生物技术通报 ›› 2020, Vol. 36 ›› Issue (12): 199-207.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0565
收稿日期:
2020-05-12
出版日期:
2020-12-26
发布日期:
2020-12-22
作者简介:
李佳秀,女,硕士研究生,研究方向:合成生物学;E-mail:LI Jia-xiu(), CAI Qian-ru, WU Jie-qun()
Received:
2020-05-12
Published:
2020-12-26
Online:
2020-12-22
摘要:
萜类化合物以其独特且多样的生物活性,广泛应用于医药、食品、化妆品行业。酿酒酵母作为最简单的真核细胞,与植物来源的萜类化合物生物合成酶适配性高,是复杂萜类化合物生产的优选底盘。近年来,构建并优化酿酒酵母底盘细胞中的萜类化合物代谢途径一直是合成生物学领域研究的热点。从优化异戊二烯前体途径酶、改造中央碳代谢、平衡竞争途径和异源表达细胞色素P450酶4个方面对高价值萜类化合物的合成生物学策略进行综述,旨在为酿酒酵母底盘细胞中萜类化合物的生物合成研究的进一步优化提供参考。
李佳秀, 蔡倩茹, 吴杰群. 萜类化合物在酿酒酵母中的合成生物学研究进展[J]. 生物技术通报, 2020, 36(12): 199-207.
LI Jia-xiu, CAI Qian-ru, WU Jie-qun. Research Progresses on the Synthetic Biology of Terpenes in Saccharomyces cerevisiae[J]. Biotechnology Bulletin, 2020, 36(12): 199-207.
[1] |
Zhang Y, Nielsen J, Liu Z. Engineering yeast metabolism for production of terpenoids for use as perfume ingredients, pharmaceuticals and biofuels[J]. FEMS Yeast Research, 2017,17(8). DOI: 10.1093/femsyr/fox080.
URL pmid: 29069390 |
[2] | Perez GJ, Rodriguez CM. Metabolic plasticity for isoprenoid biosynjournal in bacteria[J]. Biochemical Journal, 2013,452(1):19-25. |
[3] |
Clomburg JM, Qian S, Tan Z, et al. The isoprenoid alcohol pathway, a synthetic route for isoprenoid biosynthesis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019,116(26):12810-12815.
URL pmid: 31186357 |
[4] | Davies FK, Jinkerson RE, Posewitz MC. Toward a photosynthetic microbial platform for terpenoid engineering[J]. Photosynjournal Research, 2015,123(3):265-284. |
[5] |
Bution ML, Molina G, Abrahao MR, et al. Genetic and metabolic engineering of microorganisms for the development of new flavor compounds from terpenic substrates[J]. Critical Reviews in Biotechnology, 2015,35(3):313-325.
doi: 10.3109/07388551.2013.855161 URL pmid: 24494701 |
[6] |
Zebec Z, Wilkes J, Jervis AJ, et al. Towards synjournal of monoterpenes and derivatives using synthetic biology[J]. Current Opinion in Chemical Biology, 2016,34:37-43.
doi: 10.1016/j.cbpa.2016.06.002 URL pmid: 27315341 |
[7] |
Wang P, Wei W, Ye W, et al. Synthesizing ginsenoside Rh2 in Saccharomyces cerevisiae cell factory at high-efficiency[J]. Cell Discovery, 2019,5:5.
doi: 10.1038/s41421-018-0075-5 URL pmid: 30652026 |
[8] | Wang J, Wang Y, Meng H. Research advances in synthetic biology of terpenoids[J]. Scientia Sinica Vitae, 2015,45(10):1040-1050. |
[9] |
Ajikumar PK, Xiao WH, Tyo KE, et al. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli[J]. Science, 2010,330(6000):70-74.
URL pmid: 20929806 |
[10] |
Vavitsas K, Crozet P, Vinde MH, et al. The synthetic biology toolkit for photosynthetic microorganisms[J]. Plant Physiology, 2019,181(1):14-27.
URL pmid: 31262955 |
[11] |
Katayama K, Mitsunobu H, Nishida K. Mammalian synthetic biology by CRISPRs engineering and applications[J]. Current Opinion in Chemical Biology, 2019,52:79-84.
URL pmid: 31254926 |
[12] |
Paddon CJ, Westfall PJ, Pitera DJ, et al. High-level semi-synthetic production of the potent antimalarial artemisinin[J]. Nature, 2013,496(7446):528-532.
