生物技术通报 ›› 2020, Vol. 36 ›› Issue (10): 180-190.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0112
刘俊1(), 金钰2, 吴耀松1, 刘燕1, 王文彬1, 任闪闪1, 刁松锋3, 陈玉龙1()
收稿日期:
2020-02-26
出版日期:
2020-10-26
发布日期:
2020-11-02
作者简介:
刘俊,女,助理研究员,研究方向:植物分子生物学;E-mail: 基金资助:
LIU Jun1(), JIN Yu2, WU Yao-song1, LIU Yan1, WANG Wen-bin1, REN Shan-shan1, DIAO Song-feng3, CHEN Yu-long1()
Received:
2020-02-26
Published:
2020-10-26
Online:
2020-11-02
摘要:
DNA结合单锌指(DNA binding with one zinc finger,Dof)蛋白是由多基因共同编码的只在植物中存在的一类转录因子,其N-末端含有高度保守的由52个氨基酸残基组成的C2-C2型单锌指结构域,可以与DNA和蛋白质结合并相互作用;C-末端是特异转录调控结构域,因其序列具有多变性,导致Dof基因功能的多样性。随着基因组学和生物信息学的发展,近年来已有多个物种的Dof蛋白相继被报道出来。Dof基因主要参与植物的生长发育、碳氮代谢、非生物胁迫及开花调控等生物学过程。综述了植物Dof转录因子的结构特性、已经报道的Dof基因数目及生物学功能,在此基础上讨论了毛竹开花研究存在的问题,并提出未来的展望,以期为进一步研究Dof转录因子提供参考。
刘俊, 金钰, 吴耀松, 刘燕, 王文彬, 任闪闪, 刁松锋, 陈玉龙. 植物Dof基因结构特点及功能研究进展[J]. 生物技术通报, 2020, 36(10): 180-190.
LIU Jun, JIN Yu, WU Yao-song, LIU Yan, WANG Wen-bin, REN Shan-shan, DIAO Song-feng, CHEN Yu-long. Advances on the Structural Characteristics and Function of Dof Gene in Plant[J]. Biotechnology Bulletin, 2020, 36(10): 180-190.
物种 | 拉丁名 | 分类 | 总数 | 参考文献 |
---|---|---|---|---|
水稻 | Oryza sativa | 单子叶植物 | 30 | [5] |
毛竹 | Phyllostachys edulis | 单子叶植物 | 26 | [6] |
玉米 | Zea mays | 单子叶植物 | 54 | [7] |
高粱 | Sorghum bicolor | 单子叶植物 | 28 | [8] |
大麦 | Hordeum vuLgare | 单子叶植物 | 24 | [9] |
小麦 | Triticumaestivum | 单子叶植物 | 31 | [10] |
二穗短柄草 | Brachypodium distachyum | 单子叶植物 | 27 | [11] |
甘蔗 | Saccharum officinarum | 单子叶植物 | 25 | [8] |
香蕉 | Musa acuminate | 单子叶植物 | 72 | [12] |
穇子 | Eleusine coracana | 单子叶植物 | 48 | [13] |
粗山羊草 | Aegilops tauschii | 单子叶植物 | 10 | [14] |
拟南芥 | Arabidopsis thaliana | 双子叶植物 | 36 | [15] |
毛果杨 | PopuLus trichocarpa | 双子叶植物 | 41 | [16] |
番茄 | Solanum lycopersicum | 双子叶植物 | 34 | [17] |
木豆 | Cajanus cajan | 双子叶植物 | 38 | [18] |
土豆 | Solanumtuberosum | 双子叶植物 | 35 | [19] |
葡萄 | Vitis vinifera | 双子叶植物 | 25 | [20] |
花生 | Arachis hypogaea | 双子叶植物 | 8 | [21] |
茄子 | Solanum melongena | 双子叶植物 | 29 | [22] |
黄瓜 | Cucumis sativus | 双子叶植物 | 36 | [23] |
苹果 | Malus domestica | 双子叶植物 | 60 | [24] |
胡萝卜 | Daucus carota | 双子叶植物 | 46 | [25] |
大白菜 | Chinese cabbage | 双子叶植物 | 76 | [26] |
大豆 | Glycine max | 双子叶植物 | 78 | [27] |
菊花 | Dendranthema morifolium | 双子叶植物 | 20 | [28] |
马铃薯 | Solanum tuberosum | 双子叶植物 | 35 | [19] |
胡椒 | Capsicum annuum L. | 双子叶植物 | 33 | [29] |
茶树 | Camellia sinensis | 双子叶植物 | 29 | [30] |
蒺藜苜蓿 | Medicago truncatula | 双子叶植物 | 42 | [31] |
木薯 | Manihot esculenta Crantz | 双子叶植物 | 45 | [32] |
西瓜 | Citrullus lanatus | 双子叶植物 | 39 | [33] |
蓖麻 | Ricinus communis | 双子叶植物 | 24 | [34] |
麻风树 | Jatropha curcas | 双子叶植物 | 25 | [34] |
榴莲 | Durio zibethinus Murr. | 双子叶植物 | 24 | [35] |
梨 | Pyrus bretschneideri | 双子叶植物 | 45 | [36] |
火炬松 | Pinus taeda | 松杉 | 8 | [9] |
莱茵衣藻 | Chlamydomonas reinhardti | 藻类 | 1 | [9] |
小立碗藓 | Physcomitrella patens | 苔藓 | 23 | [29] |
表1 不同物种中Dof基因的分布[4]
物种 | 拉丁名 | 分类 | 总数 | 参考文献 |
---|---|---|---|---|
水稻 | Oryza sativa | 单子叶植物 | 30 | [5] |
毛竹 | Phyllostachys edulis | 单子叶植物 | 26 | [6] |
玉米 | Zea mays | 单子叶植物 | 54 | [7] |
高粱 | Sorghum bicolor | 单子叶植物 | 28 | [8] |
大麦 | Hordeum vuLgare | 单子叶植物 | 24 | [9] |
