生物技术通报 ›› 2021, Vol. 37 ›› Issue (3): 175-184.doi: 10.13560/j.cnki.biotech.bull.1985.2020-0779
陶宇丞(), 吕旭冰, 程圣杰, 王彦雯, 王文峰, 焦朕, 王鹏超()
收稿日期:
2020-06-25
出版日期:
2021-03-26
发布日期:
2021-04-02
作者简介:
陶宇丞,男,研究方向:合成生物学;E-mail:基金资助:
TAO Yu-cheng(), LV Xu-bing, CHENG Sheng-jie, WANG Yan-wen, WANG Wen-feng, JIAO Zhen, WANG Peng-chao()
Received:
2020-06-25
Published:
2021-03-26
Online:
2021-04-02
摘要:
自然界存在着多种氨基酸,除用于蛋白质合成的20种外,大量用于合成具有生物活性的物质,广泛应用于食品、医药等多个领域。其中,非天然芳香族氨基酸L-苯甘氨酸作为一种重要的组成单元广泛的应用于盘尼西林、维吉霉素S、原始霉素I等β-内酰胺类抗生素的生物合成当中。目前L-苯甘氨酸主要通过化学法合成,但该方法合成收率低、污染大,且不易得到单一手性的化合物。由于生物合成L-苯甘氨酸具有反应条件温和、产物立体选择性好的优势,因此受到了广泛的关注。通过对L-苯甘氨酸两条生物合成途径的解析,合成所需相关酶的筛选及辅因子平衡再生等,逐步形成了以苯乙酮酸、扁桃酸和L-苯丙氨酸为底物的合成线路。主要对L-苯甘氨酸的生物合成途径及生物合成策略展开综述,为研究者提供优化方向,以期为高效工业化生物合成L-苯甘氨酸提供理论参考。
陶宇丞, 吕旭冰, 程圣杰, 王彦雯, 王文峰, 焦朕, 王鹏超. 大肠杆菌高效合成L-苯甘氨酸的研究进展[J]. 生物技术通报, 2021, 37(3): 175-184.
TAO Yu-cheng, LV Xu-bing, CHENG Sheng-jie, WANG Yan-wen, WANG Wen-feng, JIAO Zhen, WANG Peng-chao. Research Progress on the Efficient Synthesis of Phenylglycine by Escherichia coli[J]. Biotechnology Bulletin, 2021, 37(3): 175-184.
图1 由葡萄糖生成L-苯甘氨酸的途径 E4P:四磷酸赤藓糖;PEP:磷酸烯醇丙酮酸;DAHP:3-脱氧-D-阿拉伯糖基庚酸-7-磷酸酯;CHOR:分支酸;Hmas:羟基扁桃酸合成酶;Hmo:羟基扁桃酸氧化酶;HpgAT:羟基苯甘氨酸氨基转移酶;PglB/C:丙酮酸脱羧酶E1;PglA:羟烷基脱氢酶;PglD:II型硫酯酶;PglE:苯甘氨酸氨基转移酶
图2 芳香族氨基酸的生物合成途径 E4P:四磷酸赤藓糖;PEP:磷酸烯醇丙酮酸;NAHP:2-酮-3-脱氧-D-阿拉伯庚酮糖酸-7-磷酸;EPSP:5-烯醇式丙酮酰莽草酸-3-磷酸;CA:分支酸;Prephenate:预苯酸;4-HPP:对羟基苯丙酮酸;PP:苯丙酮酸;L-TYR:L-酪氨酸;L-PHE:L-苯丙氨酸;TYR1:prephenate dehydrogenase;PHA2:prephenate dehydratase
底物 | 优化策略 | L-苯甘氨酸 | 参考文献 |
---|---|---|---|
苯乙酮酸60 g/L | LeuDH、FDH | 60.2 g/L | [ |
BcAADH | 60 g/L | [ | |
扁桃酸30.4g/L | LhDMDH | 30 g/L | [ |
D,L-扁桃酸 7.6g/L | ArMR、LhDMDH、 EsLeuDH | 5.85 g/L | [ |
扁桃酸5 g/L | d-MDH、AADH | 4.67 g/L | [ |
苯丙氨酸33 g/L | Hmas、Hmo、HpgT | 51.6 mg/g DCW | [ |
葡萄糖10g/L | Hmo、HpgT | 16 mg/L | [ |
表1 L-苯甘氨酸合成
底物 | 优化策略 | L-苯甘氨酸 | 参考文献 |
---|---|---|---|
苯乙酮酸60 g/L | LeuDH、FDH | 60.2 g/L | [ |
BcAADH | 60 g/L | [ | |
扁桃酸30.4g/L | LhDMDH | 30 g/L | [ |
D,L-扁桃酸 7.6g/L | ArMR、LhDMDH、 EsLeuDH | 5.85 g/L | [ |
扁桃酸5 g/L | d-MDH、AADH | 4.67 g/L | [ |
苯丙氨酸33 g/L | Hmas、Hmo、HpgT | 51.6 mg/g DCW | [ |
葡萄糖10g/L | Hmo、HpgT | 16 mg/L | [ |
[1] |
Langen LMV, Rantwijk FV, Švedas VK, et al. Penicillin acylase-catalyzed peptide synjournal:a chemo-enzymatic route to stereoisomers of 3, 6-diphenylpiperazine-2, 5-dione[J]. Tetrahedron Asymmetry, 2000,11(5):1077-1083.