URL pmid: 23575629 |
[13] |
Paddon CJ, Keasling JD. Semi-synthetic artemisinin:a model for the use of synthetic biology in pharmaceutical development[J]. Nature Reviews Microbiology, 2014,12(5):355-367.
URL pmid: 24686413 |
[14] |
Mitsui R, Nishikawa R, Yamada R, et al. Construction of yeast producing patchoulol by global metabolic engineering strategy[J]. Biotechnology and Bioengineering, 2020,117(5):1348-1356.
URL pmid: 31981219 |
[15] |
Lian J, Mishra S, Zhao H. Recent advances in metabolic engineering of Saccharomyces cerevisiae:New tools and their applications[J]. Metabolic Engineering, 2018,50:85-108.
URL pmid: 29702275 |
[16] |
Hughes RA, Ellington AD. Synthetic DNA synjournal and assembly:Putting the synthetic in synthetic biology[J]. Cold Spring Harbor Perspectives in Biology, 2017,9(1):a023812.
doi: 10.1101/cshperspect.a023812 URL |
[17] |
Ferreira R, David F, Nielsen J. Advancing biotechnology with CRISPR/Cas9:recent applications and patent landscape[J]. Journal of Industrial Microbiology & Biotechnology, 2018,45(7):467-480.
URL pmid: 29362972 |
[18] |
Choi KR, Jang WD, Yang D, et al. Systems metabolic engineering strategies:integrating systems and synthetic biology with metabolic engineering[J]. Trends in Biotechnology, 2019,37(8):817-837.
URL pmid: 30737009 |
[19] |
Katz L, Chen YY, Gonzalez R, et al. Synthetic biology advances and applications in the biotechnology industry:a perspective[J]. Journal of Industrial Microbiology & Biotechnology, 2018,45(7):449-461.
URL pmid: 29915997 |
[20] | Bloch JS. Sterol molecule:structure, biosynjournal, and function[J], 1992,57(8):378-383. |
[21] |
Daletos G, Katsimpouras C, Stephanopoulos G. Novel strategies and platforms for industrial isoprenoid engineering[J]. Trends in Biotechnology, 2020,38(7):811-822.
URL pmid: 32359971 |
[22] |
Seki H, Tamura K, Muranaka T. Plant-derived isoprenoid sweeteners:recent progress in biosynthetic gene discovery and perspectives on microbial production[J]. Bioscience, Biotechnology, and Biochemistry, 2018,82(6):927-934.
doi: 10.1080/09168451.2017.1387514 URL pmid: 29191092 |
[23] |
Westfall PJ, Pitera DJ, Lenihan JR, et al. Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012,109(3):E111-E118.
doi: 10.1073/pnas.1110740109 URL pmid: 22247290 |
[24] |
Polakowski T, Stahl U, Lang C. Overexpression of a cytosolic hydroxymethylglutaryl-CoA reductase leads to squalene accumulation in yeast[J]. Applied Microbiology and Biotechnology, 1998,49(1):66-71.
URL pmid: 9487712 |
[25] |
Donald KA, Hampton RY, Fritz IB. Effects of overproduction of the catalytic domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase on squalene synjournal in Saccharomyces cerevisiae[J]. Appl Environ Microbiol, 1997,63(9):3341-3344.
URL pmid: 9292983 |
[26] |
Schempp FM, Drummond L, Buchhaupt M, et al. Microbial cell factories for the production of terpenoid flavor and fragrance compounds[J]. Journal of Agricultural and Food Chemistry, 2018,66(10):2247-2258.
URL pmid: 28418659 |
[27] |
Song TQ, Ding MZ, Zhai F, et al. Engineering Saccharomyces cerevisiae for geranylgeraniol overproduction by combinatorial design[J]. Scientific Reports, 2017,7(1):14991.
URL pmid: 29118396 |
[28] | Wang C, Liwei M, Park JB, et al. Microbial platform for terpenoid production:Escherichia coli and yeast[J]. Frontiers in Microbiology, 2018,9(2460):2460. |
[29] |
Kirby J, Dietzel KL, Wichmann G, et al. Engineering a functional 1-deoxy-D-xylulose 5-phosphate(DXP)pathway in Saccharomyces cerevisiae[J]. Metabolic Engineering, 2016,38:494-503.
