生物技术通报 ›› 2021, Vol. 37 ›› Issue (3): 233-240.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0695
收稿日期:
2020-06-08
出版日期:
2021-03-26
发布日期:
2021-04-02
作者简介:
任思羽,女,硕士研究生,研究方向:酶的表征与活性鉴定;E-mail:基金资助:
REN Si-yu(), CHENG Xin-kuan, ZHANG Yu-hui, ZHUANG Jian-wen, MA Long()
Received:
2020-06-08
Published:
2021-03-26
Online:
2021-04-02
摘要:
为了实现重要医药中间体β-羟基-α-氨基酸的生物酶法合成,挖掘验证新型的L-苏氨酸醛缩酶。以pET-28a(+)作为表达载体,通过蛋白表达纯化、薄层层析色谱(TLC)和高效液相色谱(HPLC)技术分析L-苏氨酸醛缩酶及其催化产物的性质。基于4-氨基-3-肼基-5-巯基-1,2,4-三氮唑(Purpald)显色试剂开发检测醛缩酶的新方法。Streptomyces coelicolor SCO1844(天蓝色链霉菌,S. coelicolor SCO1844)和Streptomyces xinghaiensis SFR7A(星海链霉菌,S. xinghaiensis SFR7A)来源的醛缩酶被证明能够成功地合成β-羟基-α-氨基酸,且均为L-苏氨酸醛缩酶,实现了以苯甲醛和甘氨酸为底物合成l-threo/erythron-苯基丝氨酸的醇醛缩合反应。开发的可视化活性检测方法可以实现醛缩酶的快速鉴定和高通量筛选。两种新型L-苏氨酸醛缩酶的鉴定以及活性检测方法的开发,不仅丰富了生物法合成β-羟基-α-氨基酸的酶库,也为下一步对L-苏氨酸醛缩酶进行分子改造提高其催化活性和选择性奠定了研究基础。
任思羽, 程新宽, 张宇辉, 庄建文, 马龙. 两种新型L-苏氨酸醛缩酶的鉴定及活性检测方法[J]. 生物技术通报, 2021, 37(3): 233-240.
REN Si-yu, CHENG Xin-kuan, ZHANG Yu-hui, ZHUANG Jian-wen, MA Long. Identification of Two New Types of L-threonine Aldolases and Development of Its Activity Detection Method[J]. Biotechnology Bulletin, 2021, 37(3): 233-240.
图3 醛缩酶的SDS-聚丙烯酰胺凝胶电泳分析结果 M:蛋白Marker;(-):未加入IPTG诱导的样品;T:菌体破碎后混合液;P:破碎后的沉淀;S:破碎后的上清液;UB:与镍柱结合后的上清液;1:20 mmol/L咪唑洗脱液;2:25 mmol/L咪唑洗脱液;3:50 mmol/L咪唑洗脱液;4:100 mmol/L咪唑洗脱液;5:200 mmol/L咪唑洗脱液;6:250 mmol/L咪唑洗脱液;7:500 mmol/L咪唑洗脱液;8:1 mol/L咪唑洗洗脱液
图4 薄层层析色谱法检测反应产物 1:甘氨酸标准品;2:D/L-threo-苯基丝氨酸标准品;3:SCO1844实验组;4:SFR7A实验组;5:只含有苯甲醛与苷氨酸阴性对照组;6:只含有苯甲醛阴性对照组;7:只含SCO1844醛缩酶阴性对照组;8:只含SFR7A醛缩酶阴性对照组;9:D/L-threo-苯基丝氨酸标准品
[1] |
Lim JH, Kim MS, Hwang YH, et al. Pharmacokinetics of florfenicol following intramuscular and intravenous administration in olive flounder(Paralichthys olivaceus)[J]. Journal of Veterinary Pharmacology and Therapeutics, 2011,34(2):206-208.
doi: 10.1111/j.1365-2885.2010.01231.x URL pmid: 21395616 |
[2] |
Steinreiber J, Fesko K, Reisinger C, et al. Threonine aldolases-an emerging tool for organic synjournal[J]. Tetrahedron, 2007,63(4):918-926.
