生物技术通报 ›› 2020, Vol. 36 ›› Issue (12): 208-217.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0459
贺越1(), 赵圣国1, 张晓音1,2, 郑楠1, 王加启1
收稿日期:
2020-04-21
出版日期:
2020-12-26
发布日期:
2020-12-22
作者简介:
贺越,女,硕士研究生,研究方向:反刍动物营养;E-mail:基金资助:
HE Yue1(), ZHAO Sheng-guo1, ZHANG Xiao-yin1,2, ZHENG Nan1, WANG Jia-qi1
Received:
2020-04-21
Published:
2020-12-26
Online:
2020-12-22
摘要:
细菌脲酶催化尿素分解产生氨,但是高脲酶活性会对人类健康、农业、环境等造成不利影响,因此研究细菌脲酶特征和抑制脲酶活性具有重要科学意义。随着分子生物学和结构生物学的快速发展,越来越多的细菌脲酶蛋白结构特征被解析,脲酶活性调控机制也不断被完善,脲酶蛋白研究进入一个新阶段。本文主要从细菌脲酶晶体结构及活性中心特征、脲酶催化机制、脲酶抑制剂作用机制四个方面对研究进展进行综述,以期为脲酶调控的相关研究提供参考。
贺越, 赵圣国, 张晓音, 郑楠, 王加启. 细菌脲酶蛋白结构与催化机制[J]. 生物技术通报, 2020, 36(12): 208-217.
HE Yue, ZHAO Sheng-guo, ZHANG Xiao-yin, ZHENG Nan, WANG Jia-qi. Structure and Catalytic Mechanism of Bacterial Urease Protein[J]. Biotechnology Bulletin, 2020, 36(12): 208-217.
[1] |
Dixon NE, Gazzola TC, Blakeley RL, et al. Letter:Jack bean urease(EC 3. 5. 1. 5). A metalloenzyme. A simple biological role for nickel?[J]. Journal of the American Chemical Society, 1975,97(14):4131-4133.
URL pmid: 1159216 |
[2] |
Konieczna I, Żarnowiec P, Kwinkowski M, et al. Bacterial urease and its role in long-lasting human diseases[J]. Curr Protein Pept Sci, 2012,13(8):789-806.
doi: 10.2174/138920312804871094 URL pmid: 23305365 |
[3] | Banerjee S, Aggarwal A. Enzymology, immobilization and applications of urease enzyme[J]. International Research Journal of Biological Sciences, 2013,2(6):51-56. |
[4] |
Callahan BP, Yuan Y, Wolfenden R. The burden borne by urease[J]. Journal of the American Chemical Society, 2005,127(31):10828-10829.
doi: 10.1021/ja0525399 URL pmid: 16076178 |
[5] | 李晓姣, 赵圣国, 郑楠, 等. 细菌脲酶蛋白复合物及其活化机制. 生物工程学报, 2019,35(2):204-215. |
Li XJ, Zhao SG, Zheng N, et al. Progress in bacterial urease complexes and their activation mechanisms[J]. Chinese Journal of Biotechnology, 2019,35(2):204-215. | |
[6] |
Jin D, Zhow SG, Wang PP, et al. Insights into abundant rumen ureolytic bacterial community using rumen simulation system[J]. Frontiers in Microbiology, 2016,7:1006-1015.
doi: 10.3389/fmicb.2016.01006 URL pmid: 27446045 |
[7] |
Kafarski P, Talma M. Recent advances in design of new urease inhibitors:A review[J]. Journal of Advanced Research, 2018,13:101-112.
URL pmid: 30094085 |
[8] |
Kataria R, Khatkar A. Molecular docking, synjournal, kinetics study, structure-activity relationship and ADMET analysis of morin analogous as Helicobacter pylori urease inhibitors[J]. BMC Chemistry, 2019,13(1):45-62.
doi: 10.1186/s13065-019-0562-2 URL pmid: 31384793 |
[9] | Yuen MH, Fong YH, Nim YS, et al. Structural insights into how GTP-dependent conformational changes in a metallochaperone UreG facilitate urease maturation[J]. Proceedings of the National Academy of Sciences, 2017,114(51):E10890-E10898. |
[10] |
Boer JL, Mulrooney SB, Hausinger RP. Nickel-dependent metalloenzymes[J]. Archives of Biochemistry and Biophysics, 2014,544:142-152.
URL pmid: 24036122 |
[11] |
Modolo V, De Souza AX, Horta , et al. An overview on the potential of natural products as ureases inhibitors:A review[J]. Journal of Advanced Research, 2015,6(1):35-44.