小麦 | Triticumaestivum | 单子叶植物 | 31 | [10] |
二穗短柄草 | Brachypodium distachyum | 单子叶植物 | 27 | [11] |
甘蔗 | Saccharum officinarum | 单子叶植物 | 25 | [8] |
香蕉 | Musa acuminate | 单子叶植物 | 72 | [12] |
穇子 | Eleusine coracana | 单子叶植物 | 48 | [13] |
粗山羊草 | Aegilops tauschii | 单子叶植物 | 10 | [14] |
拟南芥 | Arabidopsis thaliana | 双子叶植物 | 36 | [15] |
毛果杨 | PopuLus trichocarpa | 双子叶植物 | 41 | [16] |
番茄 | Solanum lycopersicum | 双子叶植物 | 34 | [17] |
木豆 | Cajanus cajan | 双子叶植物 | 38 | [18] |
土豆 | Solanumtuberosum | 双子叶植物 | 35 | [19] |
葡萄 | Vitis vinifera | 双子叶植物 | 25 | [20] |
花生 | Arachis hypogaea | 双子叶植物 | 8 | [21] |
茄子 | Solanum melongena | 双子叶植物 | 29 | [22] |
黄瓜 | Cucumis sativus | 双子叶植物 | 36 | [23] |
苹果 | Malus domestica | 双子叶植物 | 60 | [24] |
胡萝卜 | Daucus carota | 双子叶植物 | 46 | [25] |
大白菜 | Chinese cabbage | 双子叶植物 | 76 | [26] |
大豆 | Glycine max | 双子叶植物 | 78 | [27] |
菊花 | Dendranthema morifolium | 双子叶植物 | 20 | [28] |
马铃薯 | Solanum tuberosum | 双子叶植物 | 35 | [19] |
胡椒 | Capsicum annuum L. | 双子叶植物 | 33 | [29] |
茶树 | Camellia sinensis | 双子叶植物 | 29 | [30] |
蒺藜苜蓿 | Medicago truncatula | 双子叶植物 | 42 | [31] |
木薯 | Manihot esculenta Crantz | 双子叶植物 | 45 | [32] |
西瓜 | Citrullus lanatus | 双子叶植物 | 39 | [33] |
蓖麻 | Ricinus communis | 双子叶植物 | 24 | [34] |
麻风树 | Jatropha curcas | 双子叶植物 | 25 | [34] |
榴莲 | Durio zibethinus Murr. | 双子叶植物 | 24 | [35] |
梨 | Pyrus bretschneideri | 双子叶植物 | 45 | [36] |
火炬松 | Pinus taeda | 松杉 | 8 | [9] |
莱茵衣藻 | Chlamydomonas reinhardti | 藻类 | 1 | [9] |
小立碗藓 | Physcomitrella patens | 苔藓 | 23 | [29] |
[1] |
Liu L, White MJ, MacRae TH. Transcription factors and their genes in higher plants[J]. European Journal of Biochemistry, 1999,262(2):247-257.
URL pmid: 10336605 |
[2] | 蔡晓锋, 张余洋, 张俊红, 等. 植物Dof基因家族功能研究进展[J]. 植物生理学报, 2013,49(1):1-12. |
Cai XF, Zhang YY, Zhang JH, et al. Advances in research on function of the Dof gene family in plant[J]. Plant Physiology Journal, 2013,49(1):1-12 | |
[3] | Yanagisawa S, Izui K. Molecular cloning of two DNA-binding proteins of maize that are structurally different but interact with the same sequence motif[J]. Journal of Biological Chemistry, 1993,268(21):16028-16036. |
[4] | 李娅, 丁文杰, 江海燕, 等. Dof基因家族调节植物生长发育功能的研究进展[J]. 西北植物学报, 2018,38(9):194-202. |
Li Y, Ding WJ, Jian HY, et al. Advances in research of the Dof gene family in plant[J]. Acta Bot. Boreal. - Occident. Sin., 2018,38(9):194-202. | |
[5] | 周淑芬, 颜静宛, 刘华清, 等. 水稻Dof基因家族的组织表达谱及胁迫诱导表达特征分析[J]. 分子植物育种, 2012,10(6):635-643. |
Zhou SF, Yan JW, Liu HQ, et al. Transcriptional profiling analysis of OsDof gene family in various rice tissues and their expression characteristics under different stresses[J]. Molecular Plant Breeding, 2012,10(6):635-643. | |
[6] | Wang T, Yue JJ, Wang XJ, et al. Genome-wide identification and characterization of the Dof gene family in moso bamboo(Phyllostachys heterocycla var. pubescens)[J]. Genes & Genomics, 2016,38(8):733-745. |
[7] |
Jiang Y, Zeng B, Zhao H, et al. Genome-wide transcription factor gene prediction and their expressional tissue specificities in maize[J]. Journal of Integrative Plant Biology, 2012,54(9):616-630.