URL pmid: 27989805 |
[30] | Lv X, Wang F, Zhou P, et al. Dual regulation of cytoplasmic and mitochondrial acetyl-CoA utilization for improved isoprene production in Saccharomyces cerevisiae[J]. Nature Communications, 2016,7(1):12851. |
[31] |
Vickers CE, Williams TC, Peng B, et al. Recent advances in synthetic biology for engineering isoprenoid production in yeast[J]. Curr Opin Chem Biol, 2017,40:47-56.
doi: 10.1016/j.cbpa.2017.05.017 URL pmid: 28623722 |
[32] |
Shiba Y, Paradise EM, Kirby J, et al. Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae for high-level production of isoprenoids[J]. Metabolic Engineering, 2007,9(2):160-168.
doi: 10.1016/j.ymben.2006.10.005 URL pmid: 17196416 |
[33] |
Lian JZ, Zhao HM. Functional reconstitution of a pyruvate dehydrogenase in the cytosol of Saccharomyces cerevisiae through lipoylation machinery engineering[J]. ACS Synthetic Biology, 2016,5(7):689-697.
URL pmid: 26991359 |
[34] |
Chen R, Yang S, Zhang L, et al. Advanced strategies for production of natural products in yeast[J]. iScience, 2020,23(3):100879.
doi: 10.1016/j.isci.2020.100879 URL pmid: 32087574 |
[35] |
Van-Rossum HM, Kozak BU, Pronk JT, et al. Engineering cytosolic acetyl-coenzyme A supply in Saccharomyces cerevisiae:Pathway stoichiometry, free-energy conservation and redox-cofactor balancing[J]. Metabolic Engineering, 2016,36:99-115.
doi: 10.1016/j.ymben.2016.03.006 URL pmid: 27016336 |
[36] |
Meadows AL, Hawkins KM, Tsegaye Y, et al. Rewriting yeast central carbon metabolism for industrial isoprenoid production[J]. Nature, 2016,537(7622):694-697.
doi: 10.1038/nature19769 URL pmid: 27654918 |
[37] |
Xie W, Ye L, Lv X, et al. Sequential control of biosynthetic pathways for balanced utilization of metabolic intermediates in Saccharomyces cerevisiae[J]. Metab Eng, 2015,28:8-18.
URL pmid: 25475893 |
[38] |
Williams TC, Peng B, Vickers CE, et al. The Saccharomyces cerevisiae pheromone-response is a metabolically active stationary phase for bio-production[J]. Metabolic Engineering Communications, 2016,3:142-152.
doi: 10.1016/j.meteno.2016.05.001 URL pmid: 29468120 |
[39] |
Asadollahi MA, Maury J, Moller K, et al. Production of plant sesquiterpenes in Saccharomyces cerevisiae:effect of ERG9 repression on sesquiterpene biosynjournal[J]. Biotechnology and Bioengineering, 2008,99(3):666-677.
URL pmid: 17705244 |
[40] |
Peng B, Plan MR, Chrysanthopoulos P, et al. A squalene synthase protein degradation method for improved sesquiterpene production in Saccharomyces cerevisiae[J]. Metabolic Engineering, 2017,39:209-219.
URL pmid: 27939849 |
[41] |
Jensen ED, Ferreira R, Jakociunas T, et al. Transcriptional reprogramming in yeast using dCas9 and combinatorial gRNA strategies[J]. Microbial Cell Factories, 2017,16(1):46.
doi: 10.1186/s12934-017-0664-2 URL pmid: 28298224 |
[42] |
Chen B, Lee HL, Heng YC, et al. Synthetic biology toolkits and applications in Saccharomyces cerevisiae[J]. Biotechnology Advances, 2018,36(7):1870-1881.
URL pmid: 30031049 |
[43] | Williams TC, Espinosa MI, Nielsen LK, et al. Dynamic regulation of gene expression using sucrose responsive promoters and RNA interference in Saccharomyces cerevisiae[J]. Microbial Cell Factories, 2015,14(1):43. |
[44] | Redden H, Alper HS. The development and characterization of synthetic minimal yeast promoters[J]. Nature Communications, 2015,6(1):7810. |
[45] |
Rajkumar AS, Liu G, Bergenholm D, et al. Engineering of synthetic, stress-responsive yeast promoters[J]. Nucleic Acids Research, 2016,44(17):e136.
URL pmid: 27325743 |
[46] |
Wang K, Zhao QW, Liu YF, et al. Multi-layer controls of Cas9 activity coupled with ATP synthase over-expression for efficient genome editing in Streptomyces[J]. Frontiers in Bioengineering and Biotechnology 2019,7:304.