URL pmid: 25685542 |
[12] | Yap SN, Kam BW. The maturation pathway of nickel urease[J]. Inorganics 2019,7(7):85-101. |
[13] |
Carter EL, Flugga N, Boer JL, et al. Interplay of metal ions and urease[J]. Metallomics, 2009,1(3):207-221.
URL pmid: 20046957 |
[14] |
Ha NC, Oh ST, Sung JY, et al. Supramolecular assembly and acid resistance of Helicobacter pylori urease[J]. Nature Structural Biology, 2001,8(6):505-509.
doi: 10.1038/88563 URL pmid: 11373617 |
[15] |
Balasubramanian A, Ponnuraj K. Crystal structure of the first plant urease from Jack bean:83 years of journey from its first crystal to molecular structure[J]. Journal of Molecular Biology, 2010,400(3):274-283.
URL pmid: 20471401 |
[16] |
Barbara Z, Francesco M, Stefano B, et al. Chemistry of Ni2+ in urease:sensing, trafficking, and catalysis[J]. Accounts of Chemical Research, 2011,44(7):520-530.
URL pmid: 21542631 |
[17] | Benini S, Ciurli S, Nolting HF, et al. X-ray absorption spectroscopy study of native and phenylphosphorodiamidate-inhibited Bacillus pasteurii urease[J]. FEBS Journal, 1996,239(1):61-66. |
[18] | Maroney MJ, Ciurli S. Nonredox nickel enzymes[J]. Chemical Reviews, 2014,114(8):4206-4228. |
[19] |
Jabri E, Carr M, et al. The crystal structure of urease from Klebsiella aerogenes[J]. Science, 1995,268(5213):998-1004.
URL pmid: 7754395 |
[20] | Chang Z, Kuchar J, Hausinger RP. Chemical cross-linking and mass spectrometric identification of sites of interaction for UreD, UreF, and urease[J]. Journal of Biological Chemistry, 2004,279(15):15305-15313. |
[21] | Quiroz VS, Sukuru SCK, Hausinger RP, et al. The structure of urease activation complexes examined by flexibility analysis, mutagenesis, and small-angle X-ray scattering[J]. Archives of Biochemistry and Biophysics, 2008,480(1):51-57. |
[22] |
Eric LC, Jodi LB, et al. The function of UreB in Klebsiella aerogenes urease[J]. Biochemistry. 2011,50(43):9296-9308.
doi: 10.1021/bi2011064 URL pmid: 21939280 |
[23] | Benini S, Rypniewski WR, Wilson KS, et al. The complex of Bacillus pasteuriiurease with β-mercaptoethanol from X-ray data at 1. 65 Å resolution[J]. Journal of Biological Inorganic Chemistry, 1998,3(3):268-273. |
[24] |
Jabri E, Karplus PA. Structures of the Klebsiella aerogenes urease apoenzyme and two active-site mutants[J]. Biochemistry, 1996,35(33):10616-10626.
doi: 10.1021/bi960424z URL pmid: 8718850 |
[25] | Hausinger , Robert P. Urease[M]// Hausinger, Robert P. Biochemistry of nickel. New York:Springer Science Business, 1993: 23-57. |
[26] | King GJ, Zerner B. Jack bean urease:mixed-metal derivatives[J]. Inorganica Chimica Acta, 1997,255:381-388. |
[27] | Farrugia MA, Macomber L, Hausinger RP. Biosynjournal of the urease metallocenter[J]. Journal of Biological Chemistry, 2013,288(19):13178-13185. |
[28] |
Matthew AP, Ruth AS, et al. Chemical rescue of Klebsiella aerogenes urease variants lacking the carbamylated-lysine nickel ligand[J]. Biochemistry, 1998,37(17):6214-6220.
doi: 10.1021/bi980021u URL pmid: 9558361 |
[29] |
Lee MH, Mulrooney SB, Hausinger RP. Purification, characteriza-tion, and in vivo reconstitution of Klebsiella aerogenes urease apoe-nzyme[J]. Journal of Bacteriology, 1990,172(8):4427-4431.
doi: 10.1128/jb.172.8.4427-4431.1990 URL pmid: 2142939 |
[30] |
IlSeon P, Hausinger RP. Metal ion interaction with urease and UreD-urease apoproteins[J]. Biochemistry, 1996,35(16):5345-5352.
doi: 10.1021/bi952894j URL pmid: 8611523 |
[31] |
Mazzei L, Cianci M, et al. Kinetic and structural studies reveal a unique binding mode of sulfite to the nickel center in urease[J]. Journal of Inorganic Biochemistry, 2016,154:42-49.