URL pmid: 22862992 |
[8] |
Kushwaha H, Gupta S, Singh VK, et al. Genome wide identification of Dof transcription factor gene family in sorghum and its comparative phylogenetic analysis with rice and Arabidopsis[J]. Molecular Biology Reports, 2011,38(8):5037-5053.
URL pmid: 21161392 |
[9] |
Moreno-Risueno MA, Martínez M, Vicente-Carbajosa J, et al. The family of DOF transcription factors:from green unicellular algae to vascular plants[J]. Molecular Genetics and Genomics, 2007,277(4):379-390.
URL pmid: 17180359 |
[10] |
Shaw LM, McIntyre CL, Gresshoff PM, et al. Members of the Dof transcription factor family in Triticum aestivum are associated with light-mediated gene regulation[J]. Functional and Integrative Genomics, 2009,9(4):485-498.
URL pmid: 19578911 |
[11] | Hernando-Amado S, González-Calle V, Carbonero P, et al. The family of DOF transcription factors in Brachypodium distachyon:phylogenetic comparison with rice and barley DOFs and expression profiling[J]. BMC Plant Biology, 2012,12(1):202. |
[12] |
Dong C, Hu H, Xie J. Genome-wide analysis of the DNA-binding with one zinc finger(Dof)transcription factor family in bananas[J]. Genome, 2016,59(12):1085-1100.
URL pmid: 27831816 |
[13] | Gupta S, Pathak RK, Gupta SM, et al. Identification and molecular characterization of Dof transcription factor gene family preferentially expressed in developing spikes of Eleusine coracana L.[J]. Biotech, 2018,8(2):82. |
[14] | 赵梦琪, 周正富, 齐豫川, 等. 粗山羊草Dof转录因子家族基因的鉴定与分析[J]. 分子植物育种, 2017,15(7):2590-2597. |
Zhao MQ, Zhou ZF, Qi YC, et al. Identification and analysis of the Dof transcription factor gene family in Aegilops tauschii[J]. Molecular Plant Breeding, 2017,15(7):2590-2597. | |
[15] |
Lijavetzky D, Carbonero P, Vicente-Carbajosa J. Genome-wide comparative phylogenetic analysis of the rice and Arabidopsis Dof gene families[J]. BMC Evolutionary Biology, 2003,3:17.
URL pmid: 12877745 |
[16] | Yang X, Tuskan GA, Cheng MZ. Divergence of the Dof gene families in poplar Arabidopsis, and rice suggests multiple modes of gene evolution after duplication[J]. Plant Physiology, 2006,142(3):820-830. |
[17] |
Cai X, Zhang Y, Zhang C, et al. Genome-wide analysis of plant-specific Dof transcription factor family in tomato[J]. Journal of Integrative Plant Biology, 2013,55(6):552-566.
URL pmid: 23462305 |
[18] |
Malviya N, Gupta S, Singh VK, et al. Genome wide in silico characterization of Dof gene families of pigeonpea(Cajanus cajan(L)Millsp. )[J]. Molecular Biology Reports, 2015,42(2):535-552.
URL pmid: 25344821 |
[19] |
Venkatesh J, Park SW. Genome-wide analysis and expression profiling of DNA-binding with one zinc finger(Dof)transcription factor family in potato[J]. Plant Physiology and Biochemistry, 2015,94:73-85.
URL pmid: 26046625 |
[20] | da Silva DC, da Silveira Falavigna V, Fasoli M, et al. Transcriptome analyses of the Dof-like gene family in grapevine reveal its involvement in berry, flower and seed development[J]. Horticulture Research, 2016,3:16042. |
[21] | Yan H, Huang J, Liao B, et al. DOF transcription factors in developing peanut(Arachis hypogaea)seeds[J]. American Journal of Molecular Biology, 2011,2(1):60-71. |
[22] | Wei Q, Wang W, Hu T, et al. Genome-wide identification and characterization of Dof transcription factors in eggplant(Solanum melongena L.)[J]. Peer Journal, 2018,6:e4481. |
[23] | Wen CL, Cheng Q, Zhao L, et al. Identification and characterisation of Dof transcription factors in the cucumber genome[J]. Science Reports, 2016,6:23072. |
[24] |
Zhang Z, Yuan L, Liu X, et al. Evolution analysis of Dof transcription factor family and their expression in response to multiple abiotic stresses in Malus domestica[J]. Gene, 2018,639:137-148.
doi: 10.1016/j.gene.2017.09.039 URL pmid: 28986315 |
[25] | Huang W, Huang Y, Li MY, et al. Dof transcription factors in carrot:genome-wide analysis and their response to abiotic stress[J]. Biotechnol Letters, 2016,38(1):145-155. |
[26] |
Ma J, Li MY, Wang F, et al. Genome-wide analysis of Dof family transcription factors and their responses to abiotic stresses in Chinese cabbage[J]. BMC Genomics, 2015,16:33.
doi: 10.1186/s12864-015-1242-9 URL pmid: 25636232 |
[27] | Guo Y, Qiu LJ. Genome-wide analysis of the Dof transcription factor gene family reveals soybean-specific duplicable and functional characteristics[J]. PLoS One, 2013,8(9):e76809. |
[28] |
Song A, Gao T, Li P, et al. Transcriptome-wide identification and expression profiling of the DOF transcription factor gene family in Chrysanthemum morifolium[J]. Frontiers in Plant Science, 2016,7:199.