URL pmid: 31737622 |
[47] |
Ignea C, Pontini M, Maffei ME, et al. Engineering monoterpene production in yeast using a synthetic dominant negative geranyl diphosphate synthase[J]. ACS Synthetic Biology, 2014,3(5):298-306.
doi: 10.1021/sb400115e URL pmid: 24847684 |
[48] |
Peng B, Nielsen LK, Kampranis SC, et al. Engineered protein degradation of farnesyl pyrophosphate synthase is an effective regulatory mechanism to increase monoterpene production in Saccharomyces cerevisiae[J]. Metab Eng, 2018,47:83-93.
URL pmid: 29471044 |
[49] |
Cheng S, Liu X, Jiang G, et al. Orthogonal engineering of biosynthetic pathway for efficient production of limonene in Saccharomyces cerevisiae[J]. ACS Synthetic Biology, 2019,8(5):968-975.
doi: 10.1021/acssynbio.9b00135 URL pmid: 31063692 |
[50] |
Ignea C, Raadam MH, Motawia MS, et al. Orthogonal monoterpenoid biosynjournal in yeast constructed on an isomeric substrate[J]. Nature Communications, 2019,10(1):3799.
doi: 10.1038/s41467-019-11290-x URL pmid: 31444322 |
[51] |
Mccarty NS, Ledesma AR. Synthetic biology tools to engineer microbial communities for biotechnology[J]. Trends in Biotechnology, 2019,37(2):181-197.
URL pmid: 30497870 |
[52] |
Ignea C, Trikka FA, Nikolaidis AK, et al. Efficient diterpene production in yeast by engineering Erg20p into a geranylgeranyl diphosphate synthase[J]. Metab Eng, 2015,27:65-75.
URL pmid: 25446975 |
[53] | Guo J, Ma XH, Cai Y, et al. Cytochrome P450 promiscuity leads to a bifurcating biosynthetic pathway for tanshinones[J]. New Phytologist, 2016,210(2):525-534. |
[54] |
Luo D, Callari R, Hamberger B, et al. Oxidation and cyclization of casbene in the biosynjournal of Euphorbia factors from mature seeds of Euphorbia lathyris L.[J]. Proc Nat Acad Sci USA, 2016,113(34):E5082-E5089.
doi: 10.1073/pnas.1607504113 URL pmid: 27506796 |
[55] |
Urlacher VB, Girhard M. Cytochrome P450 monooxygenases:an update on perspectives for synthetic application[J]. Trends in Biotechnology, 2012,30(1):26-36.
URL pmid: 21782265 |
[56] |
Paramasivan K, Mutturi S. Progress in terpene synjournal strategies through engineering of Saccharomyces cerevisiae[J]. Critical Reviews in Biotechnology, 2017,37(8):974-989.
doi: 10.1080/07388551.2017.1299679 URL pmid: 28427280 |
[57] |
Kung SH, Lund S, Murarka A, et al. Approaches and recent developments for the commercial production of semi-synthetic artemisinin[J]. Frontiers in Plant Science, 2018,9:87.
doi: 10.3389/fpls.2018.00087 URL pmid: 29445390 |
[58] |
Ro DK, Paradise EM, Ouellet M, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast[J]. Nature, 2006,440(7086):940-943.
doi: 10.1038/nature04640 URL pmid: 16612385 |
[59] | Peplow M. Synthetic biology’s first malaria drug meets market resistance[J]. Nature News, 2016,530(7591):389. |
[60] |
Wong J, De RT, D’espaux L, et al. High-titer production of lathyrane diterpenoids from sugar by engineered Saccharomyces cerevisiae[J]. Metabolic Engineering, 2018,45:142-148.
doi: 10.1016/j.ymben.2017.12.007 URL pmid: 29247866 |
[61] |
Wong J, D’espaux L, Dev I, et al. De novo synjournal of the sedative valerenic acid in Saccharomyces cerevisiae[J]. Metabolic Engineering, 2018,47:94-101.
URL pmid: 29545148 |
[62] |
Grewal PS, Modavi C, Russ ZN, et al. Bioproduction of a betalain color palette in Saccharomyces cerevisiae[J]. Metabolic Engineering, 2018,45:180-188.