URL pmid: 26580226 |
[32] | Håkan C, Nordlander E. Computational modeling of the mechanism of urease[J]. Bioinorganic Chemistry & Applications, 2010,2010(1):219-228. |
[33] | Mazzei L, Musiani F, Ciurli C. Urease[M]// Zamble D, Rowińska-Żyrek M, Kozłowski H. The biological chemistry of nickel. London:Royal Society Chemistry, 2017: 60-97. |
[34] |
Pearson MA. Kinetic and structural characterization of urease active site variants[J]. Biochemistry, 2000,39:8575-8584.
doi: 10.1021/bi000613o URL pmid: 10913264 |
[35] |
Park IS, Hausinger RP. Site-directed mutagenesis of Klebsiella aerogenes urease:identification of histidine residues that appear to function in nickel ligation, substrate binding, and catalysis[J]. Protein Science, 1993,2(6):1034-1041.
doi: 10.1002/pro.5560020616 URL pmid: 8318888 |
[36] |
Roberts BP, Miller BR, Roitberg AE, et al. Wide-Open flaps are key to urease activity[J]. Journal of the American Chemical Society, 2012,134(24):9934-9937.
doi: 10.1021/ja3043239 URL pmid: 22670767 |
[37] | Keajewska , Barbara , Ureases I. Functional, catalytic and kinetic properties:a review[J]. Journal of Molecular Catalysis B Enzymatic, 2009,59(1):9-21. |
[38] | Martin PR, Hausinger RP. Site-directed mutagenesis of the active site cysteine in Klebsiella aerogenes urease[J]. Journal of Biological Chemistry, 1992,267(28):20024-20027. |
[39] |
Karplus PA, Pearson MA, Hausinger RP. 70 years of crystalline urease:what have we learned?[J]. Accounts of Chemical Research, 1997,30(8):330-337.
doi: 10.1021/ar960022j URL |
[40] |
Benini S, Rypniewski WR, Wilson KS, et al. A new proposal for urease mechanism based on the crystal structures of the native and inhibited enzyme from Bacillus pasteurii:why urea hydrolysis costs two nickels[J]. Structure, 1999,7(2):205-216.
URL pmid: 10368287 |
[41] |
Benini S, Kosikowska P, Cianci M, et al. The crystal structure of Sporosarcina pasteurii urease in a complex with citrate provides new hints for inhibitor design[J]. Journal of Biological Inorganic Chemistry 2013,18(3):391-399.
doi: 10.1007/s00775-013-0983-7 URL pmid: 23412551 |
[42] | Krajewska B. A combined temperature-pH study of urease kinetics, Assigning pKa values to ionizable groups of the active site involved in the catalytic reaction[J]. J Mol Catal B-Enzym 2016,124:70-76. |
[43] | Karine K, Angela RP, Celia RC, et al. Ureases:Historical aspects, catalytic and non-catalytic properties-A review[J]. Journal of Advanced Research, 2018,13:3-17. |
[44] |
Mazzei L, Cianci M, Benini S, et al. The structure of the elusive urease-urea complex unveils the mechanism of a paradigmatic nickel-dependent enzyme[J]. Angewandte Chemie International Edition, 2019,58(22):7415-7419.
URL pmid: 30969470 |
[45] |
Kosikowska P, Berlicki Ł. Urease inhibitors as potential drugs for gastric and urinary tract infections:a patent review[J]. Expert Opin Ther Pat, 2011,21(6):945-957.
URL pmid: 21457123 |
[46] |
Follmer C. Ureases as a target for the treatment of gastric and urinary infections[J]. J Clin Pathol, 2010,63(5):424-430.
URL pmid: 20418234 |
[47] |
Estiu G, Merz KM. Enzymatic catalysis of urea decomposition:Elimination or hydrolysis?[J]. Journal of the American Chemical Society, 2004,126(38):11832-11842.
doi: 10.1021/ja047934y URL pmid: 15382918 |
[48] |
Krajewska B, et al. Inhibition of chitosan-immobilized urease by slow-binding inhibitors:Ni2+, F- and acetohydroxamic acid[J]. J Mol Catal B Enzym, 2001,14(4):101-109.
doi: 10.1016/S1381-1177(00)00243-5 URL |
[49] |
María JD, Carmen S, María F, et al. Design, synjournal, and biological evaluation of phosphoramide derivatives as urease inhibitors[J]. Journal of Agricultural & Food Chemistry, 2008,56(10):3721-3731.
doi: 10.1021/jf072901y URL pmid: 18452297 |
[50] |
Mazzei L, Cianci M, Musiani F, et al. Inactivation of urease by 1, 4-benzoquinone:chemistry at the protein surface[J]. Dalton Transactions, 2016,45(13):5455-5459.
