生物技术通报 ›› 2020, Vol. 36 ›› Issue (2): 149-157.doi: 10.13560/j.cnki.biotech.bull.1985.2019-0857
李泽卿, 刘彩贤, 邢文, 文亚峰
收稿日期:
2019-09-18
出版日期:
2020-02-26
发布日期:
2020-02-23
作者简介:
李泽卿,男,博士,研究方向:园林植物遗传育种与生物技术;E-mail:110655575@qq.com
基金资助:
LI Ze-qing, LIU Cai-xian, XING Wen, WEN Ya-feng
Received:
2019-09-18
Published:
2020-02-26
Online:
2020-02-23
摘要: microRNA(miRNA)是一类由20-24个核苷酸组成的小的非编码RNA,通常通过序列互补降解或抑制其靶标基因转录后的翻译过程,从而在转录后水平上调控基因的表达。miRNA在植物基因组中普遍存在,作为一类重要的调节因子参与到植物的生长发育与逆境响应中。目前,已有研究表明高温除了诱导植物编码基因表达发生改变之外,一些非编码RNA的表达也发生了显著改变,其中miRNA作为重要的非编码RNA,参与了植物的高温胁迫响应。对植物miRNA的合成途径,作用机制以及主要功能进行了扼要阐述,重点阐述了高温胁迫下植物miRNA的作用机制,旨在为miRNA在植物抵抗高温胁迫中的研究与应用提供新的思路。
李泽卿, 刘彩贤, 邢文, 文亚峰. miRNA在植物响应高温胁迫中的研究进展[J]. 生物技术通报, 2020, 36(2): 149-157.
LI Ze-qing, LIU Cai-xian, XING Wen, WEN Ya-feng. Research Progress on Regulation of miRNA in the Heat Stress Response of Plants[J]. Biotechnology Bulletin, 2020, 36(2): 149-157.
[1] 刘军钟, 何祖华. 植物响应高温胁迫的表观遗传调控[J]. 科学通报, 2014, 59(8):631-639. [2] 裴丽丽, 徐兆师, 尹丽娟, 等. 植物热激蛋白90的分子作用机理及其利用研究进展[J]. 植物遗传资源学报, 2013, 14(1):109-114. [3] Ohama N, Sato H, Shinozaki K, et al.Transcriptional regulatory network of plant heat stress response[J]. Trends in Plant Science, 2016, 22(1):53-65. [4] 罗小宁, 翟立娟, 李想, 等. 园林植物microRNA研究进展[J]. 生物技术通报, 2018, 34(8):23-32. [5] Bartel D.MicroRNAs:Target recognition and regulatory functions[J]. Cell, 2009, 136(2):215-233. [6] Chuck G, O’Connor D. Small RNAs going the distance during plant development[J]. Current Opinion in Plant Biology, 2010, 13(1):40-45. [7] Yue W, Ying Y, Wang C, et al.OsNLA1, a RING-type ubiquitin ligase, maintains phosphate homeostasis in Oryza sativa via degradation of phosphate transporters[J]. The Plant Journal, 2017, 90(6):1040-2051. [8] Aravind J, Rinku S, Pooja B, et al.Identification, characterization, and functional validation of drought-responsive microRNAs in subtropical maize inbreds[J]. Frontiers in Plant Science, 2017, 8:941. [9] Zeng X, Xu Y, Jiang J, et al.Identification of cold stress responsive microRNAs in two winter turnip rape(Brassica rapa L.)by high throughput sequencing[J]. BMC Plant Biology, 2018, 18(1):52. [10] Pan Y, Niu M, Liang J, et al.Identification of heat-responsive miRNAs to reveal the miRNA-mediated regulatory network of heat stress response in Betula luminifera[J]. Trees, 2017, 31(5):1635-1652. [11] Li J, Wu LQ, Zheng WY, et al.Genome-wide identification of microRNAs responsive to high temperature in rice(Oryza sativa)by high-throughput deep sequencing[J]. Journal of Agronomy and Crop Science, 2014, 201(2015):379-388. [12] Liang C, Zhang X, Lei S, et al.Conserved and novel heat stress-responsive microRNAs identified by deep sequencing in Pyropia yezoensis[J]. Journal of Applied Phycology, 2018, 30(1):685-696. [13] Liu Q, Yang TF, Yu T, et al.Integrating small RNA sequencing with QTL mapping for identification of miRNAs and their target genes associated with heat tolerance at the flowering stage in rice[J]. Frontiers in Plant Science, 2017, 8:43. [14] Mittler R, Finka A, Goloubinoff P.How do plants feel the heat?[J]. Trends in Biochemical Sciences, 2012, 37(3):118-125. [15] Fiil BK, Petersen K, Petersen M, et al.Gene regulation by MAP kinase cascades[J]. Current Opinion in Plant Biology, 2009, 12(5):615-621. [16] Gill SS, Tuteja N.Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiology & Biochemistry, 2010, 48(12):909-930. [17] Liu J, Qin Q, Zhang Z, et al.OsHSF7 gene in rice, Oryza sativa L. encodes a transcription factor that functions as a high temperature receptive and responsive factor[J]. BMB Reports, 2009, 42(1):16-21. [18] Gong XQ, Hu JB, Liu JH.Cloning and characterization of FcWRK-Y40, A WRKY transcription factor from Fortunella crassifolia, linked to oxidative stress tolerance[J]. Plant Cell Tissue & Organ Culture, 2014, 119(1):1-14. [19] Qu AL, Ding YF, Jiang Q, et al.Molecular mechanisms of the plant heat stress response[J]. Biochemical & Biophysical Research Communications, 2013, 432(2):203-207. [20] Debernardi JM, Lin H, Chuck G, et al.microRNA172 plays a crucial role in wheat spike morphogenesis and grain threshability[J]. Development, 2017, 144(11):1966-1975. [21] Lin JS, Kuo CC, Yang IC, et al.MicroRNA160 modulates plant development and heat shock protein gene expression to mediate heat tolerance in Arabidopsis[J]. Front Plant Sci, 2018, 9:68. [22] Dong Z, Han MH, Fedoroff N.The RNA-binding proteins HYL1 and SE promote accurate in vitro processing of pri-miRNA by DCL1[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(29):9970-9975. [23] Bartel DP.MicroRNAs:genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2):281-297. [24] Voinnet O.Origin, biogenesis, and activity of plant microRNAs[J]. Cell, 2009, 136(4):669-687. [25] Dugas DV, Bartel B.Sucrose induction of Arabidopsis miR398 represses two Cu/Zn superoxide dismutases[J]. Plant Mol Biol, 2008, 67(4):403-417. [26] Lanet E, Delannoy E, Sormani R, et al.Biochemical evidence for translational repression by Arabidopsis microRNAs[J]. The Plant Cell, 2009, 21(6):1762-1768. [27] Chen L, Ren Y, Zhang Y, et al.Genome-wide identification and expression analysis of heat-responsive and novel microRNAs in Populus tomentosa[J]. Gene, 2012, 504(2):160-165. [28] Zhao JG, He QS, Chen G, et al.Regulation of non-coding RNAs in heat stress responses of plants[J]. Frontiers in Plant Science, 2016, 7:18. [29] Sunkar R, Li YF, Jagadeeswaran G.Functions of microRNAs in plant stress responses[J]. Trends in Plant Science, 2012, 17(4):196-203. [30] Ball-Taborda C, Plata G, Ayling S, et al.Identification of cassava microRNAs under abiotic stress[J]. Int J Genomics, 2013, 2013:857-986. [31] Kumar R.Role of microRNAs in biotic and abiotic stress responses in crop plants[J]. Applied Biochemistry & Biotechnology, 2014, 174(1):93-115. [32] Sailaja B, Voleti SR, Subrahmanyam D, et al.Prediction and expression analysis of mirnas associated with heat stress in Oryza sativa[J]. Rice Science, 2014, 21(1):3-12. [33] Stief A, Altmann S, Hoffmann K, et al.Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors[J]. The Plant Cell, 2014, 26(4):1792. [34] Wang Y, Sun F, Cao H, et al.TamiR159, directed wheat, TaGAMYB, cleavage and its involvement in anther development and heat response[J]. PLoS One, 2012, 7(11):e48445. [35] Goswami S, Kumar RR, Rai RD.Heat-responsive microRNAs regulate the transcription factors and heat shock proteins in modulating thermo stability of starch biosynthesis enzymes in wheat(Triticum aestivum L.)under the heat stress[J]. Australian Journal of Crop Science, 2014, 8(5):697-705. [36] Kruszka K, Pacak A, Swidabarteczka A, et al.Transcriptionally and post-transcriptionally regulated microRNAs in heat stress response in barley[J]. Journal of Experimental Botany, 2014, 65(20):6123-6135. [37] Lin JS, Kuo CC, Yang IC, et al.MicroRNA160 