URL pmid: 26941763 |
[29] |
Wu Z, Cheng J, Cui J, et al. Genome-wide identification and expression profile of Dof transcription factor gene family in pepper(Capsicum annuum L.)[J]. Frontiers in Plant Science, 2016,7:574.
URL pmid: 27200047 |
[30] | Li H, Huang W, Liu ZW, et al. Transcriptome-based analysis of Dof family transcription factors and their responses to abiotic stress in tea plant(Camellia sinensis)[J]. International Journal of Genomics, 2016,2016(21):5614142. |
[31] |
Shu YJ, Song LL, Zhang J, et al. Genome-wide identification and characterization of the Dof gene family in Medicago truncatula[J]. Genetics and Molecular research, 2015,14(3):10645-10657.
URL pmid: 26400295 |
[32] | Zou Z, Zhu JL, Zhang XC. Genome-wide identification and characterization of the Dof gene family in cassava(Manihot esculenta)[J]. Peer Journal, 2019,687:298-307. |
[33] | Zhou Y, Cheng Y, Wan CP, et al. Genome-wide characterization and expression analysis of the Dof gene family related to abiotic stress in watermelon[J]. Peer Journal, 2020,8:e8358. |
[34] | Zou Z, Zhang XC. Genome-wide identification and comparative evolutionary analysis of the Dof transcription factor family in physic nut and castor bean[J]. Peer Journal, 2019,7:e6354. |
[35] | Khaksar G, Sangchay W, Pinsorn P, et al. Genome-wide analysis of the Dof gene family in durian reveals fruit ripening-associated and cultivar-dependent Dof transcription factors[J]. Scientific Reports, 2019,9(1):12109. |
[36] |
Liu XY, Liu Z, Hao ZW, et al. Characterization of Dof family in Pyrus Bretschneideri and role of PbDof9. 2 in flowering time regulation[J]. Genomics, 2020,112(1):712-720.
URL pmid: 31078718 |
[37] | 张华珍, 吴昊, 李香花, 等. 一个低氮诱导表达的水稻Dof转录因子OsDof-13的分离和转化[J]. 分子植物育种, 2007,5(4):455-460. |
Zhang HZ, Wu H, Li XH, et al. Isolation and transformation of OsDof-13, a member of rice Dof transcription factor family, induced by low nitrogen stress[J]. Molecular Plant Breeding, 2007,5(4):455-460. | |
[38] |
Diaz I, Vicente-Carbajosa J, Abraham Z, et al. The GAMYB protein from barley interacts with the DOF transcription factor BPBF and activates endosperm-specificent genes during seed development[J]. The Plant Journal, 2002,29(4):453-464.
URL pmid: 11846878 |
[39] | 刘俊, 黄容, 程占超, 等. 毛竹PheDof4-1基因克隆及表达分析[J]. 安徽农业大学学报, 2017,44(3):398-403. |
Liu J, Huang R, Cheng ZC, et al. Molecular cloning and expression analysis of the PheDof4-1 gene in moso bamboo(Phyllostachys edulis)[J]. Journal of Anhui Agricultural University, 2017,44(3):398-403. | |
[40] | 方献平, 王淑珍, 赵芸, 等. 植物应答生物逆境的蛋白质组学研究进展[J]. 分子植物育种, 2014,12(3):584-602. |
Fang XP, Wang SZ, Zhao Y, et al. Recent plant proteomics applied on biotic stress[J]. Molecular Plant Breeding, 2014,12(3):584-602. | |
[41] | 陈笑. 红花CtDof基因的克隆、表达分析及功能验证[D]. 长春:长春师范大学, 2017. |
Chen X. Cloning, expresssion analysis and functional verification of transcription factors genes CtDof in safflower[D]. Changchun:Changchun Normal University, 2017. | |
[42] | 张雪, 尹悦佳, 范贝, 等. 植物Dof转录因子的结构特点及功能研究进展[J]. 作物杂志, 2016(2):14-20. |
Zhang X, Yin YJ, Fan B, et al. Advances on the structural characteristics and function of Dof transcription factors in plant[J]. Crops, 2016(2):14-20. | |
[43] | 郭晓芳, 严海燕. 植物中的Dof蛋白和Dof转录因子家族[J]. 植物生理学报, 2005,41(4):419-423. |
Guo XF, Yan HY. Dof protein and Dof transcription factor family in plants[J]. Plant Physiology Communication, 2005,41(4):419-423. | |
[44] |
Yanagisawa S. Dof domain proteins:plant-specific transcription factors associated with diverse phenomena unique to plants[J]. Plant Cell Physiology, 2004,45(4):386-391.