doi: 10.1016/S0957-4166(00)00027-6 URL |
[2] |
Toma R, Brieke C, Cryle M, et al. Structural aspects of phenylglycines, their biosynjournal and occurrence in peptide natural products[J]. Nat Prod Rep, 2015,32(8):1207-1235.
doi: 10.1039/c5np00025d URL pmid: 25940955 |
[3] |
Ningsih F, Kitani S, Fukushima E, et al. VisG is essential for biosynjournal of virginiamycin S, a streptogramin type B antibiotic, as a provider of the nonproteinogenic amino acid phenylglycine[J]. Microbiology, 2011,157(11):3213-3220.
doi: 10.1099/mic.0.050203-0 URL |
[4] |
Teshima T, Nishikawa M, Kubota I, et al. The structure of an antibiotic, dityromycin[J]. Tetrahedron Letters, 1988,29(16):1963-1966.
doi: 10.1016/S0040-4039(00)82090-0 URL |
[5] | 陆军民. 国内苯甘氨酸类产品的生产与市场前景[J]. 浙江化工, 2002,33(1):46-48. |
Lu JM. Production and market prospects of domestic phenylglycine products[J]. Zhejiang Chemical Industry, 2002,33(1):46-48. | |
[6] |
Croteau R, Ketchum REB, Long RM, et al. Taxol biosynjournal and molecular genetics[J]. Phytochem Rev, 2006,5:75-97.
pmid: 20622989 |
[7] |
Tang C, Ding P, Shi H, et al. One-pot synjournal of phenylglyoxylic acid from racemic mandelic acids via cascade biocatalysis[J]. J Agricu Food Chem, 2019,67(10):2946-2953.
doi: 10.1021/acs.jafc.8b07295 URL |
[8] | Resch V, Fabian W, Kroutil W, Deracemisation of mandelic acid to optically pure non-natural L-phenylglycine via a redox-neutral biocatalytic cascade[J]. Advanced Synjournal & Catalysis, 2010,352(6):993-997. |
[9] | 李华冲, 晏菊芳, 苏小燕, 等. L-苯甘氨酸衍生物的合成及其抗糖尿病活性[J]. 合成化学, 2011(4):441-445. |
Li HC, Yan JF, Su XY, et al. Synjournal and antidiabetic activity of L-phenylglycine derivates[J]. Chinese Journal of Synthetic Chemistry, 2011(4):441-445. | |
[10] | 崔哲峰. 化学合成联酶法生产D-对羟基苯甘氨酸的研究[D]. 天津:天津大学, 2003. |
Cui ZF. Study on the production of D-phydroxyphenylglycine by chemical synthesis linked enzyme[D]. Tianjin:Tianjin University, 2003. | |
[11] | Zhang NF, Li JT, Li HZ, et al. Synpatent of DL-phenylglycine by halogenated ammonation of phenylacetic acid:China, 95119414.3[P]. 1996-09-11. |
[12] | 王素青, 郭建权. 芳基甘氨酸的不对称合成[J]. 北京师范大学学报:自然科学版, 1994,30(3):387-390. |
Wang SQ, Guo JQ. Asymmetric synjournal of arylglycine[J]. Journal of Beijing Normal University:Natural Science, 1994,30(3):387-390. | |
[13] | 徐亚荣. 苯甘氨酸、对氯苯甘氨酸合成工艺的研究[D]. 南京:南京工业大学, 2005. |
Xu YR. Study on the synthesis process of phenylglycine and p-chlorophenylglycine[D]. Nanjing:Nanjing University of Technology, 2005. | |
[14] |
Wang JB, Reetz MT. Biocatalysis:chiral cascades[J]. Nature Chemistry, 2015,7(12):948-949.
