[1] |
Bhatnagar B, Zakharov B, Fisyuk A, et al. Protein/Ice interaction:High-resolution synchrotron X-ray diffraction differentiates pharmaceutical proteins from lysozyme[J]. J Phys Chem B, 2019,123(27):5690-5699.
doi: 10.1021/acs.jpcb.9b02443
URL
pmid: 31260313
|
[2] |
Chen J, Chen X, Zhu Q, et al. Determination of the domain structure of the 7S and 11S globulins from soy proteins by XRD and FTIR[J]. J Sci Food Agric, 2013,93(7):1687-1691.
doi: 10.1002/jsfa.5950
URL
pmid: 23152286
|
[3] |
Jenkins JE, Sampath S, Butler E, et al. Characterizing the secondary protein structure of black widow dragline silk using solid-state NMR and X-ray diffraction[J]. Biomacromolecules, 2013,14(10):3472-3483.
doi: 10.1021/bm400791u
URL
pmid: 24024617
|
[4] |
Sijbesma E, Hallenbeck KK, Leysen S, et al. Site-Directed Fragment-based screening for the discovery of protein-protein interaction stabilizers[J]. J Am Chem Soc, 2019,141(8):3524-3531.
doi: 10.1021/jacs.8b11658
URL
pmid: 30707565
|
[5] |
Ye X, Junel K, Gällstedt M, et al. Protein/Protein nanocomposite based on whey protein nanofibrils in a whey protein matrix[J]. ACS Sustain Chem Eng, 2018,6(4):5462-5469.
|
[6] |
Zhao X, Zhu H, Zhang B, et al. XRD, SEM, and XPS analysis of soybean protein powders obtained through extraction involving reverse micelles[J]. J Am Oil Chem Soc, 2015,92(7):975-983.
|
[7] |
Andronesi OC, Bergen Mv, Biernat J, et al. Characterization of Alzheimer’s-like paired helical filaments from the core domain of Tau protein using solid-state NMR spectroscopy[J]. J Am Chem Soc, 2008,130(18):5922-5928.
doi: 10.1021/ja7100517
URL
pmid: 18386894
|
[8] |
Carravetta M, Zhao X, Johannessen OG, et al. Protein-induced bonding perturbation of the rhodopsin chromophore detected by double-quantum solid-state NMR[J]. J Am Chem Soc, 2004,126(12):3948-3953.
|
[9] |
Shi X, Rienstra CM. Site-specific internal motions in GB1 protein microcrystals revealed by 3D 2H-13C-13C solid-state NMR spectroscopy[J]. J Am Chem Soc, 2016,138(12):4105-4119.
URL
pmid: 26849428
|
[10] |
Yan R, Zhang Y, Li Y, et al. Structural basis for the recognition of the SARS-CoV-2 by full-length human ACE2[J]. Science, 2020: eabb2762.
|
[11] |
Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation[J]. Science, 2020,367(6483):1260-1263.
|
[12] |
Liang YL, Khoshouei M, Radjainia M, et al. Phase-plate cryo-EM structure of a class B GPCR-G-protein complex[J]. Nature, 2017,546(7656):118-123.
doi: 10.1038/nature22327
URL
pmid: 28437792
|
[13] |
Eker F, Griebenow K, Schweitzer-Stenner R. Stable conformations of tripeptides in aqueous solution studied by UV circular dichroism spectroscopy[J]. J Am Chem Soc, 2003,125(27):8178-8185.
URL
pmid: 12837087
|
[14] |
Gokce I, Woody RW, Anderluh G, et al. Single peptide bonds exhibit poly(Pro)II(“Random Coil”)circular dichroism spectra[J]. J Am Chem Soc, 2005,127(27):9700-9701.
doi: 10.1021/ja052632x
URL
pmid: 15998070
|
[15] |
Moore-Kelly C, Welsh J, Rodger A, et al. Automated high-throughput capillary circular dichroism and intrinsic fluorescence spectroscopy for rapid determination of protein structure[J]. Anal Chem, 2019,91(21):13794-13802.
|
[16] |
Sinaga A, Hatton TA, Tam KC. Poly(acrylic acid)-block-poly(l-valine):Evaluation of β-sheet formation and its stability using circular dichroism technique.[J]. Biomacromolecules, 2007,8(9):2801-2808.
doi: 10.1021/bm700491q
URL
pmid: 17711334
|
[17] |
Watanabe H, Yoshida C, Ooishi A, et al. Histidine-mediated intramolecular electrostatic repulsion for controlling pH-dependent protein-protein interaction[J]. ACS Chem Bio, 2019,14(12):2729-2736.
|
[18] |
Zsila F. Circular dichroism spectroscopy is a sensitive tool for investigation of bilirubin-enzyme interactions[J]. Biomacromolecules, 2011,12(1):221-227.
|