URL pmid: 15111712 |
[45] |
Cavalar M, Moller C, Offermann S, et al. The interaction of DOF transcription factors with nucleosomes depends on the positioning of the binding site and is facilitated by maize HMGB5[J]. Biochemistry, 2003,42(7):2149-2157.
URL pmid: 12590604 |
[46] | 罗秋婷. 8个花生品种Dof基因D08的克隆和序列分析[D]. 武汉:中南民族大学, 2011. |
Luo QT. Cloning and sequence analysis of 8 types of peanut Dof genes D08[D]. Wuhan:Central South University for Nationalities, 2011. | |
[47] |
Noguero M, Atif RM, Ochatt S, et al. The role of the DNA-binding One Zinc Finger(DOF)transcription factor family in plants[J]. Plant Science, 2013,209:32-45.
URL pmid: 23759101 |
[48] | 郭彦秀, 陈静, 王艳芳, 等. Dof转录因子在植物中的调控作用[J]. 生物技术通报, 2019,35(5):146-156. |
Guo YX, Chen J, Wang YF, et al. Roles of Dof transcription factors in the regulation of plant[J]. Biotechnology Bulletin, 2019,35(5):146-156. | |
[49] | 徐慧妮, 王康, 李昆志. 植物Dof转录因子及其生物学功能[J]. 生物技术通报, 2010(1):23-27, 33. |
Xu HN, Wang K, Li KZ. Plant Dof transcription factor sand its biological functions[J]. Biotechnology Bulletin, 2010(1):23-27, 33. | |
[50] |
Kang HG, Singh KB. Characterization of salicylic acid-responsive, Arabidopsis Dof domain proteins:overexpression of OBP3 leads to growth defects[J]. Plant Journal for Cell and Molecular Biology, 2000,21(4):329-339.
URL pmid: 10758484 |
[51] |
Yanagisawa S. The Dof family of plant transcription factors[J]. Trends in Plant Science, 2002,7(12):555-560.
doi: 10.1016/S1360-1385(02)02362-2 URL |
[52] |
Washio K. Functional dissections between GAMYB and Dof transcription factors suggest a role for protein-protein associations in the gibberellin-mediated expression of the RAmy1A gene in the rice aleurone[J]. Plant Physiology, 2003,133(2):850-863.
doi: 10.1104/pp.103.027334 URL pmid: 14500792 |
[53] |
Gualberti G, Papi M, Bellucci L, et al. Mutations in the Dof zinc finger genes DAG2 and DAG1 influence with opposite effects the germination of Arabidopsis seeds[J]. Plant Cell, 2002,14(6):1253-1263.
URL pmid: 12084825 |
[54] |
Kawakatsu T, Takaiwa F. Differences in transcriptional regulatory mechanisms functioning for free lysine content and seed storage protein accumulation in rice grain[J]. Plant and Cell Physiology, 2010,51(12):1964-1974.
URL pmid: 21037241 |
[55] | Ahmad M, Rim Y, Chen H, et al. Functional characterization of Arabidopsis, Dof transcription factor AtDof4. 1[J]. Russian Journal of Plant Physiology, 2013,60(1):116-123. |
[56] | 贾贤卿. 水稻Dof转录因子家族功能的系统研究[D]. 南京:南京大学, 2017. |
Jia XQ. A systematic study on the gene function of transcription tactor family in rice[D]. Nanjing:Nanjing university, 2017. | |
[57] |
Skirycz A, Radziejwoski A, Busch W, et al. The DOF transcription factor OBP1 is involved in cell cycle regulation in Arabidopsis thaliana[J]. The Plant Journal, 2008,56(5):779-792.
URL pmid: 18665917 |
[58] | Xu P, Chen H, Ying L, et al. AtDOF5. 4/OBP4, a DOF transcription factor gene that negatively regulates cell cycle progression and cell expansion in Arabidopsis thaliana[J]. Scientific Reports, 2016,6(1):27705. |
[59] |
Rymen B, Kawamura A, SchäFer S, et al. ABA suppresses root hair growth via the OBP4 transcriptional regulator[J]. Plant Physiology, 2017,173(3):1750-1762.
doi: 10.1104/pp.16.01945 URL pmid: 28167701 |
[60] |
Konishi M, Yanagisawa S. Sequential activation of two Dof transcription factor gene promoters during vascular development in Arabidopsis thaliana[J]. Plant Physiology and Biochemistry, 2007,45(8):623-629.
doi: 10.1016/j.plaphy.2007.05.001 URL pmid: 17583520 |
[61] | Rueda-Romero P, Barrero-Sicilia C, Gómez-Cadenas A, et al. Arabidopsis thaliana DOF6 negatively affects germination in non-after-ripened seeds and interacts with TCP14[J]. Journal of Experimental Botany, 2012,65(5):1937-1947. |
[62] |
Yong G, Qin GJ, Gu HY, et al. Dof5. 6/HCA2, a Dof transcription factor gene, regulates interfascicular cambium formation and vascular tissue development in Arabidopsis[J]. Plant Cell, 2009,21(11):3518-3534.