URL pmid: 26961812 |
[51] |
Mazzei L, Cianci M, Musiani F, et al. Inactivation of urease by catechol:kinetics and structure[J]. Journal of Inorganic Biochemistry, 2016,166:182-189.
URL pmid: 27888701 |
[52] | Shaw WHR, Raval DN. The inhibition of urease by metal ions at pH 8. 9[J]. Journal of the American Chemical Society, 1961,83(15):3184-3187. |
[53] | Amtul Z, Atta-ur-Rahman , Siddiqui RA, et al. Chemistry and mechanism of urease inhibition[J]. Current Medicinal Chemistry, 2002,9(14):1322-1347. |
[54] |
Mazzei L, Cianci M, Contaldo U, et al. Urease inhibition in the presence of N-(n-Butyl)thiophosphoric triamide, a suicide substrate:structure and kinetics[J]. Biochemistry 2017,56:5391-5404.
doi: 10.1021/acs.biochem.7b00750 URL pmid: 28857549 |
[55] |
Mazzei L, Wenzel MN, et al. Inhibition mechanism of urease by Au(III)compounds unveiled by X-ray diffraction analysis[J]. Acs Medicinal Chemistry Letters, 2019,10(4):564-570.
doi: 10.1021/acsmedchemlett.8b00585 URL pmid: 30996797 |
[56] |
Mazzei L, Cianci M, Vara AG, et al. The structure of urease inactivated by Ag(I):a new paradigm for enzyme inhibition by heavy metals[J]. Dalton Transactions, 2018,47:8240-8247.
doi: 10.1039/c8dt01190g URL pmid: 29845996 |
[1] | 赵玉雪, 王芸, 余璐瑶, 刘京晶, 斯金平, 张新凤, 张磊. 植物中C-糖基转移酶的结构与应用[J]. 生物技术通报, 2022, 38(10): 18-28. |
[2] | 欧云文, 刘俐君, 代军飞, 马炳, 张永光, 张杰. 非洲猪瘟病毒结构蛋白在病毒感染过程中的作用[J]. 生物技术通报, 2019, 35(6): 156-163. |
[3] | 王芳, 李振轮, 陈艳丽, 杨水英, 徐义. 钙抑制植物病害作用及机制的研究进展[J]. 生物技术通报, 2017, 33(2): 1-7. |
[4] | 万婧, 相兴伟, 江玲丽, 周向阳. 杆状病毒-昆虫细胞表达系统在复合体重组表达应用中的研究进展[J]. 生物技术通报, 2014, 0(2): 7-14. |
[5] | 赵启明, 李范, 李萍. 花青素生物合成关键酶的研究进展[J]. 生物技术通报, 2012, 0(12): 25-32. |
[6] | 王凤雪;师新川;温永俊;胡嘉欣;刘准;武华;. 高致病性PRRSVNsp2基因RNA干扰对病毒复制的影响[J]. , 2012, 0(05): 132-137. |
[7] | 李国旺;苗志国;陈俊杰;. 高致病性猪繁殖与呼吸综合征病毒ORF7基因的克隆与原核表达[J]. , 2011, 0(02): 141-145. |
[8] | 于天飞;仇铮;马波;李俚;王君伟;. 鹅细小病毒结构蛋白B细胞线性抗原表位的鉴定[J]. , 2010, 0(07): 96-100. |
[9] | 张昱;王永录;张永光;潘丽;方玉珍;刘力宽;蒋守田;吕建亮;张中旺;张淑刚;李正丰;杜进鑫;. 口蹄疫病毒株AF72 VP1的结构构建与B细胞表位预测[J]. , 2008, 0(06): 158-163. |
[10] | 但妍;张娟;张君;郑建;黄爱龙;. 2型登革病毒ns1基因克隆及其表达产物的生物学特性研究[J]. , 2008, 0(02): 168-171. |
[11] | 詹爱军;王新卫;王宪文;覃健萍;毕英佐;于康震;曹永长;. H5亚型AIV NS1基因的克隆及其在昆虫细胞中的表达[J]. , 2008, 0(02): 191-194. |
[12] | 王光华;独军政;薛慧文;常惠芸;. 口蹄疫病毒重组蛋白表达及其亚单位疫苗研究进展[J]. , 2007, 0(04): 1-4. |
[13] | 秦春圃;. N9N2亚型禽流感病毒ns1基因的融合表达[J]. , 2007, 0(02): 123-123. |
[14] | 孙国凤. 发现疱疹病毒转录调节必需的宿主蛋白[J]. , 1994, 0(01): 20-21. |
[15] | 王颖. 基因库构建[J]. , 1992, 0(11): 39-39. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||