生物技术通报 ›› 2023, Vol. 39 ›› Issue (8): 234-240.doi: 10.13560/j.cnki.biotech.bull.1985.2022-1552
宋志忠1,2,4(), 徐维华2, 肖慧琳2, 唐美玲2,3, 陈景辉3, 管雪强3, 刘万好1,2,3(
)
收稿日期:
2022-12-23
出版日期:
2023-08-26
发布日期:
2023-09-05
通讯作者:
刘万好,男,硕士,高级农艺师,研究方向:葡萄栽培与分子生物学;E-mail: sliuwanhao1978@sina.com作者简介:
宋志忠,男,博士,副教授,研究方向:果树生理营养与分子生物学;E-mail: szhzh2000@163.com
基金资助:
SONG Zhi-zhong1,2,4(), XU Wei-hua2, XIAO Hui-lin2, TANG Mei-ling2,3, CHEN Jing-hui3, GUAN Xue-qiang3, LIU Wan-hao1,2,3(
)
Received:
2022-12-23
Published:
2023-08-26
Online:
2023-09-05
摘要:
克隆酿酒葡萄铁调节转运蛋白基因VvIRT,分析其表达模式及其潜在的生物学功能,为研究果树铁素吸收与高效利用机制提供理论依据。利用同源克隆法克隆酿酒葡萄VvIRT1,运用实时荧光定量PCR分析组织特异性表达模式及其在转录水平对不同铁素供应水平的响应特征,借助酵母异源表达系统分析其转运Fe2+的功能。从二倍体酿酒葡萄‘马瑟兰’中分离和鉴定了1个铁调节转运蛋白VvIRT1,系统发育树表明VvIRT1与芸香科柑橘CsIRT1和锦葵科陆地棉GhIRT1的遗传距离较近。VvIRT1在5年生成年树体新生根和组培幼苗根中特异表达;缺铁处理显著诱导了VvIRT1在组培幼苗全部组织(根、茎和叶)中表达,而高铁毒害显著抑制了VvIRT1在组培幼苗根中的表达。此外,酵母功能互补试验表明,VvIRT1能够恢复酵母突变菌株DEY1453的正常生长,VvIRT1具有转运外界Fe2+的能力。
宋志忠, 徐维华, 肖慧琳, 唐美玲, 陈景辉, 管雪强, 刘万好. 酿酒葡萄铁调节转运蛋白基因VvIRT1的克隆、表达与功能[J]. 生物技术通报, 2023, 39(8): 234-240.
SONG Zhi-zhong, XU Wei-hua, XIAO Hui-lin, TANG Mei-ling, CHEN Jing-hui, GUAN Xue-qiang, LIU Wan-hao. Cloning, Expression and Function of Iron Regulated Transporter VvIRT1 in Wine Grape(Vitis vinifera L.)[J]. Biotechnology Bulletin, 2023, 39(8): 234-240.
图1 不同植物IRT同源蛋白氨基酸序列的一致性分析 Ah:落花生;At:拟南芥;Cs:柑橘;Gh:陆地棉;Mx:小金海棠;Os:水稻;Pb:杜梨;Pm:梅;Pp:桃;Pt:白杨;Rs:萝卜;Sl:番茄;St:马铃薯;Vv:葡萄;Zm:玉米。下同
Fig. 1 Amino acid sequence identity analysis of IRT homologs from different plant species Ah: Arachis hypgaea; At: Arabidopsis thaliana; Cs: Citrus sinensis; Gh: Gossypium hirsutum; Mx: Malus xiaojinensis; Os: Oryza sativa; Pb: Prunus betulaefolia;Pm: Prunus mume; Pp: Prunus persica; Pt: Populus trichocarpa; Sl: Solanum lycopersicum; Vv: Vitis vinifera; Zm: Zea mays. The same below
图4 VvIRT1对不同铁素供应水平的响应 在铁素处理与对照2个独立样品间进行t-检验(**P<0.01)
Fig. 4 Responses of VvIRT1 under different Fe supplies t-test analysis between iron treatment and control conditions(**P<0.01)
[1] |
Lill R. Function and biogenesis of iron-sulphur proteins[J]. Nature, 2009, 460(7257): 831-838.
doi: 10.1038/nature08301 |
[2] | Barton LL, Abadia J. Iron nutrition in plants and rhizospheric microorganisms[M]. Dordrecht: Springer Netherlands, 2006. |
[3] |
Balk J, Pilon M. Ancient and essential: the assembly of iron-sulfur clusters in plants[J]. Trends Plant Sci, 2011, 16(4): 218-226.