URL pmid: 19915089 |
[63] | Wei PC, Tan F, Gao XQ, et al. Overexpression of AtDOF4. 7, an Arabidopsis DOF family transcription factor, induces floral organ abscission deficiency in Arabidopsis[J]. Plant Physiology, 2010,153(3):1 031-1045. |
[64] |
Zhuo MN, Sakuraba Y, Yanagisawa SC. A jasmonate-activated MYC2-Dof2. 1-MYC2 transcriptional loop promotes leaf senescence in Arabidopsis[J]. Plant Cell, 2020,32(1):242-262.
doi: 10.1105/tpc.19.00297 URL pmid: 31641025 |
[65] |
Dong G, Ni Z, Yao Y, et al. Wheat Dof transcription factor WPBF interacts with TaQM and activates transcription of an alpha-gliadin gene during wheat seed development[J]. Plant Molecular Biology, 2007,63(1):73-84.
URL pmid: 17021941 |
[66] | Rojas-Gracia P, Roque E, Medina M. The DOF transcription factor SlDOF10 regulates vascular tissue formation during ovary development in tomato[J]. 2019,10:216. |
[67] |
Plesch G, Ehrhardt T, Mueller-Roeber B. Involvement of TAAAG elements suggests a role for Dof transcription factors in guard cell-specific gene expression[J]. The Plant Journal, 2001,28(4):455-464.
doi: 10.1046/j.1365-313x.2001.01166.x URL pmid: 11737782 |
[68] |
Renau-Morata B, Molina RV, Carrillo L, et al. Ectopic expression of CDF3 genes in tomato enhances biomass production and yield under salinity stress conditions[J]. Frontiers in Plant Science, 2017,8:660.
URL pmid: 28515731 |
[69] | 王志坤, Arun S, 常健敏, 等. 转GmDof11基因高油转基因大豆的鉴定及主要农艺性状调查[J]. 作物杂志, 2014(2):39-42. |
Wang ZK, Arun S, Chang J. M, et al. Characterization of GmDof11 transgenic soybean with high oil content and investigation of the main agronomic traits[J]. Crops, 2014(2):39-42. | |
[70] | Zhang Y. Functional analysis of Dof transcription factors controlling heading date and PPDK gene expression in rice[D]. Holland:Leiden University, 2015. |
[71] |
Wu Q, Li DY, Li DJ, et al. Overexpression of OsDof12 affects plant architecture in rice(Oryza sativa L.)[J]. Frontiers in Plant Science, 2015,6:833.
doi: 10.3389/fpls.2015.00833 URL pmid: 26500670 |
[72] |
Yanagisawa S. Dof1 and Dof2 transcription factors are associated with expression of multiple genes involved in carbon metabolism in maize[J]. The Plant Journal, 2000,21(3):281-288.
doi: 10.1046/j.1365-313x.2000.00685.x URL pmid: 10758479 |
[73] |
Wu JD, Chen L, Chen MH, et al. The DOF-domain transcription factor ZmDOF36 positively regulates starch synjournal in transgenic Maize[J]. Frontiers in Plant Science, 2019,10:465.
doi: 10.3389/fpls.2019.00465 URL pmid: 31031791 |
[74] |
Qi X, Li X, Zhu YX, et al. ZmDof3, a maize endosperm-specific Dof protein gene, regulates starch accumulation and aleurone development in Maize endosperm[J]. Plant Molecular Biology, 2017,93(1-2):7-20.
URL pmid: 27709320 |
[75] |
Wu Y, Yang W, Wei J, et al. Transcription factor OsDOF18 controls ammonium uptake by inducing ammonium transporters in rice roots[J]. Molecules and Cells, 2017,40(3):178-185.
doi: 10.14348/molcells.2017.2261 URL pmid: 28292004 |
[76] |
Barajas-Lopez JDD, Tezycka J, Travaglia CN, et al. Expression of the chloroplast thioredoxins f and m is linked to short-term changes in the sugar and thiol status in leaves of Pisum sativum[J]. Journal of Experimental Botany, 2012,63(13):4887-4900.
doi: 10.1093/jxb/ers163 URL pmid: 22791824 |
[77] |
Tanaka M, Takahata Y, Nakayama H, et al. Altered carbohydrate metabolism in the storage roots of sweet potato plants over-expressing the SRF1 gene, which encodes a Dof zinc finger transcription factor[J]. Planta, 2009,230(4):737-746.
URL pmid: 19618208 |
[78] |
Gupta S, Malviya N, Kushwaha H, et al. Insights into structural and functional diversity of Dof(DNA binding with one finger)transcription factor[J]. Planta, 2015,241(3):549-562.
URL pmid: 25564353 |
[79] |
Skirycz A, Reichelt M, Burow M, et al. DOF transcription factor AtDof1. 1(OBP2)is part of a regulatory network controlling glucosinolate biosynjournal in Arabidopsis[J]. The Plant Journal, 2006,47(1):10-24.
doi: 10.1111/j.1365-313X.2006.02767.x URL pmid: 16740150 |
[80] | 兰彩耘. 超量表达AtDWF4基因对芥菜生长发育及抗寒性的影响[D]. 重庆:西南大学, 2016. |
Lan CY. Effect of AtDWF4 gene overexpression on growth, development and cold resistance in Brassica Juncea[D]. Chongqing:Southwest university, 2016. | |
[81] |
He L, Su C, Wang Y, et al. ATDOF5. 8 protein is the upstream regulator of ANAC069 and is responsive to abiotic stress[J]. Biochimie, 2015,110:17-24.