doi: 10.1038/nchem.2408 URL pmid: 26587707 |
[15] |
Mast YJ, Wohlleben W, Schinko E. Identification and functional characterization of phenylglycine biosynthetic genes involved in pristinamycin biosynjournal in Streptomyces pristinaespiralis[J]. Journal of Biotechnology, 2010,155(1):63-67.
doi: 10.1016/j.jbiotec.2010.12.001 URL pmid: 21146568 |
[16] |
Miguel S, Guo W, Feng X, et al. Investigating strain dependency in the production of aromatic compounds in Saccharomyces cerevisiae[J]. Biotechnology & Bioengineering, 2016,113(12):2676-2685.
doi: 10.1002/bit.26037 URL pmid: 27317047 |
[17] |
Curran KA, Leavitt JM, Karim AS, et al. Metabolic engineering of muconic acid production in Saccharomyces cerevisiae[J]. Metab Eng, 2012,15:55-66.
URL pmid: 23164574 |
[18] |
Tyagi N, Saini D, Guleria R, et al. Designing an Escherichia coli strain for phenylalanine overproduction by metabolic engineering[J]. Mol Biotechnol, 2017,59(4-5):168-178.
doi: 10.1007/s12033-017-9999-5 URL pmid: 28374116 |
[19] |
Braus GH. Aromatic amino acid biosynjournal in the yeast Saccharomyces cerevisiae:A model system for the regulation of a eukaryotic biosynthetic pathway[J]. Microbiological Reviews, 1991,55(3):349-370.
pmid: 1943992 |
[20] |
Suástegui M, Shao Z. Yeast factories for the production of aromatic compounds:from building blocks to plant secondary metabolites[J]. Journal of Industrial Microbiology & Biotechnology, 2016,43(11):1611-1624.
URL pmid: 27581441 |
[21] | Sun ZT, Ning YY, Liu LX, et al. Metabolic engineering of the L-phenylalanine pathway in Escherichia coli for the production of S- or R-mandelic acid[J]. Microb Cell Fac, 2011,10(1):71. |
[22] | 雷呈祥, 范长胜, 等. 大肠杆菌pheA基因在黄色短杆菌中的克隆与表达[J]. 生物工程学报, 1996(S1):184-189. |
Lei CX, Fan CS, et al. Cloning and expression of Escherichia coli pheA gene in Brevibacterium flavum[J]. Chinese Journal of Biotechnology, 1996(S1):184-189. | |
[23] |
Müller U, Assema FV, Gunsior M, et al. Metabolic engineering of the E. coli L-phenylalanine pathway for the production of D-phenylglycine(D-Phg)[J]. Metab Eng, 2006,8(3):196-208.
doi: 10.1016/j.ymben.2005.12.001 URL pmid: 16466681 |
[24] | 叶玉成, 刘双平, 张梁, 等. 对羟基扁桃酸合酶基因的克隆表达及催化特性[J]. 微生物学通报, 2014,20(2):80-90. |
Ye YC, Liu SP, Zhang L, et al. Cloning, expression and catalytic characterization of hydroxymandelate synthase[J]. Microbiology China, 2014,20(2):80-90. | |
[25] |
Li FF, Zhao Y, Li BZ, et al. Engineering Escherichia coli for production of 4-hydroxymandelic acid using glucose-xylose mixture[J]. Microbial Cell Factories, 2016,15(1):90.
doi: 10.1186/s12934-016-0489-4 URL |
[26] |
Gelfand DH, Rudo N. Mapping of the aspartate and aromatic amino acid aminotransferase genes tyrB and aspC[J]. Journal of Bacteriology, 1977,130(1):441-444.
doi: 10.1128/JB.130.1.441-444.1977 URL pmid: 323238 |
[27] |
Liu SP, Xiao MR, Zhang L, et al. Production of L-phenylalanine from glucose by metabolic engineering of wild type Escherichia coli W3110[J]. Process Biochemistry, 2013,48(3):413-419.
doi: 10.1016/j.procbio.2013.02.016 URL |
[28] | 谢雪原. 双酶偶联制备L-苯丙氨酸[D]. 南京:南京工业大学, 2004. |
Xie XY. Preparation of L-phenylalanine by double enzyme coupling[D]Nanjing:Nanjing University of Technology, 2004. | |
[29] |
Osipenkov N, Kulik A, Mast Y. Characterization of the phenylglycine aminotransferase PglE from Streptomyces pristinaespiralis[J]. J Biotechnol, 2018,278:34-38.
