陈保冬, 李晓林, 朱永官. 丛枝菌根真菌菌丝体吸附重金属的潜力及特征[J]. 菌物学报, 2005, 24(2):283-291. |
Chen BD, Li XL, Zhu YG. Characters of metal adsorption by am fungal mycelium[J]. Mycosystema, 2005, 24(2):283-291. | |
[94] |
Zhang HH, Tang M, Chen H, et al. Effect of inoculation with AM fungi on lead uptake, translocation and stress alleviation of Zea mays L. seedlings planting in soil with increasing lead concentrations[J]. Eur J Soil Biol, 2010, 46(5):306-311.
doi: 10.1016/j.ejsobi.2010.05.006 URL |
[95] |
Luo Q, Sun L, Hu X, et al. The variation of root exudates from the hyperaccumulator Sedum alfredii under cadmium stress:metabonomics analysis[J]. PLoS One, 2014, 9(12):e115581.
doi: 10.1371/journal.pone.0115581 URL |
[96] |
Rajkumar M, Sandhya S, Prasad MN, et al. Perspectives of plant-associated microbes in heavy metal phytoremediation[J]. Biotechnol Adv, 2012, 30(6):1562-1574.
doi: 10.1016/j.biotechadv.2012.04.011 pmid: 22580219 |
[97] |
Shi PL, Zhu KX, Zhang YX, et al. Growth and cadmium accumulation of Solanum nigrum L. seedling were enhanced by heavy metal-tolerant strains of Pseudomonas aeruginosa[J]. Water Air Soil Pollut, 2016, 227(12):1-11.
doi: 10.1007/s11270-015-2689-7 URL |
[98] |
Chiang PN, Chiu CY, Wang MK, et al. Low-molecular-weight organic acids exuded by millet(Setaria italica(L.)beauv.)roots and their effect on the remediation of cadmium-contaminated soil[J]. Soil Sci, 2011, 176(1):33-38.
doi: 10.1097/SS.0b013e318202fdc9 URL |
[99] | Abeles FB, Morgan PW, Saltveit ME Jr. Preface[M]//Ethylene in Plant Biology. Amsterdam:Elsevier, 1992:xi-xii. |
[100] |
Glick BR, Todorovic B, Czarny J, et al. Promotion of plant growth by bacterial ACC deaminase[J]. Crit Rev Plant Sci, 2007, 26(5/6):227-242.
doi: 10.1080/07352680701572966 URL |
[101] |
Sharma RK, Archana G. Cadmium minimization in food crops by cadmium resistant plant growth promoting rhizobacteria[J]. Appl Soil Ecol, 2016, 107:66-78.
doi: 10.1016/j.apsoil.2016.05.009 URL |
[102] |
Safronova VI, Stepanok VV, Engqvist GL, et al. Root-associated bacteria containing 1-aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil[J]. Biol Fertil Soils, 2006, 42(3):267-272.
doi: 10.1007/s00374-005-0024-y URL |
[103] |
Chiboub M, Jebara SH, Abid G, et al. Co-inoculation effects of Rhizobium sullae and Pseudomonas sp. on growth, antioxidant status, and expression pattern of genes associated with heavy metal tolerance and accumulation of cadmium in Sulla coronaria[J]. J Plant Growth Regul, 2020, 39(1):216-228.
doi: 10.1007/s00344-019-09976-z URL |
[104] |
Elhindi KM, Al-Mana FA, El-Hendawy S, et al. Arbuscular mycorrhizal fungi mitigates heavy metal toxicity adverse effects in sewage water contaminated soil on Tagetes erecta L[J]. Soil Sci Plant Nutr, 2018, 64(5):662-668.
doi: 10.1080/00380768.2018.1490631 URL |
[105] | Abd Allah EF, Abeer H, Alqarawi AA, et al. Alleviation of adverse impact of cadmium stress in sunflower(Helianthus annuus L.)by arbuscular mycorrhizal fungi[J]. Pakistan Journal of Botany, 2015, 47(2):785-795. |
[106] |
Szuba A, Marczak Ł, Karliński L, et al. Regulation of the leaf proteome by inoculation of Populus×canescens with two Paxillus involutus isolates differing in root colonization rates[J]. Mycorrhiza, 2019, 29(5):503-517.
doi: 10.1007/s00572-019-00910-5 URL |
[107] |
Dhalaria R, Kumar D, Kumar H, et al. Arbuscular mycorrhizal fungi as potential agents in ameliorating heavy metal stress in plants[J]. Agronomy, 2020, 10(6):815.
doi: 10.3390/agronomy10060815 URL |
[108] |
Wu JT, Wang L, Zhao L, et al. Arbuscular mycorrhizal fungi effect growth and photosynjournal of Phragmites australis(Cav. )Trin ex. Steudel under copper stress[J]. Plant Biol J, 2020, 22(1):62-69.