doi: 10.1016/j.tplants.2010.12.006 pmid: 21257336 |
[4] |
Couturier J, Touraine B, Briat JF, et al. The iron-sulfur cluster assembly machineries in plants: current knowledge and open questions[J]. Front Plant Sci, 2013, 4: 259.
doi: 10.3389/fpls.2013.00259 pmid: 23898337 |
[5] | 张妮娜, 上官周平, 陈娟. 植物应答缺铁胁迫的分子生理机制及其调控[J]. 植物营养与肥料学报, 2018, 24(5): 1365-1377. |
Zhang NN, Shangguan ZP, Chen J. Molecular physiological mechanism and regulation of plant responses to iron deficiency stress[J]. J Plant Nutr Fertil, 2018, 24(5): 1365-1377. | |
[6] | 李俊成, 于慧, 杨素欣, 等. 植物对铁元素吸收的分子调控机制研究进展[J]. 植物生理学报, 2016, 52(6): 835-842. |
Li JC, Yu H, Yang SX, et al. Research progress of molecular regulation of iron uptake in plants[J]. Plant Physiol J, 2016, 52(6): 835-842. | |
[7] |
Tagliavini M, Abadía J, Rombolà AD, et al. Agronomic means for the control of iron deficiency chlorosis in deciduous fruit trees[J]. J Plant Nutr, 2000, 23(11/12): 2007-2022.
doi: 10.1080/01904160009382161 URL |
[8] |
Tagliavini M, Rombolà AD. Iron deficiency and chlorosis in orchard and vineyard ecosystems[J]. Eur J Agron, 2001, 15(2): 71-92.
doi: 10.1016/S1161-0301(01)00125-3 URL |
[9] |
Kobayashi T, Nishizawa NK. Iron uptake, translocation, and regulation in higher plants[J]. Annu Rev Plant Biol, 2012, 63: 131-152.
doi: 10.1146/annurev-arplant-042811-105522 pmid: 22404471 |
[10] |
Römheld V, Marschner H. Evidence for a specific uptake system for iron phytosiderophores in roots of grasses[J]. Plant Physiol, 1986, 80(1): 175-180.
doi: 10.1104/pp.80.1.175 pmid: 16664577 |
[11] |
Ishimaru Y, Suzuki M, Tsukamoto T, et al. Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+[J]. Plant J, 2006, 45(3): 335-346.
doi: 10.1111/j.1365-313X.2005.02624.x pmid: 16412081 |
[12] |
Nakanishi H, Ogawa I, Ishimaru Y, et al. Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice[J]. Soil Sci Plant Nutr, 2006, 52(4): 464-469.
doi: 10.1111/j.1747-0765.2006.00055.x URL |
[13] |
Zelazny E, Vert G. Regulation of iron uptake by IRT1: endocytosis pulls the trigger[J]. Mol Plant, 2015, 8(7): 977-979.
doi: 10.1016/j.molp.2015.03.006 pmid: 25778985 |
[14] |
Eide D, Broderius M, Fett J, et al. A novel iron-regulated metal transporter from plants identified by functional expression in yeast[J]. Proc Natl Acad Sci USA, 1996, 93(11): 5624-5628.
doi: 10.1073/pnas.93.11.5624 pmid: 8643627 |
[15] |
Vert G, Grotz N, Dédaldéchamp F, et al. IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth[J]. Plant Cell, 2002, 14(6): 1223-1233.
doi: 10.1105/tpc.001388 URL |
[16] |
Fourcroy P, Tissot N, Gaymard F, et al. Facilitated Fe nutrition by phenolic compounds excreted by the Arabidopsis ABCG37/PDR9 transporter requires the IRT1/FRO2 high-affinity root Fe2+ transport system[J]. Mol Plant, 2016, 9(3): 485-488.
doi: S1674-2052(15)00387-1 pmid: 26415695 |
[17] |
Vert G, Barberon M, Zelazny E, et al. Arabidopsis IRT2 cooperates with the high-affinity iron uptake system to maintain iron homeostasis in root epidermal cells[J]. Planta, 2009, 229(6): 1171-1179.
doi: 10.1007/s00425-009-0904-8 URL |
[18] |
Eckhardt U, Mas Marques A, Buckhout TJ. Two iron-regulated cation transporters from tomato complement metal uptake-deficient yeast mutants[J]. Plant Mol Biol, 2001, 45(4): 437-448.
