生物技术通报 ›› 2021, Vol. 37 ›› Issue (2): 80-87.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0848
收稿日期:
2020-07-09
出版日期:
2021-02-26
发布日期:
2021-02-26
作者简介:
张廷焕,男,硕士研究生,研究方向:猪功能基因组;E-mail: 基金资助:
ZHANG Ting-huan(), LONG Xi, GUO Zong-yi, CHAI Jie()
Received:
2020-07-09
Published:
2021-02-26
Online:
2021-02-26
摘要:
旨为验证miR-378在脂肪细胞中的功能,及其脂质相关靶基因的筛选和鉴定。利用miR-378类似物转染3T3-L1细胞,验证miR-378在脂肪细胞中的功能;根据靶标位点的保守性以及促脂功能确定miR-378潜在靶基因;采用microRNA pulldown技术验证miR-378与靶基因的靶标关系;运用双荧光素报告基因实验确定miR-378与靶基因的结合位点。结果发现,miR-378可以通过增加脂质合成和减少脂质分解两条途经来促进脂肪细胞中脂质生成,确定了miR-378与Runx1t1、Galnt3、和RAB10的靶标关系以及结合的靶位点。
张廷焕, 龙熙, 郭宗义, 柴捷. miR-378促进脂质生成相关靶基因鉴定[J]. 生物技术通报, 2021, 37(2): 80-87.
ZHANG Ting-huan, LONG Xi, GUO Zong-yi, CHAI Jie. miR-378 Promoting Lipogenesis and Identification of Target Genes[J]. Biotechnology Bulletin, 2021, 37(2): 80-87.
Primer name | Primer sequence | Length/bp |
---|---|---|
GDF6 | F:CTCGAGCTACTAAATGACAG | 20 |
R:TCTCCTTCCTCACTGCCTGT | 20 | |
Runx1t1 | F:ATCGGGAATTCCTTCACAGGC | 21 |
R:GCTTTTTGCAGCTCCGTCAT | 20 | |
Galnt3 | F:ACGCAGGTGATTGCTCGTAA | 20 |
R:AGGTCTGGCACATACGCTTC | 20 | |
RAB10 | F:ATGTACTTGCTCAGCTCAACT | 21 |
R:AGGGACTCAAGCACATTATCCA | 22 |
表1 RT-PCR扩增引物
Primer name | Primer sequence | Length/bp |
---|---|---|
GDF6 | F:CTCGAGCTACTAAATGACAG | 20 |
R:TCTCCTTCCTCACTGCCTGT | 20 | |
Runx1t1 | F:ATCGGGAATTCCTTCACAGGC | 21 |
R:GCTTTTTGCAGCTCCGTCAT | 20 | |
Galnt3 | F:ACGCAGGTGATTGCTCGTAA | 20 |
R:AGGTCTGGCACATACGCTTC | 20 | |
RAB10 | F:ATGTACTTGCTCAGCTCAACT | 21 |
R:AGGGACTCAAGCACATTATCCA | 22 |
primer name | DNA primer sequence | Length/bp |
---|---|---|
GDF6 | F:AGGGGACACAAGTCCCTGTC | 20 |
R:AGAACTGCCCGCCACCAACG | 20 | |
Runx1t1 | F:GCCAAAGACTGATCTGAGGGA | 21 |
R:GGAGAAGTGTCTTCCCAGCC | 20 | |
Galnt3 | F:TAGAACCGCTGCAGAAACCC | 20 |
R:TGAGTGTGTGGATGCAGGTG | 20 | |
RAB10 | F:CTCGAGTCCCACAGACAATTC | 20 |
R:CAAAGCCCTAATAGTAAGCAG | 20 |
表2 PCR扩增引物
primer name | DNA primer sequence | Length/bp |
---|---|---|
GDF6 | F:AGGGGACACAAGTCCCTGTC | 20 |
R:AGAACTGCCCGCCACCAACG | 20 | |
Runx1t1 | F:GCCAAAGACTGATCTGAGGGA | 21 |
R:GGAGAAGTGTCTTCCCAGCC | 20 | |
Galnt3 | F:TAGAACCGCTGCAGAAACCC | 20 |
R:TGAGTGTGTGGATGCAGGTG | 20 | |
RAB10 | F:CTCGAGTCCCACAGACAATTC | 20 |
R:CAAAGCCCTAATAGTAAGCAG | 20 |
[1] |
Bartel DP. MicroRNAs:target recognition and regulatory functions[J]. Cell, 2009,136(2):215-233.