URL pmid: 25572919 |
[82] |
Corrales AR, Carrillo L, Lasierra P, et al. Multifaceted role of cycling DOF factor 3(CDF3)in the regulation of flowering time and abiotic stress responses in Arabidopsis[J]. Plant, Cell and Environment, 2017,40(5):748-764.
URL pmid: 28044345 |
[83] |
Corrales AR, Nebauer SG, Carrillo L, et al. Characterization of tomato cycling Dof factors reveals conserved and new functions in the control of flowering time and abiotic stress responses[J]. Journal of Experimental Botany, 2014,65(4):995-1012.
URL pmid: 24399177 |
[84] |
Ryu JY, Hong SY, Jo SH, et al. Molecular and functional characterization of cold-responsive C-repeat binding factors from Brachypodium distachyon[J]. BMC Plant Biology, 2014,14(1):15.
doi: 10.1186/1471-2229-14-15 URL |
[85] |
Liu Y, Liu NN, Deng X, et al. Genome-wide analysis of wheat DNA-binding with one finger(Dof)transcription factor genes:evolutionary characteristics and diverse abiotic stress responses[J]. BMC Genomics, 2020,21(1):276.
URL pmid: 32245398 |
[86] |
Su Y, Liang W, Liu ZJ, et al. Overexpression of GhDof1 improved salt and cold tolerance and seed oil content in Gossypium hirsutum[J]. Journal of Plant Physiology, 2017,218:222-234.
doi: 10.1016/j.jplph.2017.07.017 URL |
[87] |
Wang H, Zhao S, Gao Y, et al. Characterization of Dof transcription factors and their responses to osmotic stress in Poplar(Populus trichocarpa)[J]. PLoS One, 2017,12(1):e0170210.
URL pmid: 28095469 |
[88] |
Zang D, Wang L, Zhang Y, et al. ThDof1. 4 and ThZFP1 constitute a transcriptional regulatory cascade involved in salt or osmotic stress in Tamarix hispida[J]. Plant Molecular Biology, 2017,94(4-5):495-507.
doi: 10.1007/s11103-017-0620-x URL pmid: 28578496 |
[89] |
Imaizumi T, Schultz TF, Harmon FG, et al. FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis[J]. Science, 2005,309(5732):293-297.
URL pmid: 16002617 |
[90] |
Sawa M, Nusinow DA, Kay SA, et al. FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis[J]. Science, 2007,318(5848):261-265.
URL pmid: 17872410 |
[91] |
Song YH, Smith RW, To BJ, et al. FKF1 conveys timing information for CONSTANS stabilization in photoperiodic flowering[J]. Science, 2012,336(6084):1045-1049.
doi: 10.1126/science.1219644 URL pmid: 22628657 |
[92] |
Huang WX, Ding LQ, Zhang N, et al. Flavonoids from Eucommia ulmoides and their in vitro hepatoprotective activities[J]. Natural Product Research, 2020,28:1-8.
URL pmid: 23962240 |
[93] |
Li D, Yang C, Li X, et al. Functional characterization of rice OsDof12[J]. Planta, 2009,229(6):1159-1169.
URL pmid: 19198875 |
[94] |
Iwamoto M, Higo K, Takano M. Circadian clock-and phytochrome-regulated Dof-like gene, Rdd1, is associated with grain size in rice[J]. Plant, Cell and Environment, 2009,32(5):592-603.
URL pmid: 19210638 |
[95] |
Fornara F, Panigrahi KC, Gissot L, et al. Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response[J]. Developmental Cell, 2009,17(1):75-86.
URL pmid: 19619493 |
[96] |
Yang J, Yang MF, Zhang WP, et al. A putative flowering-time-related Dof transcription factor gene, JcDof3, is controlled by the circadian clock in Jatropha curcas[J]. Plant Science, 2011,181(6):667-674.
doi: 10.1016/j.plantsci.2011.05.003 URL pmid: 21958709 |
[97] |
Ding J, Böhlenius H, Rühl MG, et al. GIGANTEA-like genes control seasonal growth cessation in Populus[J]. New Phytologist, 2018,218(4):1491-1503.
URL pmid: 29532940 |
[98] |
Zhang LL, Jiang A, Thomson G, et al. Overexpression of medicago MtCDFd1_1 causes delayed flowering in medicago via repression of MtFTa1 but not MtCO-Like genes[J]. Frontiers in Plant Science, 2019,10:1148.
doi: 10.3389/fpls.2019.01148 URL pmid: 31608091 |
[99] |
Cheng Z, Hou D, Liu J, et al. Characterization of moso bamboo(Phyllostachys edulis)Dof transcription factors in floral development and abiotic stress responses[J]. Genome, 2018,61(3):151-156.
doi: 10.1139/gen-2017-0189 URL pmid: 29338359 |
[100] |
Liu J, Cheng Z, Xie L, et al. Multifaceted role of PheDof12-1 in the regulation of flowering time and abiotic stress responses in moso bamboo(Phyllostachys edulis)[J]. International Journal of Molecular Sciences, 2019, 20(2):pii: E424.