doi: 10.1016/j.jbiotec.2018.05.007 URL pmid: 29738785 |
[30] |
Moosmann D, Mokeev V, Kulik A, et al. Genetic engineering approaches for the fermentative production of phenylglycines[J]. Appl Microbiol Biotechnol, 2020,104(8):3433-3444.
doi: 10.1007/s00253-020-10447-9 URL pmid: 32078019 |
[31] |
Liu Q, Zhou J, Yang T, et al. Efficient biosynjournal of L-phenylglycine by an engineered Escherichia coli with a tunable multi-enzyme-coordinate expression system[J]. Applied Microbiology & Biotechnology, 2018,102:2129-2141.
doi: 10.1007/s00253-018-8741-y URL pmid: 29352398 |
[32] |
Broussy S, Cheloha RW, Berkowitz DB. Enantioselective, ketoreductase-based entry into pharmaceutical building blocks:ethanol as tunable nicotinamide reductant[J]. Organic Letters, 2009,11(2):305-308.
doi: 10.1021/ol802464g URL pmid: 19128188 |
[33] | Li J, Pan J, Zhang J, et al. Stereoselective synjournal of l-tert-leucine by a newly cloned leucine dehydrogenase from Exiguobacterium sibiricum[J]. J Mol Catal B:Enzy, 2014,105:11-17. |
[34] |
Chen F, Liu Y, Zheng G, et al. Asymmetric amination of secondary alcohols by using a redox-neutral two-enzyme cascade[J]. ChemCatChem, 2015,7(23):3838-3841.
doi: 10.1002/cctc.201500785 URL |
[35] | 刘巧利, 杨套伟, 等. 酶法高效转化苯乙酮酸合成L-苯甘氨酸[J]. 应用与环境生物学报, 2019,25(2):451-456. |
Liu QL, Yang TW, et al. Efficient enzymatic synjournal of L-phenylglycine from benzoylformic acid[J]. Chinese Journal of Applied and Environmental Biology, 2019,25(2):451-456. | |
[36] |
Qi Y, Yang T, Zhou J, et al. Development of a multi-enzymatic desymmetrization and its application for the biosynjournal of L-norvaline from DL-norvaline[J]. Process Biochemistry, 2017,55:104-109.
doi: 10.1016/j.procbio.2017.01.022 URL |
[37] |
Ou Z, Shi H, Sun X, et al. Synjournal of S-licarbazepine by asymmetric reduction of oxcarbazepine with Saccharomyces cerevisiae CGMCC No. 2266[J]. Journal of Molecular Catalysis B Enzymatic, 2011,72(3-4):294-297.
doi: 10.1016/j.molcatb.2011.07.004 URL |
[38] |
Cheng J, Xu G, Han R, et al. Efficient access to L-phenylglycine using a newly identified amino acid dehydrogenase from Bacillus clausii[J]. RSC Adv, 2016,6(84):80557-80563.
doi: 10.1039/C6RA17683F URL |
[39] |
Fan CW, Bai YP, Ma BD, et al. A novel D-mandelate dehydrogenase used in three-enzyme cascade reaction for highly efficient synjournal of non-natural chiral amino acids[J]. Journal of Biotechnology, 2015,195:67-71.
doi: 10.1016/j.jbiotec.2014.10.026 URL pmid: 25449542 |
[40] | 贾园园, 李祥, 张振华, 等. 重组大肠杆菌全细胞催化D, L-扁桃酸对映选择性制备L-苯甘氨酸[J]. 食品科学, 2021,42(2), 83-89. |
Jia YY, Li X, Zhang ZH, et al. Enantioselective production of L-phenylglycine from D, L-mandelic acid catalyzed by recombinant E. coli whole cells[J]. Food Science, 2021,42(2), 83-89. | |
[41] | Cardillo AB, Perassolo M, Sartuqui M, et al. Production of tropane alkaloids by biotransformation using recombinant, Escherichia coli, whole cells[J]. Biochem Engi J, 2017,125:180-189. |
[42] |
Wang P, Yang X, Lin B, et al. Cofactor self-sufficient whole-cell biocatalysts for the production of 2-phenylethanol[J]. Metab Eng, 2017,44:143-149.
