生物技术通报 ›› 2021, Vol. 37 ›› Issue (4): 137-144.doi: 10.13560/j.cnki.biotech.bull.1985.2020-1169
收稿日期:
2020-09-15
出版日期:
2021-04-26
发布日期:
2021-05-13
作者简介:
高苏,女,硕士研究生,研究方向:食药用菌功能活性成分分析;E-mail:基金资助:
GAO Su(), MA Jie-xin, LIU Jing-ju, ZHAO Guo-zhu()
Received:
2020-09-15
Published:
2021-04-26
Online:
2021-05-13
摘要:
虫草素为蛹虫草等食药保健品的主要活性成分。为进一步评价分析虫草素的抑菌活性及机理,通过最低抑菌浓度及抑菌圈实验测定、扫描电镜观察虫草素对6种常见细菌的抑菌谱及效果,测定供试菌的生长曲线、胞内紫外吸收物质泄露和菌体形态变化,分析虫草素抑制菌体生长及破坏细胞结构机理。结果表明,在溶解度范围内虫草素对3种G+菌有明显抑菌效果,而对3种G-菌无明显抑菌效果。生长测定及电镜观察发现经虫草素处理后供试G+菌菌体形态严重受损,胞内紫外吸收物质外泄,细菌生长进程受阻;而部分供试G-菌菌体表面有轻微破损并伴随少量内容物泄露,但细菌生长进程不受影响。虫草素具有一定的抑菌选择性,更易破坏G+菌的壁膜系统起到抑菌作用,对G-菌整体生长进程无明显影响。
高苏, 马婕馨, 刘警鞠, 赵国柱. 虫草素的抑菌活性及机理研究[J]. 生物技术通报, 2021, 37(4): 137-144.
GAO Su, MA Jie-xin, LIU Jing-ju, ZHAO Guo-zhu. Study on Antibacterial Activity and Mechanism of Cordycepin[J]. Biotechnology Bulletin, 2021, 37(4): 137-144.
供试菌株 Tested strains | 虫草素浓度 Concentration of cordycepin/(mg·mL-1) | ||||||
---|---|---|---|---|---|---|---|
0 | 0.625 | 1.25 | 2.5 | 5 | 10 | ||
B. subtilis BS-1 | +++ | ++ | + | - | - | - | |
B. thuringiensis BT-1 | +++ | +++ | ++ | + | - | - | |
S. aureus SA-1 | +++ | +++ | ++ | + | - | - | |
E. coli EC-1 | +++ | +++ | +++ | +++ | +++ | + | |
S. enteritidis SE-1 | +++ | +++ | +++ | +++ | +++ | + | |
P. aeruginosa PA-1 | +++ | +++ | +++ | +++ | +++ | ++ |
表1 虫草素MIC测定结果
Table1 Determination of cordycepin MIC
供试菌株 Tested strains | 虫草素浓度 Concentration of cordycepin/(mg·mL-1) | ||||||
---|---|---|---|---|---|---|---|
0 | 0.625 | 1.25 | 2.5 | 5 | 10 | ||
B. subtilis BS-1 | +++ | ++ | + | - | - | - | |
B. thuringiensis BT-1 | +++ | +++ | ++ | + | - | - | |
S. aureus SA-1 | +++ | +++ | ++ | + | - | - | |
E. coli EC-1 | +++ | +++ | +++ | +++ | +++ | + | |
S. enteritidis SE-1 | +++ | +++ | +++ | +++ | +++ | + | |
P. aeruginosa PA-1 | +++ | +++ | +++ | +++ | +++ | ++ |
图1 虫草素对6种供试菌抑菌圈 A为对照孔,B、C、D分别为2.5 mg/mL、5 mg/mL、10 mg/mL虫草素组
Fig.1 DIZ of cordycepin against six tested strains A is the control well. B, C and D are 2.5 mg/mL, 5 mg/mL and 10 mg/mL. respectively cordycepin group
供试菌株 Tested strains | DIZ/mm | |||
---|---|---|---|---|
2.5 mg/mL 虫草素cordycepin | 5 mg/mL 虫草素 cordycepin | 10 mg/mL 虫草素 cordycepin | ||
B. subtilis BS-1 | 3.6 ± 0.17d | 5.2 ± 0.16b | 8.75 ± 0.21a | |