doi: 10.1111/plb.v22.1 URL |
[109] |
Tattini M, Loreto F, Fini A, et al. Isoprenoids and phenylpropanoids are part of the antioxidant defense orchestrated daily by drought-stressed P latanus×acerifolia plants during Mediterranean summers[J]. New Phytol, 2015, 207(3):613-626.
doi: 10.1111/nph.2015.207.issue-3 URL |
[110] |
Sharma S, Anand G, Singh N, et al. Arbuscular mycorrhiza augments arsenic tolerance in wheat(Triticum aestivum L.)by strengthening antioxidant defense system and thiol metabolism[J]. Front Plant Sci, 2017, 8:906.
doi: 10.3389/fpls.2017.00906 URL |
[111] |
Zhang XY, Zhang HQ, Lou X, et al. Mycorrhizal and non-mycorrhizal Medicago truncatula roots exhibit differentially regulated NADPH oxidase and antioxidant response under Pb stress[J]. Environ Exp Bot, 2019, 164:10-19.
doi: 10.1016/j.envexpbot.2019.04.015 URL |
[112] |
Hasanuzzaman M, Nahar K, Anee TI, et al. Glutathione in plants:biosynjournal and physiological role in environmental stress tolerance[J]. Physiol Mol Biol Plants, 2017, 23(2):249-268.
doi: 10.1007/s12298-017-0422-2 URL |
[113] |
Khanna K, Jamwal VL, Kohli SK, et al. Plant growth promoting rhizobacteria induced Cd tolerance in Lycopersicon esculentum through altered antioxidative defense expression[J]. Chemosphere, 2019, 217:463-474.
doi: 10.1016/j.chemosphere.2018.11.005 URL |
[114] |
Siemens JA, Zwiazek JJ. Hebeloma crustuliniforme modifies root hydraulic responses of trembling aspen(Populus tremuloides)seedlings to changes in external pH[J]. Plant Soil, 2011, 345(1/2):247-256.
doi: 10.1007/s11104-011-0776-0 URL |
[115] | 殷齐琪, 毕银丽, 马少鹏, 等. 矿区压实土壤接种AMF对柠条生长的影响模拟试验[J]. 煤炭学报, 2020, 45(9):3253-3261. |
Yin QQ, Bi YL, Ma SP, et al. Effects of AMF on the growth of Caragana in simulated compacted soil in mining area[J]. J China Coal Soc, 2020, 45(9):3253-3261. | |
[116] |
Tahir M, Naeem MA, Shahid M, et al. Inoculation of pqqE gene inhabiting Pantoea and Pseudomonas strains improves the growth and grain yield of wheat with a reduced amount of chemical fertilizer[J]. J Appl Microbiol, 2020, 129(3):575-589.
doi: 10.1111/jam.14630 pmid: 32147927 |
[117] |
You M, Fang S, MacDonald J, et al. Isolation and characterization of Burkholderia cenocepacia CR318, a phosphate solubilizing bacterium promoting corn growth[J]. Microbiol Res, 2020, 233:126395.
doi: 10.1016/j.micres.2019.126395 URL |
[118] | 马源, 张德罡. 草地根际过程对养分循环调控机制研究进展[J]. 草业学报, 2020, 29(11):172-182. |
Ma Y, Zhang DG. Regulation mechanisms of rhizosphere nutrient cycling processes in grassland:a review[J]. Acta Prataculturae Sin, 2020, 29(11):172-182. | |
[119] |
Or D, Smets BF, Wraith JM, et al. Physical constraints affecting bacterial habitats and activity in unsaturated porous media - a review[J]. Adv Water Resour, 2007, 30(6/7):1505-1527.
doi: 10.1016/j.advwatres.2006.05.025 URL |
[120] |
Schimel JP, Schaeffer SM. Microbial control over carbon cycling in soil[J]. Front Microbiol, 2012, 3:348.
doi: 10.3389/fmicb.2012.00348 pmid: 23055998 |
[121] | 刘畅, 黄文茂, 韩丽珍. PGPR复合菌系对花生生长及根际土壤微生物的影响[J]. 西南农业学报, 2019, 32(10):2367-2372. |
Liu C, Huang WM, Han LZ. Effect of PGPR compound flora on peanut seedling growth and rhizosphere soil microorganism[J]. Southwest China J Agric Sci, 2019, 32(10):2367-2372. | |
[122] |
任晓斌, 白红娟, 卫燕红, 等. 光合细菌和生物炭对污染土壤中铬的稳定化效果及小白菜生长的影响[J/OL]. 农业环境科学学报, 2021. DOI: 10.11654/jaes.2021-0162.