URL pmid: 27011182 |
[101] |
Peng ZH, Lu Y, Li L, et al. The draft genome of the fast-growing non-timber forest species moso bamboo(Phyllostachys heterocycla)[J]. Nature Genetics, 2013,45(4):456-461.
URL pmid: 23435089 |
[102] | 葛伟. 毛竹花发育4个时期microRNAs的鉴定与分析[D]. 北京:中国林业科学研究院, 2015. |
Ge W. Identification and analysis of microRNAs at 4 different floral developmental stages of Phyllostachys edulis[D] Beijing:Chinese Academy of Forestry, 2015. | |
[103] | 张颖. 毛竹花发育4个时期关键调控途径筛选与相关基因研究[D]. 北京:中国林业科学研究院, 2014. |
Zhang Y. Study of key regulatory pathway and related genes in 4 different floral developmental stages of Phyllostachys edulis[D]. Beijing:Chinese Academy of Forestry, 2014. | |
[104] |
Gao J, Zhang Y, Zhang C, et al. Characterization of the floral transcriptome of moso bamboo(Phyllostachys edulis)at different flowering developmental stages by transcriptome sequencing and RNA-seq analysis[J]. PLoS One, 2014,9(6):e98910.
URL pmid: 24915141 |
[105] |
Ge W, Zhang Y, Cheng Z, et al. Main regulatory pathways, key genes and microRNAs involved in flower formation and development of moso bamboo(Phyllostachys edulis)[J]. Plant Biotechnology Journal, 2017,15(1):82-96.
doi: 10.1111/pbi.12593 URL pmid: 27337661 |
[106] | 程占超. 毛竹MADS-box基因的鉴定及其在花器官发育中的功能[D]. 北京:中国林业科学研究院, 2016. |
Cheng ZC. Identification of MADS-box genes and their function in floral organ development of Phyllostachys edulis[D]. Beijing:Chinese Academy of Forestry, 2016. |
[1] | 展艳, 周利斌, 金文杰, 杜艳, 余丽霞, 曲颖, 马永贵, 刘瑞媛. 辐射诱导植物叶色突变的研究进展[J]. 生物技术通报, 2023, 39(8): 106-113. |
[2] | 江润海, 姜冉冉, 朱城强, 侯秀丽. 微生物强化植物修复铅污染土壤的机制研究进展[J]. 生物技术通报, 2023, 39(8): 114-125. |
[3] | 刘保财, 陈菁瑛, 张武君, 黄颖桢, 赵云青, 刘剑超, 危智诚. 多花黄精种子微根茎基因表达特征分析[J]. 生物技术通报, 2023, 39(8): 220-233. |
[4] | 姚莎莎, 王晶晶, 王俊杰, 梁卫红. 植物激素信号通路调控水稻粒型的分子机制[J]. 生物技术通报, 2023, 39(8): 80-90. |
[5] | 张曼, 张叶卓, 何其邹洪, 鄂一岚, 李晔. 植物细胞壁结构及成像技术研究进展[J]. 生物技术通报, 2023, 39(7): 113-122. |
[6] | 李英, 岳祥华. DNA甲基化在解析毛竹自然变异中的应用[J]. 生物技术通报, 2023, 39(7): 48-55. |
[7] | 李玉岭, 毛欣, 张元帅, 董元夫, 刘翠兰, 段春华, 毛秀红. 辐射诱变技术在木本植物育种中的应用及展望[J]. 生物技术通报, 2023, 39(6): 12-30. |
[8] | 杨洋, 朱金成, 娄慧, 韩泽刚, 张薇. 海岛棉与枯萎病菌的互作转录组分析[J]. 生物技术通报, 2023, 39(6): 259-273. |
[9] | 李苑虹, 郭昱昊, 曹燕, 祝振洲, 王飞飞. 外源植物激素调控微藻生长及目标产物积累研究进展[J]. 生物技术通报, 2023, 39(6): 61-72. |
[10] | 王兵, 赵会纳, 余婧, 余世洲, 雷波. 植物侧枝发育的调控研究进展[J]. 生物技术通报, 2023, 39(5): 14-22. |
[11] | 罗义, 张丽娟, 黄伟, 王宁, 吾尔丽卡·买提哈斯木, 施宠, 王玮. 一株耐铀菌株的鉴定及其促生特性研究[J]. 生物技术通报, 2023, 39(5): 286-296. |
[12] | 孙亚玲, 李瑞平, 王振宝, 张庶, 刘冰江, 霍雨猛. 洋葱种子消毒和无菌苗培养新方法[J]. 生物技术通报, 2023, 39(4): 212-220. |
[13] | 张华香, 徐晓婷, 郑云婷, 肖春桥. 溶磷微生物在钝化和植物修复重金属污染土壤中的作用[J]. 生物技术通报, 2023, 39(3): 52-58. |
[14] | 王伟宸, 赵进, 黄薇颐, 郭芯竹, 李婉颖, 张卓. 芽胞杆菌代谢产物防治三种常见植物病原真菌的研究进展[J]. 生物技术通报, 2023, 39(3): 59-68. |
[15] | 于世霞, 姜雨彤, 林文慧. 胚珠原基起始的信号与分子机制研究进展[J]. 生物技术通报, 2023, 39(2): 1-9. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||