B. thuringiensis BT-1 | 0 | 3.52 ± 0.23d | 5.25 ± 0.15b | |
S. aureus SA-1 | 0 | 2.97 ± 0.20e | 4.15 ± 0.31c | |
E. coli EC-1 | 0 | 0 | 0 | |
S. enterica SE-1 | 0 | 0 | 0 | |
P. aeruginosa PA-1 | 0 | 0 | 0 |
表2 虫草素DIZ测定结果
Table 2 Determination of cordycepin DIZ
供试菌株 Tested strains | DIZ/mm | |||
---|---|---|---|---|
2.5 mg/mL 虫草素cordycepin | 5 mg/mL 虫草素 cordycepin | 10 mg/mL 虫草素 cordycepin | ||
B. subtilis BS-1 | 3.6 ± 0.17d | 5.2 ± 0.16b | 8.75 ± 0.21a | |
B. thuringiensis BT-1 | 0 | 3.52 ± 0.23d | 5.25 ± 0.15b | |
S. aureus SA-1 | 0 | 2.97 ± 0.20e | 4.15 ± 0.31c | |
E. coli EC-1 | 0 | 0 | 0 | |
S. enterica SE-1 | 0 | 0 | 0 | |
P. aeruginosa PA-1 | 0 | 0 | 0 |
图4 场发射扫描电镜下的供试G+菌形态 大写字母表示各实验组,小写字母表示各对照组;A,a:B. subtilis BS-1;B,b:B. thuringiensis BT-1;C,c:S. aureus SA-1;放大倍数:8000×;比例尺5 μm
Fig.4 Morphology of tested G+ bacteria under field emission scanning electron microscope Capital letters refer to each experimental group, and lowercase letters refer to each control group. A, a: B.Subtilis BS-1. B, b: B. thuringiensis BT-1. C, c: S.aureus SA-1. Magnification: 8000×. Scale: 5 μm
图5 场发射扫描电镜下的供试G-菌形态 大写字母表示各实验组,小写字母表示各对照组;A,a:E. coli EC-1;B,b:S. enteritidis SE-1;C,c:P. aeruginosa PA-1;放大倍数:8 000×;比例尺5 μm
Fig.5 Morphology of tested G- bacteria under field emission scanning electron microscope Capital letters refer to each experimental group, and lowercase letters refer to each control group. A, a: E. coli EC-1. B, B: S. enteritidis SE - 1. C, c: P.aeruginosa PA-1.Magnification: 8000×. Scale: 5 μm
[1] |
Isono K. Nucleoside antibiotics:structure, biological activity, and biosynjournal[J]. J Antibiot, 1988,41(12):1711-1739.
doi: 10.7164/antibiotics.41.1711 URL |
[2] |
Niu G, Tan H. Nucleoside antibiotics:biosynjournal, regulation, and biotechnology[J]. Trends Microbiol, 2015,23(2):110-119.
doi: 10.1016/j.tim.2014.10.007 URL |
[3] |
Winn M, Goss RJ, Kimura K, et al. Antimicrobial nucleoside antibiotics targeting cell wall assembly:recent advances in structure-function studies and nucleoside biosynjournal[J]. Natural Product Reports, 2010,27(2):279-304.
doi: 10.1039/B816215H URL |
[4] |
Kimura K, Bugg TD. Recent advances in antimicrobial nucleoside antibiotics targeting cell wall biosynjournal[J]. Natural Product Reports, 2003,20(2):252-273.