doi: 10.1016/j.cell.2009.01.002 URL pmid: 19167326 |
[2] |
Gagan J, Dey BK, Layer R, et al. MicroRNA-378 targets the myogenic repressor MyoR during myoblast differentiation[J]. J Biol Chem, 2011,286(22):19431-19438.
URL pmid: 21471220 |
[3] |
Hupkes M, Sotoca AM, Hendriks JM, et al. MicroRNA miR-378 promotes BMP2-induced osteogenic differentiation of mesenchymal progenitor cells[J]. BMC Mol Biol, 2014,15:1.
doi: 10.1186/1471-2199-15-1 URL pmid: 24467925 |
[4] |
Eichner LJ, Perry MC, Dufour CR, et al. miR-378* mediates metabolic shift in breast cancer cells via the PGC-1β/ERRγ transcriptional pathway[J]. Cell Metab, 2010,12(4):352-361.
doi: 10.1016/j.cmet.2010.09.002 URL pmid: 20889127 |
[5] |
Hou X, Tang Z, Liu H, et al. Discovery of MicroRNAs associated with myogenesis by deep sequencing of serial developmental skeletal muscles in pigs[J]. PLoS One, 2012,7(12):e52123.
doi: 10.1371/journal.pone.0052123 URL pmid: 23284895 |
[6] |
Knezevic I, Patel A, Sundaresan NR, et al. A novel cardiomyocyte-enriched microRNA, miR-378, targets insulin-like growth factor 1 receptor:implications in postnatal cardiac remodeling and cell survival[J]. J Biol Chem, 2012,287(16):12913-12926.
doi: 10.1074/jbc.M111.331751 URL pmid: 22367207 |
[7] |
Fang J, Song XW, Tian J, et al. Overexpression of microRNA-378 attenuates ischemia-induced apoptosis by inhibiting caspase-3 expression in cardiac myocytes[J]. Apoptosis, 2012,17(4):410-423.
doi: 10.1007/s10495-011-0683-0 URL pmid: 22119805 |
[8] |
Liu W, Cao H, Ye C, et al. Hepatic miR-378 targets p110alpha and controls glucose and lipid homeostasis by modulating hepatic insulin signalling[J]. Nat Commun, 2014,5:5684.
doi: 10.1038/ncomms6684 URL pmid: 25471065 |
[9] |
Carrer M, Liu N, Grueter CE, et al. Control of mitochondrial metabolism and systemic energy homeostasis by microRNAs 378 and 378*[J]. Proc Natl Acad Sci USA, 2012,109(38):15330-15335.
doi: 10.1073/pnas.1207605109 URL pmid: 22949648 |
[10] |
Kahai S, Lee SC, Lee DY, et al. MicroRNA miR-378 regulates nephronectin expression modulating osteoblast differentiation by targeting GalNT-7[J]. PLoS One, 2009,4(10):e7535.
doi: 10.1371/journal.pone.0007535 URL pmid: 19844573 |
[11] |
Kim HS, Lee KS, Bae HJ, et al. MicroRNA-31 functions as a tumor suppressor by regulating cell cycle and epithelial-mesenchymal transition regulatory proteins in liver cancer[J]. Oncotarget, 2015,6(10):8089.
doi: 10.18632/oncotarget.3512 URL pmid: 25797269 |
[12] |
Zhang C, Liu J, Tan C, et al. microRNA-1827 represses MDM2 to positively regulate tumor suppressor p53 and suppress tumorigenesis[J]. Oncotarget, 2016,7(8):8783.