doi: 10.1016/j.ymben.2017.09.013 URL pmid: 28951189 |
[43] |
Wachtmeister J, Rother D. Recent advances in whole cell biocatalysis techniques bridging from investigative to industrial scale[J]. Curr Opin Biotechnol, 2016,42:169-177.
doi: 10.1016/j.copbio.2016.05.005 URL pmid: 27318259 |
[44] | Liu SP, Liu RX, El-Rotail, et al. Heterologous pathway for the production of L-phenylglycine from glucose by E. coli[J]. Biotechnol, 2014,186:91-97. |
[45] |
Wiyakrutta S, Meevootisom V. A stereo-inverting D-phenylglycine aminotransferase from Pseudomonas stutzeri ST-201:purification, characterization and application for D-phenylglycine synjournal[J]. J Biotechnol, 1997,55(3):193-203.
doi: 10.1016/s0168-1656(97)00075-8 URL pmid: 9249994 |
[46] | 刘双平. 大肠杆菌中L-苯甘氨酸生物合成途径的架构及系统改造[D]. 无锡:江南大学, 2015. |
Liu SP. Construction and systematical engineering of L-phenylglycine biosynthetic pathway in E. coli[D]. Wuxi:JiangNan University, 2015. |
[1] | 叶云芳, 田清尹, 施婷婷, 王亮, 岳远征, 杨秀莲, 王良桂. 植物中β-紫罗兰酮生物合成及调控研究进展[J]. 生物技术通报, 2023, 39(8): 91-105. |
[2] | 王玲, 卓燊, 付学森, 刘紫璇, 刘笑蓉, 王志辉, 周日宝, 刘湘丹. 莲生物碱生物合成途径及相关基因研究进展[J]. 生物技术通报, 2023, 39(7): 56-66. |
[3] | 姜晴春, 杜洁, 王嘉诚, 余知和, 王允, 柳忠玉. 虎杖转录因子PcMYB2的表达特性和功能分析[J]. 生物技术通报, 2023, 39(5): 217-223. |
[4] | 周定定, 李辉虎, 汤兴涌, 余发新, 孔丹宇, 刘毅. 甘草酸和甘草苷生物合成与调控的研究进展[J]. 生物技术通报, 2023, 39(5): 44-53. |
[5] | 郁慧丽, 李爱涛. 细胞色素P450酶在香精香料绿色生物合成中的应用[J]. 生物技术通报, 2023, 39(4): 24-37. |
[6] | 李毅丹, 单晓辉. 赤霉素代谢调控与绿色革命[J]. 生物技术通报, 2022, 38(2): 195-204. |
[7] | 姚宇, 顾佳珺, 孙超, 申国安, 郭宝林. 植物类黄酮UDP-糖基转移酶研究进展[J]. 生物技术通报, 2022, 38(12): 47-57. |
[8] | 赵玉雪, 王芸, 余璐瑶, 刘京晶, 斯金平, 张新凤, 张磊. 植物中C-糖基转移酶的结构与应用[J]. 生物技术通报, 2022, 38(10): 18-28. |
[9] | 徐圆圆, 赵国春, 郝颖颖, 翁学煌, 陈仲, 贾黎明. 无患子RT-qPCR内参基因的筛选与验证[J]. 生物技术通报, 2022, 38(10): 80-89. |
[10] | 刘雪丹, 杨萌, 张静, 赵东旭. 葡萄糖-木糖共利用对重组大肠杆菌合成D-1,2,4-丁三醇的影响[J]. 生物技术通报, 2021, 37(9): 171-179. |
[11] | 周正, 李卿, 陈万生, 张磊. 药用植物天然产物生物合成途径及关键催化酶的研究策略[J]. 生物技术通报, 2021, 37(8): 25-34. |
[12] | 梁振霆, 唐婷. 内生菌对植物次生代谢产物的生物合成影响和抗逆功能研究[J]. 生物技术通报, 2021, 37(8): 35-45. |
[13] | 乔自鹏, 王奇志, 杨道茂, 阮丽萍. 真菌介导纳米银生物合成的研究进展[J]. 生物技术通报, 2021, 37(3): 185-197. |
[14] | 任思羽, 程新宽, 张宇辉, 庄建文, 马龙. 两种新型L-苏氨酸醛缩酶的鉴定及活性检测方法[J]. 生物技术通报, 2021, 37(3): 233-240. |
[15] | 陈妤, 朱沛煌, 李荣, 朱灵芝, 季孔庶. 植物异戊烯基转移酶研究进展[J]. 生物技术通报, 2021, 37(2): 149-161. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||