doi: 10.1039/b202149h URL |
[5] | Cunningham KG, Manson W, Spring FS, et al. Cordycepin, a metabolic product isolated from cultures of Cordyceps militaris(Linn.)Link[J]. Nature, 1950,166(4231):949. |
[6] | 董宏鸿, 李建军, 周行, 等. 蛹虫草中虫草素的提取及药理活性研究进展[J]. 吉林医药学院学报, 2016,37(6):465-467. |
Dong HH, Li JJ, Zhou H, et al. Research progress on extraction and pharmacological activity of cordycepin from Cordyceps militaris[J]. Journal of Jilin Medical University, 2016,37(6):465-467. | |
[7] | 王延明. 九州虫草基因组改组育种与体外抗氧化活性研究[D]. 济南:山东大学, 2013. |
Wang YM. The research of genome shuffling breeding and in vitro antioxidant activity of Cordyceps kyushuensis[D]. Ji’nan:Shandong University, 2013. | |
[8] | 李晖, 孙佳瑜, 廖康汉, 等. 虫草素抗炎作用及机制研究[J]. 天津中医药, 2016,33(5):303-306. |
Li H, Sun JY, Liao KH, et al. Anti-inflammatory effect and mechanism study of cordycepin[J]. Tianjin Journal of Traditional Chinese Medicine, 2016,33(5):303-306. | |
[9] | 陈丽冰, 吴光旭, 等. 北虫草培养残基中虫草素的提取纯化及抗肿瘤活性[J]. 食品科学技术学报, 2016,34(4):73-79. |
Chen LB, Wu GX, et al. Extraction, purification, and antitumor activity of cordycepin from Cordyceps militaris residue medium[J]. Journal of Food Science and Technology, 2016,34(4):73-79. | |
[10] | 王长文, 王忠, 王锦锋, 等. 蛹虫草虫草素研究进展[J]. 福建农业科技, 2019,50(2):66-70. |
Wang CW, Wang Z, Wang JF, et al. Research progress of cordycepin in Cordyceps militaris[J]. Fujian Agricultural Science and Technology, 2019,50(2):66-70. | |
[11] | 李兵, 张文成, 付传香, 等. 蛹虫草中虫草素及腺苷对糖尿病小鼠肾脏氧化应激的影响[J]. 世界最新医学信息文摘, 2016,57(16):1-3. |
Li B, Zhang WC, Fu CX, et al. Effect of Cordyceps and adenosine on kidney oxidative stress of diabetic mice[J]. World Latest Medicine Information, 2016,57(16):1-3. | |
[12] |
Yeons H, Kim JR, Ahn YJ. Comparison of growth-inhibiting activities of Cordyceps militaris and Paecilomyces japonica cultured on Bombyx mori pupae towards human gastrointestinal bacteria[J]. J Sci Food Agric, 2007,87(1):54-59.
doi: 10.1002/(ISSN)1097-0010 URL |
[13] | 崔琳琳, 韩丹, 王莹, 等. 虫草素药理作用研究进展[J]. 食品工业科技, 2019,40(9):335-338, 345. |
Cui LL, Han D, Wang Y, et al. Research progress on pharmacological effects of cordycepin[J]. Science and Technology of Food Industry, 2019,40(9):335-338, 345. | |
[14] | 王智民, 刘晓谦, 高慧敏, 等. 发展大健康产业过程中的药食两用中药研发[J]. 中国药学杂志, 2017,52(5):333-336. |
Wang ZM, Liu XQ, Gao HM, et al. Brief introduction of dietary Chinese medicines[J]. Chinese Pharmaceutical Journal, 52(5):333-336. | |
[15] |
Moreira D, Gullón B, Gullón P, et al. Bioactive packaging using antioxidant extracts for the prevention of microbial food-spoilage[J]. Food and Function, 2016,7(7):3273-3282.
doi: 10.1039/C6FO00553E URL |
[16] |
Sharma A, Bajpai VK, Bake KH. Determination of antibacterial mode of action of Allium sativum, essential oil against foodborne pathogens using membrane permeability and surface characteristic parameters[J]. J Food Saf, 2013,33(2):197-208.