doi: 10.18632/oncotarget.7088 URL pmid: 26840028 |
[13] | Tan SM, Lieberman J. Capture and identification of miRNA targets by biotin pulldown and RNA-seq[M]//Dassi E(eds)Post-Transcriptional Gene Regulation, New York: Humaoo Press, 2016, 211-228. |
[14] |
Dragomir MP, Knutsen E, Calin GA. SnapShot:unconventional miRNA functions[J]. Cell, 2018,174(4):1038.
doi: 10.1016/j.cell.2018.07.040 URL pmid: 30096304 |
[15] |
Chai J, Chen L, Luo Z, et al. Spontaneous single nucleotide polymorphism in porcine microRNA-378 seed region leads to functional alteration[J]. Biosci Biotechnol Biochem, 2018,82(7):1081-1089.
doi: 10.1080/09168451.2018.1459175 URL pmid: 29658390 |
[16] | 汪瑞婷, 宋懿朋, 李常银, 等. miR-378 转基因小鼠脂肪组织的代谢表型分析[J]. 中国细胞生物学学报, 2019,41(7):1377-1386. |
Wang RT, Song YP, Li CY, et al. Metabolomics phenotypes of adipose tissues from miR-378 transgenic mice[J]. Chinese Journal of Cell Biology, 2019,41(7):1377-1386. | |
[17] | 张阳阳, 戴立胜, 周乾, 等. miR-378在牛不同组织中的表达规律及功能分析[J]. 黑龙江动物繁殖, 2014,22(3):15-18. |
Zhang YY, Dai LS, Zhou Q, et al. Expression and functional analysis of mir-378 in different tissues of cattle[J]. Heilongjiang Journal of Animal Reproduction, 2014,22(3):15-18. | |
[18] |
Xu LL, Shi CM, Xu GF, et al. TNF-α, IL-6, and leptin increase the expression of miR-378, an adipogenesis-related microRNA in human adipocytes[J]. Cell Biochemistry and Biophysics, 2014,70(2):771-776.
doi: 10.1007/s12013-014-9980-x URL pmid: 24771406 |
[19] |
Gerin I, Bommer GT, Mccoin CS, et al. Roles for miRNA-378/378* in adipocyte gene expression and lipogenesis[J]. Am J Physiol Endocrinol Metab, 2010,299(2):E198-E206.
doi: 10.1152/ajpendo.00179.2010 URL pmid: 20484008 |
[20] |
Pan D, Mao C, Quattrochi B, et al. MicroRNA-378 controls classical brown fat expansion to counteract obesity[J]. Nat Commun, 2014,5:4725.
doi: 10.1038/ncomms5725 URL pmid: 25145289 |
[21] | Kim J, Okla M, Erickson A, et al. Eicosapentaenoic acid potentiates brown thermogenesis through FFAR4-dependent up-regulation of miR-30b and miR-378[J]. Journal of Biological Chemistry, 2016,291(39):20551-20562. |
[22] | Xu L, Ma X, Verma NK, et al. Ablation of PPAR γ in subcutaneous fat exacerbates age-associated obesity and metabolic decline[J]. Aging Cell, 2018,17(2):e12721. |
[23] | 刘亚茹, 苗志国, 高明磊, 等. PPARγ 在动物脂肪发育中的研究进展[J]. 黑龙江畜牧兽医, 2019(1):32-35. |
Liu YR, Miao ZG, Gao ML, et al. Research advance on PPARγ in animal adipose tissue[J]. Heilongjiang Animal Science and Veterinary Medicine, 2019(1):32-35. | |
[24] | Seiri P, Abi A, Soukhtanloo M. PPAR-γ:Its ligand and its regulation by microRNAs[J]. J Cell Biochem, 2019,120(7):10893-10908. |
[25] |
Schreiber R, Diwoky C, Schoiswohl G, et al. Cold-induced thermogenesis depends on ATGL-mediated lipolysis in cardiac muscle, but not brown adipose tissue[J]. Cell Metab, 2017,26(5):753-763.