doi: 10.1016/j.tet.2006.11.035 URL |
[3] | Balk SH, Yoshioka H, Yukawa H, et al. Synjournal of L-threo-3, 4-dihydroxyphenylserine(L-threo-DOPS)with thermostabilized low-specific L-threonine aldolase from Streptomyces coelicolor A3(2)[J]. Microbiol Biotechnol, 2007,17(5):721-727. |
[4] |
Liu JQ, Odani M, Dairi T, et al. A new route to L-threo-3-[4-(methylthio)phenylserine], a key intermediate for the synjournal of antibiotics:recombinant low-specificity D-threonine aldolase-catalyzed stereospecific resolution[J]. Applied Microbiology and Biotechnology, 1999,51(5):586-591.
doi: 10.1007/s002530051436 URL pmid: 10390816 |
[5] |
Wecht JM, Rosado-Rivera D, Weir JP, et al. Hemodynamic effects of L-threo-3, 4-dihydroxyphenylserine(droxidopa)in hypotensive individuals with spinal cord injury[J]. Archives of Physical Medicine and Rehabilitation, 2013,94(10):2006-2012.
doi: 10.1016/j.apmr.2013.03.028 pmid: 23602882 |
[6] |
Gwon H, Baik S. Diastereoselective synjournal of L-threo-3, 4-dihydroxyphenylserine by low-specific L-threonine aldolase mutants[J]. Biotechnology Letters, 2010,32(1):143-149.
doi: 10.1007/s10529-009-0125-z URL |
[7] |
Liu Z, Chen X, Chen Q, et al. Engineering of L-threonine aldolase for the preparation of 4-(methylsulfonyl)phenylserine, an important intermediate for the synjournal of florfenicol and thiamphenicol[J]. Enzyme and Microbial Technology, 2020,137:109551.
doi: 10.1016/j.enzmictec.2020.109551 URL pmid: 32423678 |
[8] | Chen Q, Chen X, Cui Y, et al. A new D-threonine aldolase as a promising biocatalyst for highly stereoselective preparation of chiral aromatic β-hydroxy-α-amino acids[J]. Catalysis Science & Technology, 2017,7(24):5964-5973. |
[9] |
Mònica Alonso RA. Improved preparation of β-hydroxy-α-amino acids:direct formation of sulfates by sulfuryl chloride[J]. Tetrahedron Asymmetry, 2005,16(23):3908-3912.
doi: 10.1016/j.tetasy.2005.10.013 URL |
[10] |
Nagamitsu TS. Total synjournal of(+)-lactacystin[J]. Journal of the American Chemical Society, 1996,118(15):3584-3590.
doi: 10.1021/ja9541544 URL |
[11] |
Kirk KKL. A convenient synjournal of 2-fluoro-and 6-fluoro-(2S, 3R)-threo-(3, 4-dihydroxyphenyl)serine using Sharpless asymmetric aminohydroxylation[J]. Tetrahedron Letters, 2001,42(48):8401-8403.
doi: 10.1016/S0040-4039(01)01816-0 URL |
[12] |
Chen Q, Chen X, Feng J, et al. Improving and inverting Cβ-Stereoselectivity of threonine aldolase via substrate-binding-guided mutagenesis and a stepwise visual screening[J]. ACS Catalysis, 2019,9(5):4462-4469.
doi: 10.1021/acscatal.9b00859 URL |
[13] |
Liu G, Zhang M, Chen X, et al. Evolution of threonine aldolases, a diverse family involved in the second pathway of glycine biosynjournal[J]. Journal of Molecular Evolution, 2015,80(2):102-107.
doi: 10.1007/s00239-015-9667-y URL pmid: 25644973 |
[14] |
Fesko K, Suplatov D, švedas V. Bioinformatic analysis of the fold type I PLP-dependent enzymes reveals determinants of reaction specificity in L-threonine aldolase from Aeromonas jandaei[J]. FEBS Open Bio, 2018,8(6):1013-1028.