doi: 10.1111/jfs.12040 URL |
[17] | 何学文, 戴雨芸, 等. 肉桂醛体外对鼠伤寒沙门氏菌的抑菌机制[J]. 江西农业大学学报, 2020,42(1):150-156. |
He XW, Dai YY, et al. Antibacterial mechanism of cinnamaldehyde on Salmonella typhimuriumin in vitro[J]. Acta Agriculturae Universitatis Jiangxiensis, 2020,42(1):150-156. | |
[18] | 江琦. 蛹虫草多糖和虫草素的提取分离及活性研究[D]. 无锡:江南大学, 2018. |
Jiang Q, Study on the extraction and isolation of polysaccharides and cordycepin from Cordyceps militaris and their activities[D]. Wuxi:Jiangnan University, 2018. | |
[19] |
Li GH, Wang X, et al. Antimicrobial effect and mode of action of chlorogenic acid on Staphylococcus aureus[J]. Eur Food Res Technol, 2013,238(4):589-596.
doi: 10.1007/s00217-013-2140-5 URL |
[20] |
Jiang Q, Lou ZX, Wang HX, et al. Antimicrobial effect and proposed action mechanism of cordycepin against Escherichia coli and Bacillus subtilis[J]. Journal of Microbiology, 2019,57(4):288-297.
doi: 10.1007/s12275-019-8113-z pmid: WOS:000462970800009 |
[21] | 高海涛, 韩俊丽, 关道明. 大肠杆菌耐药现状的严峻性[J]. 生命科学, 2017,29(5):514-520. |
Gao HT, Han JL, Guan DM. The grim situation of drug resistance in Escherichia coli[J]. Chinese Bulletin of Life Sciences, 2017,29(5):514-520. | |
[22] | 卢彩会, 赵明明, 牟德华. 姜黄油的抑菌活性及抑菌机理[J]. 食品工业科技, 2018,39(21):108-113. |
Lu CH, Zhao MM, Mu DH. Antimicrobial activity and bacteriostatic mechanism of turmeric oil[J]. Science and Technology of Food Industry, 2018,39(21):108-113. | |
[23] | 任小青. 鲶鱼骨酶解物的制备、抑菌性能、抑菌机理及其在食品中的应用研究[D]. 上海:华东理工大学, 2012. |
Ren XQ, Preparation of the catfish bone hydrolysate and its antimicrobial activity, antimicrobial mechanism and application in foods[D]. Shanhai:East China University of Science and Technology, 2012. | |
[24] | Pinto NDCC, Campos LM, Evangelista ACS. et al. Antimicrobial Annona muricata L. (soursop)extract targets the cell membranes of Gram-positive and Gram-negative bacteria[J]. Industrial Crops & Products, 2017,107:332-340. |
[25] |
Tang CL, Chen JL, Zhang LX, et al. Exploring the antibacterial mechanism of essential oils by membrane permeability, apoptosis and biofilm formation combination with proteomics analysis against methicillin-resistant Staphylococcus aureus[J]. Int J Med Microbiol, 2020,310(5):151435.
doi: 10.1016/j.ijmm.2020.151435 URL |
[26] |
Mei CC, Wang X, Chen YC, et al. Antibacterial activity and mechanism of Litsea cubeba essential oil against food contamination by Escherichia coli and Salmonella enterica[J]. Journal of Food Safety, 2020. DOI: 10.1111/jfs.12809.
doi: 10.1111/jfs.12809 |
[27] |
Shen SX, Zhang TH, Yuan Y, et al. Effects of cinnamaldehyde on Escherichia coli and Staphylococcus aureus membrane[J]. Food Control, 2015,47(47):196-202.