URL pmid: 28988821 |
[26] | Schreiber R, Xie H, Schweiger M. Of mice and men:The physiological role of adipose triglyceride lipase(ATGL)[J]. Biochimica et Biophysica Acta(BBA)-Molecular and Cell Biology of Lipids, 2019,1864(6):880-899. |
[27] | Sortica D, Rheinheimer J, Moehlecke M, et al. CGI-58 gene expression is decreased in the subcutaneous adipose tissue of patients with obesity[S]. 21st European Congress of Endocrinology:BioScientifica, 2019. |
[28] |
Korbelius M, Vujic N, Sachdev V, et al. ATGL/CGI-58-dependent hydrolysis of a lipid storage pool in murine enterocytes[J]. Cell Rep, 2019,28(7):1923-1934.
doi: 10.1016/j.celrep.2019.07.030 URL pmid: 31412256 |
[29] |
Spiegelman BM. Banting Lecture 2012:Regulation of adipogenesis:toward new therapeutics for metabolic disease[J]. Diabetes, 2013,62(6):1774-1782.
doi: 10.2337/db12-1665 URL |
[30] |
Huang N, Wang J, Xie W, et al. MiR-378a-3p enhances adipogenesis by targeting mitogen-activated protein kinase 1[J]. Biochem Biophys Res Commun, 2015,457(1):37-42.
doi: 10.1016/j.bbrc.2014.12.055 URL pmid: 25529446 |
[31] | Payne VA, Au WS, Lowe CE, et al. C/EBP transcription factors regulate SREBP1c gene expression during adipogenesis[J]. Biochemical Journal, 2010,425(1):215-224. |
[32] |
Wang SS, Huang HY, Chen SZ, et al. Gdf6 induces commitment of pluripotent mesenchymal C3H10T1/2 cells to the adipocyte lineage[J]. FEBS J, 2013,280(11):2644-2651.
doi: 10.1111/febs.12256 URL pmid: 23527555 |
[33] | Deng K, Ren C, Liu Z, et al. Characterization of RUNX1T1, an adipogenesis regulator in ovine preadipocyte differentiation[J]. Int J Mol Sci, 2018,19(5):1300. |
[34] | Sano H, Roach WG, Peck GR, et al. Rab10 in insulin-stimulated GLUT4 translocation[J]. Biochemical Journal, 2008,411(1):89-95. |
[35] |
Chen Y, Wang Y, Zhang J, et al. Rab10 and myosin-Va mediate insulin-stimulated GLUT4 storage vesicle translocation in adipocytes[J]. J Cell Biol, 2012,198(4):545-560.
doi: 10.1083/jcb.201111091 URL pmid: 22908308 |
[36] |
Friesen M, Cowan CA. Adipocyte metabolism and insulin signaling perturbations:insights from genetics[J]. Trends in Endocrinology & Metabolism, 2019,30(6):396-406.
doi: 10.1016/j.tem.2019.03.002 URL pmid: 31072658 |
[37] |
Benet-Pag SA, Orlik P, Strom TM, et al. An FGF23 missense mutation causes familial tumoral calcinosis with hyperphosphatemia[J]. Human Molecular Genetics, 2004,14(3):385-390.
doi: 10.1093/hmg/ddi034 URL pmid: 15590700 |
[38] |
Ichikawa S, Sorenson AH, Austin AM, et al. Ablation of the Galnt3 gene leads to low-circulating intact fibroblast growth factor 23(Fgf23)concentrations and hyperphosphatemia despite increased Fgf23 expression[J]. Endocrinology, 2009,150(6):2543-2550.
doi: 10.1210/en.2008-0877 URL pmid: 19213845 |
[39] |
Awan HM, Shah A, Rashid F, et al. Comparing two approaches of miR-34a target identification, biotinylated-miRNA pulldown vs miRNA overexpression[J]. RNA Biology, 2018,15(1):55-61.