doi: 10.1023/a:1010620012803 pmid: 11352462 |
[19] |
Li P, Qi JL, Wang L, et al. Functional expression of MxIRT1, from Malus xiaojinensis, complements an iron uptake deficient yeast mutant for plasma membrane targeting via membrane vesicles trafficking process[J]. Plant Sci, 2006, 171(1): 52-59.
doi: 10.1016/j.plantsci.2006.02.012 URL |
[20] | 贺晓燕, 龚义勤, 徐良, 等. 萝卜铁转运蛋白基因RsIRT1分子特征分析[J]. 南京农业大学学报, 2013, 36(6): 13-18. |
He XY, Gong YQ, Xu L, et al. Molecular characterization of iron-regulated transporter gene RsIRT1 in radish[J]. J Nanjing Agric Univ, 2013, 36(6): 13-18. | |
[21] | 金昕, 刘娜, 申长卫, 等. 杜梨IRT1基因的克隆及表达分析[J]. 农业生物技术学报, 2017, 25(5): 739-749. |
Jin X, Liu N, Shen CW, et al. Cloning and expression analysis of IRT1 gene in Pyrus betulaefolia[J]. J Agric Biotechnol, 2017, 25(5): 739-749. | |
[22] |
Jaillon O, Aury JM, Noel B, et al. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla[J]. Nature, 2007, 449(7161): 463-467.
doi: 10.1038/nature06148 |
[23] |
张璐, 宗亚奇, 徐维华, 等. 葡萄Fe-S簇装配基因的鉴定、克隆和表达特征分析[J]. 中国农业科学, 2021, 54(23): 5068-5082.
doi: 10.3864/j.issn.0578-1752.2021.23.012 |
Zhang L, Zong YQ, Xu WH, et al. Identification, cloning, and expression characteristics analysis of Fe-S cluster assembly genes in grape[J]. Sci Agric Sin, 2021, 54(23): 5068-5082.
doi: 10.3864/j.issn.0578-1752.2021.23.012 |
|
[24] |
Song ZZ, Yang Y, Xu JL, et al. Physiological and transcriptional responses in the iron-sulphur cluster assembly pathway under abiotic stress in peach(Prunus persica L.) seedlings[J]. Plant Cell Tiss Organ Cult, 2014, 117(3): 419-430.
doi: 10.1007/s11240-014-0452-1 URL |
[25] |
崔吉洁, 蔡文波, 庄庆辉, 等. 杧果Fe-S簇装配基因MiISU1的生物学功能[J]. 生物技术通报, 2023, 39(2): 139-146.
doi: 10.13560/j.cnki.biotech.bull.1985.2022-0616 |
Cui JJ, Cai WB, Zhuang QH, et al. Biological function of gene MiISU1 for Fe-S cluster assembly in Mangifera indica[J]. Biotechnol Bull, 2023, 39(2): 139-146. | |
[26] |
Song ZZ, Ma RJ, Zhang BB, et al. Differential expression of iron-sulfur cluster biosynthesis genes during peach fruit development and ripening, and their response to iron compound spraying[J]. Sci Hortic, 2016, 207: 73-81.
doi: 10.1016/j.scienta.2016.05.024 URL |
[27] |
Tang ML, Li YH, Chen YH, et al. Characterization and expression of ammonium transporter in peach(Prunus persica)and regulation analysis in response to external ammonium supply[J]. Phyton, 2020, 89(4): 925-941.
doi: 10.32604/phyton.2020.011184 URL |
[28] |
王壮伟, 王庆莲, 夏瑾, 等. 葡萄KEA家族基因的克隆、鉴定及表达分析[J]. 中国农业科学, 2018, 51(23): 4522-4534.
doi: 10.3864/j.issn.0578-1752.2018.23.011 |
Wang ZW, Wang QL, Xia J, et al. Cloning, characterization and expression analysis of K+/H+ antiporter genes in grape[J]. Sci Agric Sin, 2018, 51(23): 4522-4534. | |
[29] |
沈静沅, 唐美玲, 杨庆山, 等. 葡萄钾离子通道基因VviSKOR的克隆、表达及电生理功能[J]. 中国农业科学, 2020, 53(15): 3158-3168.