doi: 10.11654/jaes.2021-0162 |
Ren XB, Bai HJ, Wei YH, et al. Effects of photosynthetic bacteria and biochar on chromium stabilization in polluted soil and the growth of pakchoi[J/OL]. Journal of Agro-Environment Science, 2021. DOI: 10.11654/jaes.2021-0162.
doi: 10.11654/jaes.2021-0162 |
|
[123] | 何铁光, 杨雯馨, 林崇宝, 等. 促进植物生长根圈细菌(PGPR)的研究现状[J]. 湖南生态科学学报, 2014, 1(4):45-49. |
He TG, Yang WX, Lin CB, et al. Review of research progress on plant growth promoting rhizobacteria(PGPR)[J]. J Hunan Ecol Sci, 2014, 1(4):45-49. | |
[124] |
Riaz M, Kamran M, Fang Y, et al. Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils:a critical review[J]. J Hazard Mater, 2021, 402:123919.
doi: 10.1016/j.jhazmat.2020.123919 URL |
[125] |
Smith PA. Foliage friendships microbial communities on a plant’s roots, stems and leaves may improve crop growth[J]. Scientific American, 2014, 311(2):24-25.
doi: 10.1038/scientificamerican1114-24 URL |
[1] | 江润海, 姜冉冉, 朱城强, 侯秀丽. 微生物强化植物修复铅污染土壤的机制研究进展[J]. 生物技术通报, 2023, 39(8): 114-125. |
[2] | 赵林艳, 徐武美, 王豪吉, 王昆艳, 魏富刚, 杨绍周, 官会林. 施用生物炭对连作三七根际真菌群落与存活率的影响[J]. 生物技术通报, 2023, 39(7): 219-227. |
[3] | 陈广霞, 李秀杰, 蒋锡龙, 单雷, 张志昌, 李勃. 植物小分子信号肽参与非生物逆境胁迫应答的研究进展[J]. 生物技术通报, 2023, 39(11): 61-73. |
[4] | 孙卓, 王妍, 韩忠明, 王云贺, 赵淑杰, 杨利民. 防风根际真菌的分离鉴定及其生防潜力评价[J]. 生物技术通报, 2023, 39(1): 264-273. |
[5] | 陈宏艳, 李小二, 李忠光. 糖信号及其在植物响应逆境胁迫中的作用[J]. 生物技术通报, 2022, 38(7): 80-89. |
[6] | 李一涵, 于浪柳, 李春燕, 张蒙蒙, 张晓勤, 方云霞, 薛大伟. 大麦NRAMP全基因组鉴定及重金属胁迫下基因表达分析[J]. 生物技术通报, 2022, 38(6): 103-111. |
[7] | 王宁, 李蕙秀, 李季, 丁国春. 堆肥调控作物根际微生物组抑制植物病害的研究进展[J]. 生物技术通报, 2022, 38(5): 4-12. |
[8] | 胡华冉, 杜磊, 张芮豪, 钟秋月, 刘发万, 桂敏. 辣椒适应非生物胁迫的研究进展[J]. 生物技术通报, 2022, 38(12): 58-72. |
[9] | 陆玉芳, 施卫明. 根际化学信号物质与土壤养分转化[J]. 生物技术通报, 2020, 36(9): 14-24. |
[10] | 孙雨, 常晶晶, 田春杰. 作物根际微生物组重组构建技术体系探讨[J]. 生物技术通报, 2020, 36(9): 25-30. |
[11] | 许来鹏, 万鲜花, 孙向丽, 曹艳芳, 李慧, 田亚东, 刘小军, 康相涛, 王彦彬. 畜禽粪肥和秸秆还田对玉米根际微生物群落结构的影响[J]. 生物技术通报, 2020, 36(9): 137-146. |
[12] | 陈璇, 刘祥龙, 唐婷. 苔藓植物响应重金属胁迫的研究进展[J]. 生物技术通报, 2020, 36(10): 191-199. |
[13] | 张卓, 刘茂炎, 王培, 黄文坤, 刘二明, 彭焕, 彭德良. 抗草甘膦转基因大豆AG5601对根际微生物群落功能多样性的影响[J]. 生物技术通报, 2019, 35(7): 17-24. |
[14] | 吉米拉木·加马力, 美合日班·阿不力米提, 古海尼沙·买买提, 艾尼瓦尔·吐米尔. 两种地衣共生藻对铜和锌的耐受性及吸附特性研究[J]. 生物技术通报, 2019, 35(6): 69-75. |
[15] | 李桂玲, 王琦, 王金水, 贾峰. 重金属对植物种子萌发胁迫及缓解的机制[J]. 生物技术通报, 2019, 35(6): 147-155. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||