URL pmid: 29928580 |
[15] |
Schmidt NG, Eger E, Kroutil W. Building bridges:biocatalytic C-C-bond formation toward multifunctional products[J]. ACS Catalysis, 2016,6(7):4286-4311.
pmid: 27398261 |
[16] |
Dückers N, Baer K, Simon S, et al. Threonine aldolases-screening, properties and applications in the synjournal of non-proteinogenic β-hydroxy-α-amino acids[J]. Applied Microbiology and Biotechnology, 2010,88(2):409-424.
URL pmid: 20683718 |
[17] |
Steinreiber J, Fesko K, Mayer C, et al. Synjournal of γ-halogenated and long-chain β-hydroxy-α-amino acids and 2-amino-1, 3-diols using threonine aldolases[J]. Tetrahedron, 2007,63(34):8088-8093.
doi: 10.1016/j.tet.2007.06.013 URL |
[18] |
Baer K, Dückers N, Rosenbaum T, et al. A study towards efficient L-threonine aldolase-catalyzed enantio- and diastereoselective aldol reactions of glycine with substituted benzaldehydes:biocatalyst production and process development[J]. Tetrahedron:Asymmetry, 2011,22(9):925-928.
doi: 10.1016/j.tetasy.2011.04.016 URL |
[19] |
O'Hagan D, Schaffrath C, Cobb SL, et al. Biosynjournal of an organofluorine molecule[J]. Nature, 2002,416(6878):279.
doi: 10.1038/416279b URL pmid: 11907566 |
[20] |
Huang S, Ma L, Tong MH, et al. Fluoroacetate biosynjournal from the marine-derived bacterium Streptomyces xinghaiensis NRRL B-24674[J]. Organic & Biomolecular Chemistry, 2014,12(27):4828-4831.
doi: 10.1039/c4ob00970c URL pmid: 24903341 |
[21] |
Deng H, Ma L, Bandaranayaka N, et al. Identification of fluorinases from Streptomyces sp. MA37, Norcardia brasiliensis, and Actinoplanes sp N902-109 by genome mining[J]. ChemBioChem, 2014,15(3):364-368.
URL pmid: 24449539 |
[22] |
Ma L, Bartholome A, Tong MH, et al. Identification of a fluorometabolite from Streptomyces sp. MA37:(2R3S4S)-5-fluoro-2, 3, 4-trihydroxypentanoic acid[J]. Chemical Science, 2015,6(2):1414-1419.
doi: 10.1039/c4sc03540b URL pmid: 29861965 |
[23] |
Ma L, Li Y, Meng L, et al. Biological fluorination from the sea:discovery of a SAM-dependent nucleophilic fluorinating enzyme from the marine-derived bacterium Streptomyces xinghaiensis NRRL B24674[J]. RSC Advances, 2016,6(32):27047-27051.
doi: 10.1039/C6RA00100A URL |
[24] | Loncaric C, Wulff WD. An efficient synjournal of(-)-chloramphenicol via asymmetric catalytic aziridination:a comparison of catalysts prepared from triphenylborate and various linear and vaulted biaryls[J]. Comparative Study, 2010,33(16):3675-3678. |
[25] |
Fanning KN, Jamieson AG, Sutherland A. Stereoselective β-hydroxy-α-amino acid synjournal via an ether-directed, palladium-catalysed aza-Claisen rearrangement[J]. Organic and Biomolecular Chemistry, 2005,3(20):3749-3756.
doi: 10.1039/b510808j URL pmid: 16211111 |
[26] | Wang Y, Chen Z, Mi A, et al. Novel C-C bond formation through addition of ammonium ylides to arylaldehydes:a facile approach to beta-aryl-beta-hydroxy alpha-amino acid frameworks[J]. Chemical Commun, 2004(21):2486-2487. |
[27] | Thayumanavan R, Tanaka F, Barbas CF. Direct organocatalytic asymmetric aldol reactions of α-amino aldehydes:expedient syntheses of highly enantiomerically enriched anti-β-hydroxy-α-amino acids[J]. Organic Letters, 2005,36(2):3541-3544. |
[28] |
Cable KM, Herbert R, Mann J. The biosynjournal of tuberin from tyrosine and glycine;observations on the stereochemistry associated with the conversion of glycine through methylenetetrahydrofolate into methenyltetrahydrofolate[J]. Journal of the Chemical Society, 1987: 1593-1598.