modulates plant development and heat shock protein gene expression to mediate heat tolerance in Arabidopsis[J]. Front Plant Sci, 2018, 9:68. [38] Li H, Wang Y, Wang Z, et al.Microarray and genetic analysis reveals that csa-miR159b plays a critical role in abscisic acid-mediated heat tolerance in grafted cucumber plants[J]. Plant, Cell & Environment, 2016, 39(8):1790-1804. [39] Hivrale V, Yun Z, Puli COR, et al.Characterization of drought- and heat-responsive microRNAs in switchgrass[J]. Plant Sci, 2016, 242:214-223. [40] Guan Q, Lu X, Zeng H, et al.Heat stress induction of miR398 triggers a regulatory loop that is critical for thermotolerance in Arabidopsis[J]. Plant Journal, 2013, 74(5):840-851. [41] Yu X, Wang H, Lu Y, et al.Identification of conserved and novel microRNAs that are responsive to heat stress in Brassica rapa[J]. Journal of Experimental Botany, 2012, 63(2):1025-1038. [42] Liu F, Wang W, Sun X, et al.Conserved and novel heat stress-responsive microRNAs were identified by deep sequencing in Saccharina japonica(Laminariales, Phaeophyta)[J]. Plant Cell & Environment, 2015, 38(7):1357-1367. [43] Gupta OP, Meena NL, Sharma I, et al.Differential regulation of microRNAs in response to osmotic, salt and cold stresses in wheat[J]. Mol Biol Rep, 2014, 41(7):4623-4629. [44] Yamasaki H, Hayashi M, Fukazawa M, et al.SQUAMOSA promoter binding protein-like7 is a central regulator for copper homeostasis in Arabidopsis[J]. Plant Cell, 2009, 21(1):347-361. [45] 潘樱, 张仪平, 朱敏慧, 等. 光皮桦miR393及其靶基因在低氮胁迫中的表达分析[J].核农学报, 2017, 31(10):1921-1930. [46] Wu G, Poethig RS.Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3[J]. Development, 2006, 133(18):3539-3547. [47] Dotto M, Mez MS, Soto MS, et al.UV-B radiation delays flowering time through changes in the PRC2 complex activity and miR156 levels in Arabidopsis thaliana[J]. Plant Cell & Environment, 2018, 41(6):1394-1406. [48] Ren W, Wang H, Bai J, et al.Association of microRNAs with types of leaf curvature in Brassica rapa[J]. Frontiers in Plant Science, 2018, 9:73. [49] Yang CH, Li DY, Ma DH, et al.Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice(Oryza sativa L.)[J]. Plant Cell & Environment, 2013, 36(12):2207-2218. [50] Anwar N, Ohta M, Yazawa T, et al.miR172 downregulates the translation of cleistogamy 1 in barley[J]. Annals of Botany, 2018, 122(2):251-265. [51] Zhang YC, Yu Y, Wang CY, et al.Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching[J]. Nature Biotechnology, 2013, 31(9):848-852. [52] Xu J, Li J, Cui L, et al.New insights into the roles of cucumber TIR1 homologs and miR393 in regulating fruit/seed set development and leaf morphogenesis[J]. BMC Plant Biology, 2017, 17(1):130. [53] Kim JY, Kwak KJ, Jung HJ, et al.MicroRNA402 affects seed germination of Arabidopsis thaliana under stress conditions via targeting DEMETER-LIKE protein3 mRNA[J]. Plant and Cell Physiology, 2010, 51(6):1079-1083. [54] Gao P, Bai X, Yang L, et al.Over-expression of osa-MIR396c dec-reases salt and alkali stress tolerance[J]. Planta, 2010, 231(5):991-1001. [55] Zhou M, Li D, Li Z, et al.Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass[J]. Plant Physiology, 2014, 161(4):1375-1391. [56] Zhang W, Gao S, Zhou X, et al.Bacteria-responsive microRNAs regulate plant innate immunity by modulating plant hormone networks[J]. Plant Mol Biol, 2011, 75(1/2):93-105. [57] Zhao J, Yuan S, Zhou M, et al.Transgenic creeping bentgrass overexpressing Osa-miR393a exhibits altered plant development and improved multiple stress tolerance[J]. Plant Biotechnology Journal, 2019, 17(1):233-251. [58] Zhou R, Wang Q, Jiang F, et al.Identification of miRNAs and their targets in wild tomato at moderately and acutely elevated temperatures by high-throughput sequencing and degradome analysis[J]. Scientific Reports, 2016, 6:33777. [59] Wang R, Xu L, Zhu X, et al.Transcriptome-wide characterization of novel and heat-stress-responsive microRNAs in radish(Rapha-nus sativus L.)using next-generation sequencing[J]. Plant Molecular Biology Reporter, 2014, 33(4):867-880. [60] Giacomelli JI, Weigel D, Chan RL, et al.Role of recently evolved miRNA regulation of sunflower HaWRKY6 in response to temperature damage[J]. New Phytol, 2012, 195(4):766-773. [61] Pan Y, Niu M, Liang J, et al.Identification of heat-responsive miRNAs to reveal the miRNA-mediated regulatory network of heat stress response in Betula luminifera[J]. Trees, 2017, 31(5):1635-1652. [62] Xin M, Wang Y, Yao Y, et al.Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat(Triticum aestivum L.)[J]. BMC Plant Biology, 2010, 10:123. [63] Ding Y, Ma Y, Liu N, et al.microRNAs involved in auxin signalling modulate male sterility under high-temperature stress in cotton(Gossypium hirsutum)[J]. Plant J, 2017, 91:977-994. [64] May P, Liao W, Wu Y, et al.The effects of carbon dioxide and temperature on microRNA expression in Arabidopsis development[J]. Nature Communications, 2013, 4:2145. [65] Mahale BM, Fakrudin B.LNA mediated in situ hybridization of miR171 and miR397a in leaf and ambient root tissues revealed expressional homogeneity in response to shoot heat shock in Arabidopsis thaliana[J]. Journal of Plant Biochemistry and Biotechnology, 2014, 23(1):93-103. [66] Li S, Liu J, Liu Z, et al.HEAT-INDUCED TAS1 TARGET1 mediates thermotolerance via HEAT STRESS TRANSCRIPTION FACTOR A1a-directed pathways in Arabidopsis[J]. The Plant Cell, 2014, 26(4):1764-1780. |
[1] | 展艳, 周利斌, 金文杰, 杜艳, 余丽霞, 曲颖, 马永贵, 刘瑞媛. 辐射诱导植物叶色突变的研究进展[J]. 生物技术通报, 2023, 39(8): 106-113. |
[2] | 江润海, 姜冉冉, 朱城强, 侯秀丽. 微生物强化植物修复铅污染土壤的机制研究进展[J]. 生物技术通报, 2023, 39(8): 114-125. |
[3] | 刘保财, 陈菁瑛, 张武君, 黄颖桢, 赵云青, 刘剑超, 危智诚. 多花黄精种子微根茎基因表达特征分析[J]. 生物技术通报, 2023, 39(8): 220-233. |
[4] | 姚莎莎, 王晶晶, 王俊杰, 梁卫红. 植物激素信号通路调控水稻粒型的分子机制[J]. 生物技术通报, 2023, 39(8): 80-90. |
[5] | 陈晓, 于茗兰, 吴隆坤, 郑晓明, 逄洪波. 植物lncRNA及其对低温胁迫响应的研究进展[J]. 生物技术通报, 2023, 39(7): 1-12. |
[6] | 张曼, 张叶卓, 何其邹洪, 鄂一岚, 李晔. 植物细胞壁结构及成像技术研究进展[J]. 生物技术通报, 2023, 39(7): 113-122. |
[7] | 李英, 岳祥华. DNA甲基化在解析毛竹自然变异中的应用[J]. 生物技术通报, 2023, 39(7): 48-55. |
[8] | 李玉岭, 毛欣, 张元帅, 董元夫, 刘翠兰, 段春华, 毛秀红. 辐射诱变技术在木本植物育种中的应用及展望[J]. 生物技术通报, 2023, 39(6): 12-30. |
[9] | 杨洋, 朱金成, 娄慧, 韩泽刚, 张薇. 海岛棉与枯萎病菌的互作转录组分析[J]. 生物技术通报, 2023, 39(6): 259-273. |
[10] | 李苑虹, 郭昱昊, 曹燕, 祝振洲, 王飞飞. 外源植物激素调控微藻生长及目标产物积累研究进展[J]. 生物技术通报, 2023, 39(6): 61-72. |
[11] | 王兵, 赵会纳, 余婧, 余世洲, 雷波. 植物侧枝发育的调控研究进展[J]. 生物技术通报, 2023, 39(5): 14-22. |
[12] | 李敬蕊, 王育博, 解紫薇, 李畅, 吴晓蕾, 宫彬彬, 高洪波. 甜瓜PIN基因家族的鉴定及高温胁迫表达分析[J]. 生物技术通报, 2023, 39(5): 192-204. |
[13] | 史建磊, 宰文珊, 苏世闻, 付存念, 熊自立. 番茄青枯病抗性相关miRNA的鉴定与表达分析[J]. 生物技术通报, 2023, 39(5): 233-242. |
[14] | 罗义, 张丽娟, 黄伟, 王宁, 吾尔丽卡·买提哈斯木, 施宠, 王玮. 一株耐铀菌株的鉴定及其促生特性研究[J]. 生物技术通报, 2023, 39(5): 286-296. |
[15] | 孙亚玲, 李瑞平, 王振宝, 张庶, 刘冰江, 霍雨猛. 洋葱种子消毒和无菌苗培养新方法[J]. 生物技术通报, 2023, 39(4): 212-220. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||