doi: 10.1016/j.foodcont.2014.07.003 URL |
[28] | 鲁海嘉, 张东峰, 黄海洪. 抗革兰氏阴性菌药物的研究进展[J]. 药学学报, 2019,54(9):1554-1563. |
Lu HJ, Zhang DF, Huang HB. Recent advances in study of drugs against Gram-negative pathogens[J]. Acta Pharmaceutica Sinica, 2019,54(9):1554-1563. | |
[29] |
Mina M, Masanori H, Shinya F, et al. Simple and efficient isolation of cordycepin from culture broth of a Cordyceps militaris mutant[J]. Journal of Bioscience and Bioengineering, 2015,120(6):732-735.
doi: 10.1016/j.jbiosc.2015.04.008 URL |
[1] | 田露, 吴咪, 缑敬轩, 龚国利. 细菌素的研究与应用进展[J]. 生物技术通报, 2021, 37(4): 224-233. |
[2] | 王志新, 鲁雷震, 周景波, 封成玲, 贾紫伟, 宁亚维, 贾英民. 抗真菌肽研究进展[J]. 生物技术通报, 2021, 37(3): 206-218. |
[3] | 陈杰豪, 缪玉佳, 梁超, 陶雨, 欧阳萍, 汪开毓, 耿毅, 石存斌, 李宁求. 山姜素对鱼源耐药性嗜水气单胞菌体外抗菌作用的研究[J]. 生物技术通报, 2021, 37(2): 103-110. |
[4] | 黄海辰, 吴文雅, 戚梦, 薛帆正, 吴小平, 张君丽, 傅俊生. 虫草素抗三阴性乳腺癌的转录组学分析[J]. 生物技术通报, 2021, 37(11): 72-80. |
[5] | 王福平, 张锋, 赵同标. 人尿源干细胞的分离与鉴定[J]. 生物技术通报, 2018, 34(8): 190-198. |
[6] | 张正雪,蓝增全,吴田. 基于诺丽叶片愈伤组织的细胞悬浮系的建立[J]. 生物技术通报, 2018, 34(5): 142-147. |
[7] | 朱巍巍,李莉,陈飞,李杨,王艳华,包永明. 基因组DNA去甲基化法改良蛹虫草菌株高产虫草素及性状稳定性评价[J]. 生物技术通报, 2016, 32(12): 47-52. |
[8] | 谢丽玲, 彭齐, 蔡链纯, 周亮, 朱炎坤, 韩光耀. 黄芩醇提物对副溶血性弧菌抑制机制的研究[J]. 生物技术通报, 2015, 31(8): 159-165. |
[9] | 吴雪君, 崔宝凯. 几株非模式白腐菌降解能力的研究[J]. 生物技术通报, 2015, 31(6): 151-156. |
[10] | 戴琨, 王腾飞, 郝昭程, 汤丹丹, 刘红娟, 王瑞明. 乙酸对重组大肠杆菌BL21产酶的影响及作用机理研究[J]. 生物技术通报, 2015, 31(5): 206-213. |
[11] | 李杨,蔡海莺,赵敏洁,张辉,冯凤琴. 高产耐高温脂肪酶生产菌的筛选与鉴定[J]. 生物技术通报, 2015, 31(1): 144-150. |
[12] | 宫晓静;吴燕燕;. 海洋无脊椎动物抗菌肽研究进展及其在食品保鲜中的应用[J]. , 2011, 0(03): 27-32. |
[13] | 李云霞;司静;李煜;. 狂犬疫苗单克隆抗体制备过程中细胞融合条件的探索[J]. , 2010, 0(12): 167-172. |
[14] | 李丽萍;谢响明;宋洪英;牛伯庆;. 紫茎泽兰提取物对番茄青枯菌的抑菌作用及其机理[J]. , 2010, 0(07): 146-152. |
[15] | 王继雯;谢宝恩;甄静;周伏忠;陈国参;. 重组Hepcidin融合蛋白的氧化复性及活性鉴定[J]. , 2010, 0(05): 192-195. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||