URL pmid: 5816433 |
[29] |
Remesh SG, Ghatge MS, Ahmed MH, et al. Molecular basis of E. coli L-threonine aldolase catalytic inactivation at low pH[J]. Biochim Biophys Acta, 2015,1854(4):278-283.
doi: 10.1016/j.bbapap.2014.12.023 URL pmid: 25560296 |
[1] | 叶云芳, 田清尹, 施婷婷, 王亮, 岳远征, 杨秀莲, 王良桂. 植物中β-紫罗兰酮生物合成及调控研究进展[J]. 生物技术通报, 2023, 39(8): 91-105. |
[2] | 王玲, 卓燊, 付学森, 刘紫璇, 刘笑蓉, 王志辉, 周日宝, 刘湘丹. 莲生物碱生物合成途径及相关基因研究进展[J]. 生物技术通报, 2023, 39(7): 56-66. |
[3] | 姜晴春, 杜洁, 王嘉诚, 余知和, 王允, 柳忠玉. 虎杖转录因子PcMYB2的表达特性和功能分析[J]. 生物技术通报, 2023, 39(5): 217-223. |
[4] | 周定定, 李辉虎, 汤兴涌, 余发新, 孔丹宇, 刘毅. 甘草酸和甘草苷生物合成与调控的研究进展[J]. 生物技术通报, 2023, 39(5): 44-53. |
[5] | 郁慧丽, 李爱涛. 细胞色素P450酶在香精香料绿色生物合成中的应用[J]. 生物技术通报, 2023, 39(4): 24-37. |
[6] | 唐碧瑶, 付学鹏. 链霉菌Streptomyces sp. FXP04全基因组测序分析[J]. 生物技术通报, 2023, 39(10): 268-280. |
[7] | 李毅丹, 单晓辉. 赤霉素代谢调控与绿色革命[J]. 生物技术通报, 2022, 38(2): 195-204. |
[8] | 姚宇, 顾佳珺, 孙超, 申国安, 郭宝林. 植物类黄酮UDP-糖基转移酶研究进展[J]. 生物技术通报, 2022, 38(12): 47-57. |
[9] | 赵玉雪, 王芸, 余璐瑶, 刘京晶, 斯金平, 张新凤, 张磊. 植物中C-糖基转移酶的结构与应用[J]. 生物技术通报, 2022, 38(10): 18-28. |
[10] | 徐圆圆, 赵国春, 郝颖颖, 翁学煌, 陈仲, 贾黎明. 无患子RT-qPCR内参基因的筛选与验证[J]. 生物技术通报, 2022, 38(10): 80-89. |
[11] | 刘雪丹, 杨萌, 张静, 赵东旭. 葡萄糖-木糖共利用对重组大肠杆菌合成D-1,2,4-丁三醇的影响[J]. 生物技术通报, 2021, 37(9): 171-179. |
[12] | 周正, 李卿, 陈万生, 张磊. 药用植物天然产物生物合成途径及关键催化酶的研究策略[J]. 生物技术通报, 2021, 37(8): 25-34. |
[13] | 梁振霆, 唐婷. 内生菌对植物次生代谢产物的生物合成影响和抗逆功能研究[J]. 生物技术通报, 2021, 37(8): 35-45. |
[14] | 陶宇丞, 吕旭冰, 程圣杰, 王彦雯, 王文峰, 焦朕, 王鹏超. 大肠杆菌高效合成L-苯甘氨酸的研究进展[J]. 生物技术通报, 2021, 37(3): 175-184. |
[15] | 乔自鹏, 王奇志, 杨道茂, 阮丽萍. 真菌介导纳米银生物合成的研究进展[J]. 生物技术通报, 2021, 37(3): 185-197. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||