doi: 10.3864/j.issn.0578-1752.2020.15.015 |
Shen JY, Tang ML, Yang QS, et al. Cloning, expression and electrophysiological function analysis of potassium channel gene VviSKOR in grape[J]. Sci Agric Sin, 2020, 53(15): 3158-3168. | |
[30] |
Ding H, Duan LH, Li J, et al. Cloning and functional analysis of the peanut iron transporter AhIRT1 during iron deficiency stress and intercropping with maize[J]. J Plant Physiol, 2010, 167(12): 996-1002.
doi: 10.1016/j.jplph.2009.12.019 URL |
[1] | 赵光绪, 杨合同, 邵晓波, 崔志豪, 刘红光, 张杰. 一株高效溶磷产红青霉培养条件优化及其溶磷特性[J]. 生物技术通报, 2023, 39(9): 71-83. |
[2] | 董聪, 高庆华, 王玥, 罗同阳, 王庆庆. 基于联合策略提高FAD依赖的葡萄糖脱氢酶的酵母表达[J]. 生物技术通报, 2023, 39(6): 316-324. |
[3] | 陈晓萌, 张雪静, 张欢, 张宝江, 苏艳. 重组牛乳源金黄色葡萄球菌GapC蛋白优势B细胞抗原表位的预测和筛选[J]. 生物技术通报, 2023, 39(5): 306-313. |
[4] | 赵赛赛, 张小丹, 贾晓妍, 陶大炜, 刘可玉, 宁喜斌. 高产硝酸盐还原酶Staphylococcus simulans ZSJ6的复合诱变选育及其酶学性质研究[J]. 生物技术通报, 2023, 39(4): 103-113. |
[5] | 宋海娜, 吴心桐, 杨鲁豫, 耿喜宁, 张华敏, 宋小龙. 葱鳞葡萄孢菌诱导下韭菜RT-qPCR内参基因的筛选和验证[J]. 生物技术通报, 2023, 39(3): 101-115. |
[6] | 张君, 张虹, 张芮, 路国栋, 雍婧姣, 郎思睿, 陈任. 甜菊醇糖苷生物合成关键基因的导入和鉴定分析[J]. 生物技术通报, 2023, 39(1): 214-223. |
[7] | 孙卓, 王妍, 韩忠明, 王云贺, 赵淑杰, 杨利民. 防风根际真菌的分离鉴定及其生防潜力评价[J]. 生物技术通报, 2023, 39(1): 264-273. |
[8] | 程深伟, 张克强, 梁军锋, 刘福元, 郜兴亮, 杜连柱. 畜禽养殖粪污中典型致病菌的三重微滴式数字PCR定量检测方法的建立[J]. 生物技术通报, 2022, 38(9): 271-280. |
[9] | 牛宇辉, 李向茸, 吴贝, 李洪珊, 李殿玉, 陈磊, 魏锁成, 冯若飞. 葡萄糖和丁酸钠对CHO-rHSA工程细胞株中rHSA产量的影响[J]. 生物技术通报, 2022, 38(7): 278-286. |
[10] | 杨佳宝, 周至铭, 张展, 冯丽, 孙黎. 向日葵HaLACS1的克隆、表达及酵母功能互补鉴定[J]. 生物技术通报, 2022, 38(6): 147-156. |
[11] | 张国宁, 冯婧娴, 杨颖博, 陈万生, 肖莹. 环糊精葡萄糖基转移酶在天然产物糖基化修饰中的应用[J]. 生物技术通报, 2022, 38(3): 246-255. |
[12] | 赖恭梯, 阙秋霞, 潘若, 刘雨轩, 王琦, 赖谱富, 高慧颖, 赖呈纯. 刺葡萄查尔酮合成酶基因CHS对不同光质的响应及转录因子调控分析[J]. 生物技术通报, 2022, 38(11): 129-139. |
[13] | 郭宇飞, 闫荣媚, 张小茹, 曹威, 刘浩. 代谢工程改造黑曲霉生产葡萄糖二酸[J]. 生物技术通报, 2022, 38(11): 227-237. |
[14] | 岑潇龙, 雷曦, 马诗云, 陈倩茹, 黄遵锡, 周峻沛, 张蕊. 金黄色葡萄球菌透明质酸裂解酶HylS的异源表达与特性研究[J]. 生物技术通报, 2022, 38(1): 157-167. |
[15] | 马亚男, 卢旭, 魏云春, 李康, 魏若男, 李胜, 马绍英. 葡萄AKR基因家族的鉴定和组织特异性表达分析[J]. 生物技术通报, 2021, 37(8): 141-151. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 248
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 305
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||