URL pmid: 29247865 |
[63] |
Sun W, Xue H, Liu H, et al. Controlling chemo- and regioselectivity of a plant P450 in yeast cell toward rare licorice triterpenoid biosynjournal[J]. ACS Catalysis, 2020,10(7):4253-4260.
doi: 10.1021/acscatal.0c00128 URL |
[64] |
Dai Z, Liu Y, Sun Z, et al. Identification of a novel cytochrome P450 enzyme that catalyzes the C-2alpha hydroxylation of pentacyclic triterpenoids and its application in yeast cell factories[J]. Metabolic Engineering, 2019,51:70-78.
URL pmid: 30339834 |
[65] |
Bathe U, Frolov A, Porzel A, et al. CYP76 oxidation network of abietane diterpenes in lamiaceae reconstituted in yeast[J]. Journal of Agricultural and Food Chemistry, 2019,67(49):13437-13450.
doi: 10.1021/acs.jafc.9b00714 URL pmid: 30994346 |
[1] | 徐发迪, 徐康, 孙东明, 李萌蕾, 赵建志, 鲍晓明. 基于杨木(Populus sp.)的二代燃料乙醇技术研究进展[J]. 生物技术通报, 2023, 39(9): 27-39. |
[2] | 叶云芳, 田清尹, 施婷婷, 王亮, 岳远征, 杨秀莲, 王良桂. 植物中β-紫罗兰酮生物合成及调控研究进展[J]. 生物技术通报, 2023, 39(8): 91-105. |
[3] | 王玲, 卓燊, 付学森, 刘紫璇, 刘笑蓉, 王志辉, 周日宝, 刘湘丹. 莲生物碱生物合成途径及相关基因研究进展[J]. 生物技术通报, 2023, 39(7): 56-66. |
[4] | 成婷, 苑帅, 张晓元, 林良才, 李欣, 张翠英. 酿酒酵母异丁醇合成途径调控的研究进展[J]. 生物技术通报, 2023, 39(7): 80-90. |
[5] | 姜晴春, 杜洁, 王嘉诚, 余知和, 王允, 柳忠玉. 虎杖转录因子PcMYB2的表达特性和功能分析[J]. 生物技术通报, 2023, 39(5): 217-223. |
[6] | 周定定, 李辉虎, 汤兴涌, 余发新, 孔丹宇, 刘毅. 甘草酸和甘草苷生物合成与调控的研究进展[J]. 生物技术通报, 2023, 39(5): 44-53. |
[7] | 郁慧丽, 李爱涛. 细胞色素P450酶在香精香料绿色生物合成中的应用[J]. 生物技术通报, 2023, 39(4): 24-37. |
[8] | 王晓梅, 杨小薇, 李辉尚, 何微, 辛竹琳. 全球合成生物学发展现状及对我国的启示[J]. 生物技术通报, 2023, 39(2): 292-302. |
[9] | 祝瑛萱, 李克景, 何敏, 郑道琼. 酵母模型揭示胁迫因子驱动基因组变异的研究进展[J]. 生物技术通报, 2023, 39(11): 191-204. |
[10] | 孙言秋, 谢采芸, 汤岳琴. 耐高温酿酒酵母的构建与高温耐受机制解析[J]. 生物技术通报, 2023, 39(11): 226-237. |
[11] | 王文韬, 冯颀, 刘晨光, 白凤武, 赵心清. 氧化还原敏感型基因元件增强酵母木质纤维素水解液抑制物胁迫耐受性[J]. 生物技术通报, 2023, 39(11): 360-372. |
[12] | 陈晓琳, 刘洋儿, 许文涛, 郭明璋, 刘慧琳. 合成生物学细胞传感技术在食品安全快速检测中的应用[J]. 生物技术通报, 2023, 39(1): 137-149. |
[13] | 张婵, 吴友根, 于靖, 杨东梅, 姚广龙, 杨华庚, 张军锋, 陈萍. 光与茉莉酸信号介导的萜类化合物合成分子机制[J]. 生物技术通报, 2022, 38(8): 32-40. |
[14] | 周琳, 梁轩铭, 赵磊. 天然类胡萝卜素的生物合成研究进展[J]. 生物技术通报, 2022, 38(7): 119-127. |
[15] | 雷君, 陈勤, 邓兵, 张金渝, 刘迪秋, 崔秀明, 葛锋. R2R3-MYB转录因子PnMYB1调控三七皂苷生物合成[J]. 生物技术通报, 2022, 38(5): 74-83. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||