doi: 10.1080/15476286.2017.1391441 URL pmid: 29028450 |
[40] | Phatak P, Donahue JM. Biotinylated micro-RNA pull down assay for identifying miRNA targets[J]. Bio Protocol, 2017,7(9):e2253. |
[41] | Li X, Pritykin Y, Concepcion CP, et al. High-resolution in vivo identification of miRNA targets by Halo-Enhanced Ago2 Pulldown[J]. BioRxiv, 2019: 820548. |
[1] | 史建磊, 宰文珊, 苏世闻, 付存念, 熊自立. 番茄青枯病抗性相关miRNA的鉴定与表达分析[J]. 生物技术通报, 2023, 39(5): 233-242. |
[2] | 刘晓燕, 祝振亮, 史广宇, 华梓宇, 杨晨, 张涌, 刘军. 乳腺生物反应器的表达优化策略[J]. 生物技术通报, 2023, 39(5): 77-91. |
[3] | 王楠楠, 王文佳, 朱强. 植物胁迫相关microRNA研究进展[J]. 生物技术通报, 2022, 38(8): 1-11. |
[4] | 寇航, 王艳梅, 李彤, 薄明井, 张惟材, 熊向华, 黎明. 基于Methylovorus sp. J1-1基因组尺度代谢网络优化吡咯喹啉醌合成[J]. 生物技术通报, 2022, 38(2): 173-183. |
[5] | 张廷焕, 郭宗义, 柴捷, 潘红梅, 张亮, 陈磊, 龙熙. 序列变异对miR-378生物发生以及靶标关系的影响[J]. 生物技术通报, 2022, 38(1): 205-214. |
[6] | 洪军, 卫夏怡, 吉冰洁, 叶延欣, 程天赐. 铜绿假单胞菌对鲎素耐药前后的差异表达基因及SNP变化研究[J]. 生物技术通报, 2021, 37(9): 191-202. |
[7] | 张廷焕, 张利娟, 陈四清, 郭宗义. 猪miR-378种子序列的多态性对其功能以及胴体性状的影响[J]. 生物技术通报, 2021, 37(6): 154-162. |
[8] | 李玲, 杨丽霞, 郭梅. CNR转录因子在番茄果实成熟过程中的功能[J]. 生物技术通报, 2021, 37(2): 51-62. |
[9] | 李泽卿, 刘彩贤, 邢文, 文亚峰. miRNA在植物响应高温胁迫中的研究进展[J]. 生物技术通报, 2020, 36(2): 149-157. |
[10] | 胡积祥, 曹雅倩, 朱秀梅, 余超, 田芳, 杨凤环, 陈华民, 何晨阳. 基于瞬时表达系统的水稻miRNA靶基因快速验证系统的建立[J]. 生物技术通报, 2019, 35(10): 57-63. |
[11] | 纪会, 王会, 柴志欣, 王吉坤, 罗晓林, 姬秋梅, 信金伟, 钟金城. 牦牛miR-378前体克隆及组织表达分析[J]. 生物技术通报, 2019, 35(1): 58-66. |
[12] | 谢洁 ,王明 ,李青 ,潘妃 ,熊兴耀 ,秦玉芝. 植物miR390的研究进展[J]. 生物技术通报, 2018, 34(6): 1-10. |
[13] | 刘伟灿,周永刚,王兴超,王法微,王南,董园园,李晓薇,李海燕. 植物MicroRNA介导的基因调控在作物改良中的应用潜能[J]. 生物技术通报, 2016, 32(4): 6-15. |
[14] | 曾长英, 周玉飞, 彭明. miR319a及其靶基因在木薯中的低温响应分析[J]. 生物技术通报, 2015, 31(11): 173-178. |
[15] | 王维,张玉娟,陈洁,刘聚波,夏民旋,沈法富. 植物逆境胁迫相关miRNA研究进展[J]. 生物技术通报, 2015, 31(1): 1-10. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||